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Abstract.
In this paper, we propose a new factorization method for block tridiagonal symmetric

indefinite matrices. We also discuss the stability of the factorization method. As a mea-
surement of stability, an effective condition number is derived by using backward error
analysis and perturbation analysis. It shows that under some suitable assumptions,
the solution obtained by this factorization method is acceptable. Numerical results
demonstrate that the factorization is stable if its condition number is not too large.
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1 Introduction.

We are concerned in this paper with the stability of a factorization for the
equation

Bx = b,(1.1)

where B is a block tridiagonal symmetric indefinite matrix. The block tridiagonal
matrix is of the form

B =

 K −A 0
−A� −C G

0 G� D

 ,(1.2)

where K is a symmetric positive definite matrix of order m and A and G have
dimensions m × n and n × l with full column rank, C and D are symmetric
positive semidefinite. The matrix (1.2) is symmetric indefinite and nonsingular.

The special linear system (1.1) has many applications, e.g., the remaining
(linearized) Euler–Lagrange equations can be obtained in the matrix form (1.2)
(see [11]).
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In [7], with a coupled DEM-FEM formulation, the necessity to use Lagrange
multipliers will induce a three-field mixed system that, in the case of an imper-
vious porous material with an incompressible pore fluid, has the form (1.2).

Direct methods with partial pivoting strategies for symmetric indefinite ma-
trices producing a block diagonal matrix consisting of blocks of order 1 or 2 are
given in [1, 2]. The stability analysis of the Cholesky factorization for quasidefi-
nite systems is developed in [4]. Using the stability analysis for the factorization
LD̃MT of nonsymmetric positive definite matrix, the conditions are derived
under which the Cholesky factorization is stable for quasidefinite systems. Fors-
gren, Gill and Shinnerl give a rounding-error analysis of the symmetric indefinite
factorization when applied to t-diagonally dominant systems (see [3]).

The factorization method was presented in [10, 12]. This method inherited
the advantage of Cholesky factorization with small storage and low computation
costs. For this we have the following theorem [10].

Theorem 1. Given any symmetric indefinite matrix as (1.2), then we have

B = LJLT,(1.3)

L =

 L11 0
L21 L22

0 L32 L33

 , J =

 Im

−In

Il

 ,(1.4)

where L11 ∈ Rm×m, L22 ∈ Rn×n, L33 ∈ Rl×l are lower triangular matrix, L21 ∈
Rn×m, L32 ∈ Rl×n. Im, In and Il are identity matrix.

Lij can be easily calculated from the following matrix equations:

K = L11L
T
11,(1.5)

−AT = L21L
T
11,(1.6)

C + L21L
T
21 = L22L

T
22,(1.7)

−GT = L32L
T
22,(1.8)

D + L32L
T
32 = L33L

T
33.(1.9)

In this paper, we discuss the backward rounding error and the stability of the
factorization method (1.3) considering the special structures B and the pertur-
bation E sufficiently. We will examine conditions under which the factorization
method may be used reliably. In Section 2 we give a backward rounding-error
analysis of (1.1) by means of the factorization method. The stability condition
of the factorization is described in Section 3. In Section 4 we describe the
sensitivity of the solution of this class of systems when the matrix is changed
by perturbation. The analysis suggests an effective condition number for these
equations and indicates that under suitable assumptions, the solution can be
computed accurately. Finally, some numerical results are given to demonstrate
the prediction.
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2 Backward rounding error analysis.

In this section we give a backward error analysis of the solution of (1.1) by
means of the factorization method. Throughout, we use the “standard model”
of floating-point arithmetic in which the evaluation of an expression in floating-
point arithmetic is denoted by fl(·), with

fl(a ◦ b) = (a ◦ b)(1 + δ), |δ| ≤ u, ◦ = +,−, ∗, /

and
fl(x1/2) = x1/2(1 + ε), |ε| ≤ 1.00001u

(see, for example, Higham [6]). Here u is the unit round-off associated with the
particular machine being used.

In the next lemma, the backward error analysis is presented.

Lemma 2. Let B be the same as that in (1.2) and assume max{m + 3,
n + 3}u ≤ 0.01. L̂ is the computed factorization factor of B. Then we have

B + ∆B = L̂JL̂T,

where ∆B satisfies

|∆B| ≤ (m + 7)1.01u

1 − 3.00002u
|L̂||L̂T|.(2.1)

Proof. Let L̂ij denote the subblock of L̂ in analogy with that in (1.4), which
are computed from Equations (1.5)∼(1.9) respectively. The backward error of
the factorization is accumulated from each of the five steps. First, let

K + ∆K = L̂11L̂
T
11

then we have the following inequality as it in [8],

|∆K| ≤ 1.01(m + 2)u
1 − 3.00002u

|L̂11||L̂T
11|.(2.2)

Similar results can be established for the computable factors L̂21 and L̂22:

−(AT + ∆AT) = L̂21L̂
T
11,

|∆AT| ≤ 1.01(m + 3)u
1 − 2.02u

|L̂21||L̂T
11|

(2.3)

and

C + ∆C + L̂21L̂
T
21 = L̂22L̂

T
22,

|∆C| ≤ max{m + 7, n + 6}1.01u

1 − 3.00002u
(|L̂21||L̂T

21| + |L̂22||L̂T
22|).

(2.4)



184 JINXI ZHAO, WEIGUO WANG AND WEIQING REN

Finally, we establish for the computed factors L̂32 and L̂33. Let L22 = [νij ], L32 =
[µij ], L33 = [hij ], from (1.8) and (1.9), the µij and hij are computed from

µij = −
(

gji −
j−1∑
p=1

µipνjp

)
/νjj , i = 1, 2, . . . , l, j = 1, 2, . . . , n.(2.5)

and

hij =

{
(Dii +

∑n
k=1 µ2

ik −
∑j−1

p=1 h2
ip)

1/2, i = j,

(Dij +
∑n

k=1 µikµjk −
∑j−i

p=1 hiphjp)/hjj , i > j,
(2.6)

i = 1, 2, . . . , l, j = 1, 2, . . . , i.

We obtain

|∆GT| ≤ 1.01(m + 3)u
1 − 2.02u

|L̂32||L̂T
22|(2.7)

and

|∆D| ≤ max{n + 7, l + 6}1.01u

1 − 3.00002u
(|L̂32||L̂T

32| + |L̂33||L̂T
33|).(2.8)

Then,
B + ∆B = L̂JL̂T.

From (2.2)∼(2.8), we have

|∆B| ≤ max{n + 7, l + 7, l + 6}1.01u

1 − 3.00002u
(|L̂||L̂T|).(2.9)

For A and G are full column rank, i.e., m ≥ n ≥ l. (2.1) is derived immediately
from (2.9). �

We consider the backward error resulting from solution of the triangular
systems,

Lx = f and Uy = g,

where L ∈ Rn×n is lower triangular and U ∈ Rn×n upper triangular. It follows
from [9] that the intermediate vectors x̂ and ŷ satisfy (L̂ + ∆L)x̂ = f and
(Û + ∆U)ŷ = g, where ∆L and ∆U have the same element-wise bound

|∆L| ≤ nu

1 − nu
|L̂| and |∆U | ≤ nu

1 − nu
|Û |.(2.10)

In the next theorem we show that the computed solution x̂ of (1.1) is the exact
solution of (B+E)x̂ = b, where E is an error matrix. The theorem is established
by accumulating the backward error.

Theorem 3. Let B be as in (1.2), and x̂ is the computed solution of Bx = b
by the factorization. Then x̂ is the exact solution of (B + E)x̂ = b with

|E| ≤ 3(m + n + l)u
1 − (m + n + l)u

|L̂||L̂T|.
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Proof. Let L̂JL̂T be the computed factorization of B. In the following we
denote JL̂T as Û , an upper triangular matrix. To solve Bx = b, we must solve two
triangular systems. Let the computed solution Ŷ and x̂ satisfy (L̂ + ∆L)ŷ = b
and (Û + ∆U)x̂ = y, with bounds for ∆L and ∆U given in (2.10). Hence x̂
satisfies

(L̂ + ∆L)(Û + ∆U)x̂ = b,

i.e.,
(B + E)x̂ = b,

where
E = ∆B + ∆LÛ + L̂∆U + ∆L∆U.

Ignoring elements of order u2, from (2.1) and (2.10), we have

|E| ≤ |∆B| + |∆L||Û | + |L̂||∆U | + |∆L||∆U |

≤ (m + 7)1.01u

1 − 3.00002u
|L̂||Û | + 2(m + n + l)u

1 − (m + n + l)u
|L̂||Û |

≤ 3(m + n + l)u
1 − (m + n + l)u

|L̂||L̂T|.

In the last inequality, we assume

(m + n + l) ≥ 1.01(m + 7). �
In the preceding Theorem 3, the error E is a symmetric error matrix with the

special structure as B.

3 Stability of the factorization.

In the backward error analysis of solving Bx = b, it is shown that the computed
solution x̂ is the exact solution of the perturbed system (B +E)x̂ = b, where the
size of E is bounded by an expression involving the size of the computed factor L̂.
Algorithms that produce L̂ of sufficiently bounded size are therefore considered
stable. Based on the factorization LD̃MT for nonsymmetric positive definite
matrix H̄ , the stability analysis of the Cholesky factorization for symmetric
quasidefinite matrix is given (see [4]). Here the nonsymmetric positive definite
matrix is

H̄ =
(

K A
−A� C

)
and the symmetric quasidefinite matrix is

H =
(

K −A
−A� −C

)
=

(
K A

−A� C

) (
In

−Im

)
.

In the following, we consider directly the stability of the factorization as (1.2)
without using the factorization LD̃MT.
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Assumption 4. For some scalar γ of moderate size,

‖|L̂||L̂T|‖F ≤ γ‖|L||LT|‖F .

From Equation (1.5)∼(1.9), we have

‖L11‖2
F = tr(K),

‖L21‖2
F = tr(ATK−1A),

‖L22‖2
F = tr(ATK−1A + C),

‖L32‖2
F = tr(GT(ATK−1A + C)−1G),

‖L33‖2
F = tr(GT(ATK−1A + C)−1G + D).

Hence
‖|L||LT|‖F ≤ ‖L‖F‖LT‖F

= tr(K) + tr(C) + tr(D) + 2tr(ATK−1A)
+ 2tr(GT(ATK−1A + C)−1G)

= (1 + ω(B))(tr(K) + tr(C) + tr(D)),

where

ω(B) =
2tr(ATK−1A) + 2tr(GT(ATK−1A + C)−1G)

tr(K) + tr(C) + tr(D)
.(3.1)

Combining Theorem 3 and Assumption 4, we have

‖E‖2 ≤ ‖E‖F ≤ 3γ(m + n + l)u
1 − (m + n + l)

(1 + ω(B))(tr(K) + tr(C) + tr(D)).(3.2)

Theorem 5. If B is as in (1.2), the factorization B = LJLT is stable if
ω(B) is not too large.

4 The condition number of the augmented system.

Let the computed solution x̂ of Bx = b satisfy the perturbed system

(B + E)x = b.

Then the usual sensitivity bound takes the form

‖x − x̂‖
‖x‖2

≤ α

1 − α
, where α =

‖E‖2

‖B‖2
κ2(B).

From Assumption 4 and (3.2), we have

α ≤ 3γ(m + n + l)u
1 − (m + n + l)u

tr(K) + tr(C) + tr(D)
‖B‖2

(1 + ω(B))κ2(B).(4.1)

A simple calculation shows that

tr(K) + tr(C) + tr(D) ≤ (m + n + l)‖B‖2.(4.2)

From (4.1) and (4.2), we obtain the following result showing that the relative
error is bounded by quantity involving (1 + ω(B))κ2(B).
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Theorem 6. Let B be symmetric indefinite as (1.2), and x̂ is the computed
solution of Bx = b, then

‖x − x̂‖
‖x‖2

≤ α

1 − α
,

with

α ≤ 3γ(m + n + l)2u
1 − (m + n + l)u

φ(B),

where φ(B) = (1 + ω(B))κ2(B), ω(B) is defined in (3.1).

The theorem tells us that under Assumption 4, system (1.1) can be solved
accurately as long as φ(B) is not too large. We therefore interpret φ(B) to be
the effective condition number of generalized Cholesky factorization for solving
the system (1.1).

5 Numerical experiments.

We have used MATLAB in PC to implement the factorization of Bx = b,
where B has the form (1.2). The results confirm our prediction.

Example 1. Let m = n = 10, l = 5; K = diag(kii), k11 = ε, k22, . . . , kmm be
positive and randomly generated by MATLAB, A and G have full column rank,
C and D be zero matrices. We list some results corresponding to the example in
Table 5.1.

Example 2. Let K, A, G be as in Example 1; let C and D be symmetric
positive semidefinite random matrices. The results listed in Table 5.2.

The results show that for various ε, though the spectral condition number of
B is almost invariant, the precision of the computed solution is different. This
confirms our predictions: (i) for small ω(B), the factorization is stable; (ii) for
small φ(B), the computed solution x̂ is reliable.

Note that small ω(B) and φ(B) are both sufficient, but not necessary, for
ensuring an accurate factorization factor and the reliable solution of Bx = b.
For large ω(B) and φ(B), it is difficult to draw any conclusion.

Table 5.1: Numerical results for the Example 1.

ε κ2(B) ω(B) φ(B) ‖B − LJLT‖F
‖x−x̂‖2
‖x‖2

102 7.1860e+02 6.4539e+00 5.3564e+03 1.6834e−14 9.0382e−14

100 4.2444e+01 3.3010e+02 1.4435e+03 4.7234e−15 5.0320e−15

10−2 4.2236e+01 2.3321e+02 9.8921e+03 3.3934e−14 3.8136e−14

10−4 4.2241e+01 1.9735e+04 8.3365e+05 3.0106e−12 1.9367e−12

10−6 4.2241e+01 1.9699e+06 8.3209e+07 2.8257e−10 1.8954e−10

10−8 4.2241e+01 1.9698e+08 8.3207e+09 2.7447e−08 2.2862e−08
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Table 5.2: Numerical results for the Example 2.

ε κ2(B) ω(B) φ(B) ‖B − LJLT‖F
‖x−x̂‖2
‖x‖2

10 1.6485e+02 2.2222e+00 5.3116e+02 5.0286e−15 4.7348e−15

100 1.6504e+02 2.8013e+00 6.2736e+02 6.3152e−15 4.0532e−15

10−2 1.6515e+02 2.3192e+01 3.9954e+03 4.5329e−14 3.1294e−14

10−4 1.6516e+02 2.0582e+03 3.4009e+05 5.7003e−12 2.3596e−12

10−6 1.6516e+02 2.0556e+05 3.3939e+07 4.5493e−10 2.7224e−10

10−8 1.6516e+02 2.0556e+07 3.3949e+09 3.8521e−08 3.3042e−08
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