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Abstract The GMRES method is popular for solving nonsymmetric linear
equations. It is generally used with restarting to reduce storage and orthogonal-
ization costs. However, it is possible to show that the restarted GMRES method
may not converge, i.e., it may be stationary. To remedy this difficulty, a new
convergent restarted GMRES method is discussed in this paper.
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1. Introduction
The restarted GMRES algorithm GMRES(m)[1] proposed by Saad and Schultz

is one of the most popular iterative methods for solving large linear systems of
equations

Ax = b, A ∈ Rn×n, x, b ∈ Rn, (1.1)

with a sparse, nonsymmetric, and nonsingular matrix A. It is known that when
A is positive real, the restarted GMRES method will produce a sequence of ap-
proximates xk that converge to the exact solution. However, when A is not
positive real, this method often slows down convergence and stagnates. The
analysis and implementation of the restarted GMRES algorithm continue to re-
ceive considerable attention [2,3,4,5,6,7,8]. For example, Y.Saad suggested a flexible
inner-outer preconditioned GMRES method FGMRES(m)[2]. R.B.Morgan gave
a restarted GMRES method augmented with eigenvectors [3] ,and Cao Zhihao et.
al. presented a convergent restarted GMRES algorithm based on the algorithm
FGMRES(m)[4]. We will now briefly review the algorithm GMRES in this sec-
tion. A new restarted GMRES method and its analysis will be given in section
2, section 3 gives the examples and comparisons, and conclusions are given in
section 4. The restarted GMRES can be briefly described as follows.
Algorithm 1: GMRES(m) for systems (1.1)
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1. Start: Choose x0 and compute r0 = b−Ax0 and β = ‖r0‖, v1 = r0/β.

2. Iterate: For j = 1, 2, · · · ,m do:

hi,j = (Avj , vi), i = 1, 2, · · · , j,

v̄j+1 = Avj −
j∑

i=1
hi,jvi,

hj+1,j = ‖v̄j+1‖,
vj+1 = v̄j+1/hj+1,j .

3. Form the approximate solution:

xm = x0 + Vmym, where ym minimizes ‖βe1 −Hmy‖, y ∈ Rm. Here
Hm is the (m+1) by m matrix whose only nonzero entries are the elements
hi,j defined in step 2. Vm = [v1, v2, · · · , vm] and the vector e1 is the first
column of the (m + 1)× (m + 1) identity matrix.

4. Restart:

Compute rm = b − Axm, if satisfied then stop else compute x0 :=
xm, r0 := rm, β := ‖r0‖, v1 := r0/β and go to 2.

If A is not positive real, then r0 ⊥ span{Ar0, A
2r0, · · · , Amr0} may happen.

In this situation the restarted GMRES method is stationary. To avoid this disad-
vantage, we introduce and analyze a new convergent restarted GMRES method.
Conveniently , we use the term CGMRES(m) to denote the method.

2. CGMRES(m)
The linear systems associated with (1.1) can be taken as the following form

[
I A

−AT 0

] [
u∗

x

]
=

[
f
g

]
, (2.1)

where I ∈ Rn×n is the identity matrix , while u∗ ∈ Rn is a given vector and
f = u∗ + b, g = −AT u∗ ∈ Rn . Since A is nonsingular, thus the system (2.1)

has an unique solution z∗ =

[
u∗

x∗

]
. Let z0 is the initial approximate solution

of (2.1), B =

[
I A

−AT 0

]
, r̄0 =

[
f
g

]
− Bz0. Solving the systems (2.1) with

GMRES(m),where m ≥ 2 , we have the following results:

Proposition 2.1 Denoting by βi, i = 1, 2, · · · , n, the eigenvalues of AT A and
supposing

β1 ≥ β2 ≥ · · · ≥ βn ≥ 1/4, (2.2)

then we have that the eigenvalues of matrix B have positive real part.
Proof We have

|λI1 −B| =
∣∣∣∣∣

(λ− 1)I −A
AT λI

∣∣∣∣∣ , (2.3)
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where I1 ∈ R2n×2n is a identity matrix.If λ = 1 is the eigenvalue of matrix B,by
(2.3),we get ∣∣∣∣∣

0 −A
AT I

∣∣∣∣∣ = 0.

This is a contradiction with that matrix A is nonsingular.Hence,we have λ 6= 1.
According to (2.3) and λ 6= 1,we have

|λI1 −B| =

∣∣∣∣∣
(λ− 1)I −A

AT λI

∣∣∣∣∣

=

∣∣∣∣∣
(λ− 1)I −A

0 λI + (λ− 1)−1AT A

∣∣∣∣∣
= |(λ− 1)λI + AT A|.

If {λi,j |i = 1, 2, · · · , n; j = 1, 2} denote the eigenvalues of B ,then λi,j , j = 1, 2 ,
can be given by solving the following equation

(λi,j − 1)λi,j + βi = 0, i = 1, 2, · · · , n, j = 1, 2. (2.4)

Solving (2.4) we obtain

λi,1 =
1 +

√
1− 4βi

2
(2.5)

and

λi,2 =
1−√1− 4βi

2
, (2.6)

i = 1, 2, · · · , n. Using (2.2) yields the desired result.
According to [1] and Proposition 2.1,we know that using the restarted GMRES

method to solve (2.1) will produce a sequence of approximations which converges
to the exact solution of (2.1) when βi ≥ 1/4, i = 1, 2, · · · , n. If the conditions
βi ≥ 1/4, i = 1, 2, · · · , n do not hold, we can use

Proposition 2.2 Assume that yk, k = 1, 2, · · · ,m minimizes ‖βe1−Hky‖, y ∈
Rk, Hk is the (k + 1) × k matrix whose nonzero entries are the elements hi,j

defined by GMRES(m) for (2.1),zk = z0 + Vkyk is the approximate solution of
(2.1),where Vk = [v1, v2, · · · , vk], vi is the Arnoldi vector generated by GMRES(m)

for (2.1),i = 1, 2, · · · , k, k = 1, 2, · · · ,m(m ≥ 2). Suppose that zk =

[
uk

xk

]
∈

R2n, uk, xk ∈ Rn and residual r̄k =

[
f
g

]
−Bzk ,then the following results hold:

(1) ‖r̄m‖2 < ‖r̄0‖2 and zk tents to the exact solution z∗ =

[
u∗

x∗

]
of (2.1).

(2) x∗ is the exact solution of (1.1).
Proof of (1) The residual vector of the approximate solution zk can be

written as

r̄k =

[
f
g

]
−Bzk =

[
u∗ + b− uk −Axk

g + AT uk

]
=

[
r̄k1

r̄k2

]
, k = 0, 1, · · · ,m.
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Suppose further that v̄1 = r̄0/‖r̄0‖2 =

[
v̄1,1

v̄1,2

]
6= 0. We find

v̄T
1 Bv̄1 = v̄T

1,1v̄1,1 + v̄T
1,1Av̄1,2 − v̄T

1,2A
T v̄1,1 = v̄T

1,1v̄1,1 ≥ 0 (2.7)

and if v̄1,1 = 0,we have

v̄T
1 B2v̄1 =

[
−v̄T

1,2A
T , 0

] [
Av̄1,2

0

]
= −v̄T

1,2A
T Av̄1,2 ≤ 0 (2.8)

Let Km = span{r̄0, Br̄0, · · · , Bm−1r̄0}. We have

‖r̄m‖2 = min
z∈Km

‖
[

f
g

]
−B[z0 + z]‖2

= min
z∈Km

‖r̄0 −Bz‖2

= min
y∈Rm

‖βv̄1 −BVmy‖2,

(2.9)

where z = Vmy.
Using BVm = Vm+1Hm, we get

min
y∈Rm

‖βv̄1 −BVmy‖2 = min
y∈Rm

‖βe1 −Hmy‖2, (2.10)

where e1 is the first column of the (m + 1) × (m + 1) identity matrix. By (2.9)
and (2.10),we obtain

‖r̄m‖2 = min
z∈Km

‖r̄0 −Bz‖2 ≤ ‖r̄0 − βv̄T
1 Bv̄1

‖Bv̄1‖2
2

Bv̄1‖2. (2.11)

Let

c1 =
βv̄T

1 Bv̄1

‖Bv̄1‖2
2

, R1 = r̄0 − c1Bv̄1.

According to v̄1,1 6= 0 and (2.7),we have

c1 > 0, RT
1 Bv̄1 = 0

and
‖r̄0‖2 = ‖r̄0 − c1Bv̄1 + c1Bv̄1‖2

=
√
‖R1‖2

2 + c2
1‖Bv̄1‖2

2 > ‖R1‖2.
(2.12)

By (2.11) and (2.12), we can get

‖r̄m‖2 ≤ ‖R1‖2 < ‖r̄0‖2. (2.13)

In similar way, if v̄1,1 = 0 then v̄1,2 6= 0 we have

‖r̄m‖2 = min
z∈Km

‖r̄0 −Bz‖2 ≤ ‖r̄0 − βv̄T
1 B2v̄1

‖B2v̄1‖2
2

B2v̄1‖2, (2.14)
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where m ≥ 2.
Let

c2 =
βv̄T

1 B2v̄1

‖B2v̄1‖2
2

, R2 = r̄0 − c2B
2v̄1.

According to v̄1,2 6= 0 and (2.8),we have

c2 < 0, RT
2 B2v̄1 = 0

and
‖r̄0‖2 = ‖r̄0 − c2B

2v̄1 + c2B
2v̄1‖2

=
√
‖R2‖2

2 + c2
2‖B2v̄1‖2

2 > ‖R2‖2.
(2.15)

Thus, we can get
‖r̄m‖2 ≤ ‖R2‖2 < ‖r̄0‖2. (2.16)

Applying (2.13) and (2.16),we know if r̄0 6= 0 then ‖r̄m‖2 < ‖r̄0‖2, the result (1)
holds.

Proof of (2) Since z∗ =

[
u∗

x∗

]
satisfies (2.1),we can find

−AT u∗ = g (2.11)

and
Ax∗ = (f − u∗) = b (2.12)

By (2.12) we have thus obtained the result (2) .
According to Propositions 2.1 and 2.2, using algorithm GMRES(m) to solve

system (2.1), we can obtain and approximate solution of (1.1). Now the CGM-
RES(m) algorithm can be briefly described as follows:

Algorithm 2: CGMRES(m) for systems (1.1)

1. Start: Choose z0 and compute r0 =

[
f
g

]
−Bz0 and β = ‖r0‖, v1 = r0/β.

2. Iterate: For j = 1, 2, · · · ,m do:

hi,j = (Bvj , vi), i = 1, 2, · · · , j,

v̄j+1 = Bvj −
j∑

i=1
hi,jvi,

hj+1,j = ‖v̄j+1‖,
vj+1 = v̄j+1/hj+1,j .

3. Form the approximate solution of (2.1):

zm = z0 + Vmym, where Vm = [v1, v2, · · · , vm] and ym minimizes
‖βe1 −Hmy‖, y ∈ Rm. Here Hm is the (m + 1) by m matrix whose only
nonzero entries are the elements hi,j defined in step 2, and e1 is the first
column of the (m + 1)× (m + 1) identity matrix.
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4. Form the approximate solution of (1.1):

xm =
[
z(n+1), z(n+2), · · · , z(2n)

]T
,where zm =

[
z(1), z(2), · · · , z(2n)

]T

5. Restart:

Compute rm = b− Axm, if satisfied, then stop , else compute rm =[
f
g

]
−Bzm, set z0 := zm, r0 := rm, β := ‖r0‖, v1 := r0/β, and go to 2.

In comparing algorithm CGMRES(m) with GMRES(m) , where m ≥ 2 ,it is
clear that CGMRES(m) has the all advantages of algorithm GMRES(m) and is a
convergent algorithm ,but it needs more storage than is required by GMRES(m)
,and costs nearly as much as by GMRES(m) in each inner loop.

3.Numerical experiments
In this section we report a few numerical experiments comparing the perfor-

mances of CGMRES(m) with GMRES(m).
Example 1 . Consider A = Toeplitz([1,−3.5, 1, 1, 1]) ∈ R200×200 , where the

diagonal element of the matrix underlined .The matrix A has extreme singular
value σ200 = 4.1375 × 10−11 and σ1 = 5.4955 . Let b = A[2, 2, · · · , 2]T ,x0 =
[0, 0, · · · , 0]T ∈ R200, m = 10, and z0 = [0, 0, · · · , 0]T ∈ R400. The logarithm of
the norm of relative residual is given by log10(‖b−Axm‖/‖b‖) . Figure 1 exhibits
the convergence histories of GMRES(m) and CGMRES(m) against the number
of matrix-vector products.

Example 2 . Consider A = Toeplitz([1, 0.0, 1, 1, 1]) ∈ R200×200, and b =
A[2, 2, · · · , 2]T ∈ R200 ,x0,m, and z0 as in Example 1. Figure 2 exhibits the
convergence histories of GMRES(m) and CGMRES(m) against the number of
matrix-vector products.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

6



0 50 100 150 200 250 300
−5

−4

−3

−2

−1

0

1

2

3

Figure 2: Number of matrix−vector products
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4. Conclusion
Algorithm CGMRES(m) is useful especially when GMRES(m) is stationary

. It can avoid stagnation arising from algorithm GMRES(m).However, we can’t
draw the conclusion that the convergence rate of CGMRES(m) is faster than
GMRES(m) when GMRES(m) is convergent.
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