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Abstract

Let K be a symmetric indefinite matrix. Suppose that K ¼ LJLT is the generalized

Cholesky factorization of K. In this paper we present perturbation analysis for the

generalized Cholesky factorization. We obtain the first-order bound on the norm of the

perturbation in the generalized Cholesky factor. Also, we give rigorous perturbation

bounds.
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1. Introduction

Consider the problem of solving the structured linear system
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for x and y, where A 2 Rm�m is symmetric positive definite matrix, B 2 Rm�n, x,
b 2 Rm, and y; d 2 Rn, C 2 Rn�n. This system is called an augmented system, or

an equilibrium system. The system (1) has been investigated by many authors
for numerical algorithms. (See, [1,2,4,7,11,12])
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In [1], the generalized Cholesky factorization is presented and this method

inherits the advantage of Cholesky factorization with small storage and low
computation costs. We first derive the generalized Cholesky factorization

theorem.

Theorem 1.1 [1]. Given any symmetric indefinite matrix
K ¼ A BT

B �C

� �
; ð2Þ
where A, B and C are the same as that defined in (1). Then we have
K ¼ LJLT; ð3Þ

L ¼ L11

L21 L22

� �
; J ¼ Im

�In

� �
; ð4Þ
where L11 2 Rm�m and L22 2 Rn�n are lower triangular, L21 2 Rn�m; Im and In are
identity matrices.

Let eKK ¼ K þ DK be a perturbation of K in which DK is symmetric. If DK is

sufficiently small, then eKK also has a generalized Cholesky factorization:
K þ DK ¼ ðLþ DLÞJðLþ DLÞT: ð5Þ
There have been several results dealing with the perturbation analysis for the

Cholesky factor (see [3,8,9]). They obtained the first-order perturbation result.

The result is sharpened in [5,6].

About (5), K. Vesli�cc [10] has given some eigenvalue perturbation results. In

this paper we derive the first-order perturbation bound and the rigorous per-
turbation bound for the generalized Cholesky factorization.
2. Perturbation theorems for the generalized Cholesky factorization

In the section, two perturbation theorems on the generalized Cholesky

factor will be given. The symbols k � k2 and k � kF will be used for the spectral
norm and the Frobenius norm, respectively.

We need a lemma controlling the triangular indefinite decomposition of

J þ N for small N .

Lemma 2.1 [10]. Let N be a Hermitian matrix with kNk < 1=2, then there exists
a unique lower triangular matrix such that
J þ N ¼ ðI þ CÞJðI þ C�Þ;
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where
kCkF 6
ffiffiffi
2
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1� 2kNkF

p :
Theorem 2.2. Let K be a symmetric indefinite matrix and K ¼ LJLT its gener-
alized Cholesky factorization, let G 2 RðmþnÞ�ðmþnÞ be symmetric matrix, and let
DK ¼ eG, for some eP 0. If
qððLLTÞ�1DKÞ < 1

2
; ð6Þ
then K þ DK has the unique generalized Cholesky factorization,
K þ DK ¼ ðLþ DLÞJðLþ DLÞT; ð7Þ
with DL satisfying
DL ¼ e _LLð0Þ þOðe2Þ; ð8Þ
where _LLð0Þ is defined by the unique generalized Cholesky factorization
K þ tG ¼ LðtÞJLTðtÞ; jtj6 e; ð9Þ
and so satisfies the equations
LJ _LLTð0Þ þ _LLð0ÞJLT ¼ G; ð10Þ
_LLTð0Þ ¼ J upðL�1GL�TLTÞ; ð11Þ
where the ‘up’and ‘low’ notation is defined by
upðX Þ ¼

1
2
x11 x12 � x1n
0 1

2
x22 � x2n

� � � �
0 0 � xnn

0
BB@

1
CCA; ð12Þ

lowðX Þ ¼ X � upðX Þ ¼ upðX TÞT: ð13Þ
Proof. If (6) holds, then for all jtj6 e the spectral radius of tL�1GL�T satisfies
qðtL�1GL�TÞ ¼ qðtL�TL�1GÞ ¼ qðtðLLTÞ�1GÞ < 1

2
:

Therefore for all jtj6 e, K þ tG ¼ LðJ þ tL�1GL�TÞLT is symmetric non-

singular matrix, and J þ tL�1GL�T has m positive eigenvalues and n negative
eigenvalues. From the previous Lemma 2.1., so K þ tG has the generalized

Cholesky factorization (9). Notice that Rð0Þ ¼ R and RðeÞ ¼ Rþ DR, so (7)

holds.
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If we differentiate (9) and set t ¼ 0 in the result we obtain the linear equation

(10). From upper triangular _LLTð0ÞL�T in
ðJ _LLTð0ÞL�TÞT þ J _LLTð0ÞL�T ¼ L�1GL�T;
we see with the �up� notation in (12) that (11) holds. Finally the Taylor ex-

pansion for RðtÞ about t ¼ 0 gives (8) at t ¼ e. �

Using Theorem 2.2 we can now easily obtain the first-order perturbation

bound by a different approach.

Theorem 2.3. Let K be symmetric indefinite matrix and K ¼ LJLT be generalized
Cholesky factorization, and let DK be a real symmetric matrix satisfying
kDKkF 6 ekKk2. If
ekL�1k22kKk2 <
1

2
; ð14Þ
then K þ DK has the generalized Cholesky factorization
K þ DK ¼ ðLþ DLÞJðLþ DLÞT; ð15Þ
where
kDLkF
kLk2

6
1ffiffiffi
2

p kL�1k22kKk2eþOðe2Þ: ð16Þ
Proof. Let G � DK=e (if e ¼ 0, the theorem is trivial). Then
kGkF 6 kKk2; ð17Þ
since
qððLLTÞ�1DKÞ6 kðLLTÞ�1DKk2 6 kL�1k22ekKk2 <
1

2
:

So the conclusion of Theorem 2.2 hold here. Because
2kupðX Þk2F ¼ 2klowðX Þk2F ¼ kXk2F �
1

2
ðx211 þ x222 þ � � � þ x2nnÞ6 kXk2F;
i.e. kupðX ÞkF 6 ð1=
ffiffiffi
2

p
ÞkXkF for any symmetric X .

We have from (11) that
k _LLTð0ÞkF ¼ kJ upðL�1GL�TÞLTkF

¼ kupðL�1GL�TÞLTkF 6
1ffiffiffi
2

p kL�1GL�TkFkLTk2

6
1ffiffiffi
2

p kL�Tk22kLTk2kGkF; ð18Þ
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which, with (17), gives
k _LLTð0ÞkF
kLTk2

6
1ffiffiffi
2

p kL�Tk22kKk2: ð19Þ
Then from the Taylor expansion, (16) follows immediately. �

Clearly from (16) we see ð1=
ffiffiffi
2

p
ÞkL�1k22kKk2 can be regarded as a measure of

the sensitivity of the generalized Cholesky factorization.
3. New perturbation bound

Multiplying out the right-hand side of (5) and ignoring higher-order terms,

we obtain a linear matrix equation for first-order approximation fDLDL to DL [5]
LfDLDLT þ fDLDLLT ¼ DK: ð20Þ
About this equation, Our basic result is the following
fDLDL ¼ L lowðL�1DKðJLTÞ�1Þ and fDLDLT ¼ upðL�1DKðJLTÞ�1ÞðJLTÞ:
To see this, write
LðupðL�1DKðJLTÞ�1ÞðJLTÞÞ þ L ðlowðL�1DKðJLTÞ�1ÞðJLTÞÞ

¼ LðL�1DKðJLTÞ�1ÞJDLT ¼ DK:
We can take norms in the expressions fDLDLT and fDLDL to get first-order per-

turbation bounds for the generalized Cholesky factorization, but it is possible

to introduce degrees of freedom in the expressions that can later used to reduce

the bounds. Specifically, for any nonsingular diagonal matrix DL, we have
fDLDL ¼ L lowðL�1DKðJLTÞ�1Þ ¼ LDLlowðD�1
L L�1DKðJLTÞ�1Þ

¼ bLL lowðbLL�1DKðJLTÞ�1Þ;
consequently
kfDLDLkF ¼ kbLL lowðbLL�1DKðJLTÞ�1ÞkF 6 kbLLk2kbLL�1k2kDKkFkJk2kL�Tk2
¼ kbLLk2kbLL�1k2kL�Tk2kDKkF; ð21Þ
or
kfDLDLkF
kLk2

6 jðbLLÞjðLÞ kDKkF
kLk22

;

where jðLÞ ¼ kLk2kL�1k2.



606 W. Wang, J. Zhao / Appl. Math. Comput. 147 (2004) 601–606
Since kKk2 6 kLk22, we have
kfDLDLkF
kLk2

6 jðbLLÞjðLÞ kDKkFkKk2
:

If KðbLLÞ ¼ 1(it cannot be less), then the bound (21) reduces to
kfDLDLkF 6 kL�1k2kDKkF: ð22Þ
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