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Abstract

Irregular peaks often appear if we use Galerkin methods for solving linear systems of

equations Ax ¼ b. These peaks bring about too difficult to identify convergence. To
remedy this disadvantage, we have to spend more work and memory, that is we use

norm minimizing methods for solving Ax ¼ b. However, plateaus cannot be avoided. In
this paper we give a sufficient and necessary condition for occurring of peaks. Also we

present some related factors for this behavior.

� 2002 Elsevier Inc. All rights reserved.
1. Introduction and definitions

For solving linear systems of equations
qSu
*Co

Nanjin

E-m

0096-3

doi:10.
Ax ¼ b ð1:1Þ
there are two classes of iterative methods commonly used. One is Galerkin

methods such as Lanczos [10], BCG [5] and FOM [11]. The other is norm

minimizing methods such as MINRES [12], QMR [6] and GMRES [13].
pported by the State 863-plan High Science and Technology of China.

rresponding author. Address: Department of Computer Science and Technology, 210008

g, China.

ail address: jxzhao@nju.edu.cn (J. Zhao).

003/02/$ - see front matter � 2002 Elsevier Inc. All rights reserved.

1016/S0096-3003(02)00419-8

mail to: jxzhao@nju.edu.cn


442 Y. Shen, J. Zhao / Appl. Math. Comput. 144 (2003) 441–455
The convergence of any iterative method is said to have occurred at iteration

k if for some specified convergence tolerance e,
krkk=kr0k6 e ð1:2Þ
where r0 is the initial residual, rk ¼ �Axk þ b, and xk is the kth iteration.
Without any loss of generality, we will assume that A is real and nonsingular.

The initial guess x0 ¼ 0 so that r0 ¼ b. In this paper we focus on a pair of
Lanczos/MINRES methods for solving Eq. (1.1) when A is an n� n symmetric
matrix. See [2] for results of the pairs GMRES/FOM and QMR/BCG and for

details of theorems and proofs are not include in this paper. It is shown that

using Galerkin methods for solving linear system (1.1) with A either real

symmetric or nonsymmetric the residual norms, krkk, k ¼ 1; 2; . . . ; are not
always monotonically decreasing as a function of the iteration number. Irregu-

lar peaks can appear in such curves, making it difficult to identify convergence,

and making the user feel insecure about using the method. See for example

Fig. 1.
One way of copying with this problem is to use norm minimizing methods.

Since the Krylov subspaces generated are nested, the residual norm krkk must
be a monotone decreasing function of the iteration number k. However, these
Fig. 1. The convergence curves of Lanczos.
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methods have been devised that require a great deal of work and memory.

Moreover, plateaus can appear in such plots, intervals of iterations over which
the norm of the residual decrease at an unacceptably slow rate of change. See

for example Fig. 2.

In this paper we examine, both experimentally and theoretically, peak and

plateau formation generated by the Lanczos/MINRES. In Section 2 we present

relationships between peaks and plateaus. In Section 3 we identify some factors

which initiate peak formations in the Lanczos residual norm plots. In Section 4

we give some numerical experiments to examine our conclusions.

The norm k:k is the Euclidean two norm, or spectral norm. The rLRk and rMRk

denote the Lanczos residual and MINRES residual, respectively.

The Krylov subspace is defined by
Kk :� KkðA; r0Þ � spanfr0;Ar0; . . . ;Ak�1r0g; kP 1
and the corresponding Krylov matrix is
Kk � ðr0;Ar0; . . . ;Ak�1r0Þ; k P 1
Throughout the paper we refer to peaks and plateaus in residual norm plots
as follows.
Fig. 2. The convergence curves of MINRES.



444 Y. Shen, J. Zhao / Appl. Math. Comput. 144 (2003) 441–455
Definition 1.1 (Cullum, 1995 [1]). A peak is any consecutive section of a re-

sidual norm plot during which the residual norms increase to a local maximum
and then decrease to a local minimum.

Definition 1.2 (Cullum, 1995 [1]). A plateau is any consecutive section of a

residual norm plot during which the norm of the residual decrease at an un-

acceptably slow rate of change.
2. Peaks, plateaus and angles between subspaces

Thanks to J. Cullum and A. Greenbaum, in [1,2] they indicate a correlation

between peaks and plateaus. Whenever a peak occurs there is a plateau under

it. The converse however may not be true. It is possible for a plateau to occur in

a MINRES residual norm plot without a visible corresponding peak in the

corresponding Lanczos residual norm plot. They also indicate that whenever
the residual norm plot for the MINRES is decreasing rapidly the corre-

sponding residual norm plot for the Lanczos iterates is also decreasing rapidly.

The corresponding residual norm plots appear to track each other. In this

section we consider the same problem in another way. We recall that in many

MINRES implementations a least squares problems is solved in each iteration

by reducing a Hessenberg matrix to upper triangular form via Givens rotation

[11]. At iteration k a Givens rotation,
Gk ¼

1 0

. .
.

1

ck sk
�sk ck

1

. .
.

0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð2:1Þ
is generated to eliminate the trailing element of the Hessenberg matrix. Notice

that these sk and ck are not merely artifacts of the computational scheme but
are the sines and cosines of the angles AKk and Kk.
The following relations are fundamental for our later investigations (see [4]

Section 2).

Theorem 2.1 (Eiermann and Ernst, 2001 [4]). For k ¼ 1; 2; . . . ; L� 1, there
holds
sk ¼ sin\ðKk;AKkÞ and ck ¼ cos\ðKk;AKkÞ ð2:2Þ
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where \ðKk;AKkÞ denotes the largest canonical angle between the spaces Kk and
AKk.

1 The quantities ck and sk are given by the Givens rotations Gk of (2.1)
L :¼ minfk: xMRk ¼ A�1bg ¼ minfk: xLRk ¼ A�1bg.

Theorem 2.2 (Eiermann and Ernst, 2001 [4]). With sk ¼ sin\ðKk;AKkÞ and
ck ¼ cos\ðKk;AKkÞ the MINRES residual and Lanczos residual approximations
with respect to the Krylov subspaces Kk satisfy
1 G

the cos

produc

spaces
krMRk k ¼ ckkrLRk k ð2:3Þ

krMRk k ¼ skkrMRk�1k ¼ s1s2 . . . skkr0k ð2:4Þ

rMRk ¼ s2kr
MR
k�1 þ c2kr

LR
k ð2:5Þ
In view of sk ¼ krMRk k=krMRk�1k, i.e., c2k ¼ 1� krMRk k2=krMRk�1k
2
we obtain the fol-

lowing theorem.

Theorem 2.3 (Eiermann and Ernst, 2001 [4]). In exact arithmetic, if ck 6¼ 0 at
each iteration k, then the Lanczos residuals and MINRES residuals are related
by
krLRk k ¼ krMRk k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� krMRk k2=krMRk�1k

2

q
ð2:6Þ
Using the expression of sin\ðKk;AKkÞ ¼ krMRk k=krMRk�1k, we can rewrite (2.6) as
follows:
krLRk k ¼ krMRk k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðsin\ðKk;AKkÞÞ2

q
ð2:7Þ
(2.7) shows that if \ðKk;AKkÞ is reduced by a significant factor at step k, then
the Lanczos residual norm will be approximately equal to the MINRES re-

sidual norm at step k, since the denominator in the right-hand side of (2.7) will
be close to 1. If the \ðKk;AKkÞ remains almost p=2, however, then the de-
nominator in the right-hand side of (2.7) is close to 0 and the Lanczos residual

norm will be much larger.

As shown before the behavior of the angles \ðKk;AKkÞ as k approaches 1
play a crucial role in the convergence of the MR and LR approximates. If the

angles actually tend to zeros rapidly, in view of (2.4), implies superlinear

convergence. Based on the Theorem 2.3 we can prove the following two

propositions.
iven orthogonal bases fvjgmj¼1 and fwjgmj¼1 of two m-dimensional subspaces V and W, then

ines of the canonical angles between V and W are the singular values of the matrix of inner

ts ½ðvj;wkÞ� 2 Rm�m. We remark that the sine of the largest canonical angle between the

V and W of equal dimension is given by kðI � PvÞPwk [14, Theorem 4.37].
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Proposition 2.1. If, under the assumptions of Theorem 2.3, there exist iterations
K16 k6K2, 0 < hk < p=2, such that \ðKk;AKkÞ6 hk, then for K16 k6K2
krMRk k6 krLRk k6 krMRk k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðsin hkÞ2

q
ð2:8Þ
Proof. Since \ðKk;AKkÞ6 hk and 0 < hk < p=2 then
sin\ðKk;AKkÞ6 sin hk < 1
From Theorems 2.1 and 2.2
sk ¼ sin\ðKk;AKkÞ6 sin hk < 1
Notice that
krMRk k=krMRk�1k ¼ sk
From Theorem 2.3 we get
krMRk k6 krLRk k6 krMRk k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðsin hkÞ2

q

Proposition 2.1 shows that if for a given interval of iterations the angles

\ðKk;AKkÞ6 hk, 0 < hk < p=2 then during those iterations the corresponding
Lanczos residual norm plot is trapped between small multiples of the MINRES

curve. �

Proposition 2.2. If under the assumptions of Theorem 2.3, there exist iterations
K16 k6K2; c > 1 with krLRk kP ckrLRk�1k, then if there exists 0 < h < p=2 such
that \ðKk;AKkÞ < h then
h > arctan c ð2:9Þ
Proof. From Theorem 2.3 and the inequality on krLRk k we have that
krLRk k ¼ krMRk k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� krMRk k2=krMRk�1k

2

q
P ckrLRk�1k

¼ c krMRk�1k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� krMRk�1k

2
=krMRk�2k

2

q	 

Since
krMRk k=krMRk�1k ¼ sin\ðKk;AKkÞ < sin h
then
sin h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðsin hÞ2

q
> c; 0 < h < p=2; c > 1
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i.e.,
h > arctan c
Proposition 2.2 shows that if over some interval of iterations residual norms

generated by Lanczos are increasing at least as a specified rate c, then the angle
\ðKk;AKkÞ cannot decrease at a rate faster than the bound on h given in

(2.9), i.e., the corresponding MINRES residual norms cannot decrease at a

rate faster than the bound on sin h. For example, if c > 2 then h >
arctan 2 � 63:4349, sin h � 0:89442. �
3. Peaks and some related factors

The reason why the residual norm is not always minimized is more inter-

esting, for it touches a deeper issue and is a topic of current concern and im-
perfect understanding [3]. In this section we consider four factors which are

related to the Lanczos peaks.

I. Numerical Instabilities. What role do numerical instabilities play in the
generation of the peak formations observed in the Lanczos residual norm

plots? In [1], we know that if the linear system (1.1) is sufficiently well condi-

tioned [1, Definition 3.3], then numerical instabilities have no role in any ob-

served peak formations.

II. Finite precision arithmetic. Are the peaks and plateaus artifacts of the
finite precision arithmetic? See [1], we know that peaks and plateaus are not

artifacts of the finite precision arithmetic. Peaks and plateaus can also occur

when the arithmetic is exact. However, more peaks or plateaus will occur in

finite precision arithmetic than would occur if the computations were exact.

Moreover, the effect of finite precision arithmetic is an open problem.

III. Angle between subspaces. Based on properties of angle between sub-
spaces and use the relationship between the orthogonal residual norm and the

minimal residual norm, we obtain a sufficient and necessary condition for
occurring of peaks.

Theorem 3.1. In the exact arithmetic, for ck 6¼ 0; k ¼ 1; 2; . . . ;L� 1 the condi-
tion
1

F 2k
þ F 2k�1

b2
<
1

b2
þ 1; b P 1 ð3:1Þ
is satisfied if and only if
krLRk k
krLRk�1k

> b ð3:2Þ
where
Fk ¼ sin\ðKk;AKkÞ
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Proof. Making use of the relation between the Lanczos residual norm and

MINRES residual norm krMRk k ¼ ckkrLRk k we obtain
krLRk k
krLRk�1k

¼ ck�1
ck

krMRk k
krMRk�1k

¼ krMRk k
krMRk�1k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2k�1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2k

p

Notice that
sk ¼
krMRk k
krMRk�1k

¼ sin\ðKk;AKkÞ ¼ Fk
then
krLRk k
krLRk�1k

¼ 1� F 2k�1
1
F 2k
� 1

 !1=2
If there exists b P 1 such that the condition (3.1) is satisfied then
1

F 2k
� 1 < 1� F 2k�1

b2
That is
krLRk k
krLRk�1k

> b
If the Lanczos residual norm increases, i.e.,
krLRk k
krLRk�1k

¼ 1� F 2k�1
1
F 2k
� 1

 !1=2

> b; b P 1
which implies
1� F 2k�1 > b2
1

F 2k

	
� 1



i:e:;
1

F 2k
þ F 2k�1

b2
<
1

b2
þ 1
Theorem 3.1 shows that if the sines of \ðKk;AKkÞ satisfy the condition (3.1)
then the Lanczos residual norm increases. It also explains why a plateau to

occur without a visible corresponding peak, since the condition (3.1) is not

satisfied. �

Corollary 3.1. If the condition (3.1) is satisfied and ck 6¼ 0; k ¼ 1; 2; . . . ; L� 1
then
 ffiffiffi

2
p

2
< Fk < 1 and Fk > Fk�1;
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i.e.,
p=4 < \ðKk;AKkÞ < p=2 and \ðKk;AKkÞ > \ðKk�1;AKk�1Þ
Proof. Since the condition (3.1) is satisfied then
F 2k >
1

1þ 1�F 2
k�1

b2

; b P 1
Because ck 6¼ 0 we get
0 < Fk�1 < 1 and 0 < Fk < 1
which implies
ffiffiffi
2

p

2
< Fk < 1
Suppose that
Fk 6 Fk�1
then
1

F 2k
þ F 2k�1 P

1

F 2k�1
þ F 2k�1 > 2 contradiction
This means during iterations, which the Lanczos residual norms are increasing,
the angle between the present subspaces is larger than the angle between the

prior subspaces and these angle \ðKk;AKkÞ 2 ðp=4; p=2Þ. These are two nec-
essary conditions for occurring of peaks. For the special case b ¼ 1, we get a

sufficient condition for the Lanczos residual norm increases. �

Corollary 3.2. If F 2k P 1
2
ðF 2k�1 þ 1Þ and ck 6¼ 0; k ¼ 1; 2; . . . L� 1 then
1

F 2k
þ F 2k�1 < 2
i.e., the Lanczos residual norm increases.

Proof. Since F 2k P 1
2
ðF 2k�1 þ 1Þ then
1

F 2k
þ F 2k�16

2

ðF 2k�1 þ 1Þ
þ F 2k�1 ¼

ð2þ F 4k�1 þ F 2k�1Þ
ðF 2k�1 þ 1Þ

¼ 1þ ðF 4k�1 þ 1Þ
ðF 2k�1 þ 1Þ
Since ck 6¼ 0 we get 0 < Fk�1 < 1 and F 2k�1 > F 4k�1 which implies
1

F 2k
þ F 2k�1 < 2
Theorem 3.1 and Corollary 3.1 clearly indicate that the angle between

subspaces plays a crucial role in the Lanczos residual norm plot increases.
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However, the condition (3.1) is an abstract inequality, it can not clearly ex-

amine different eigenvalue distributions. From [7, Theorem 4.1] we can see that
if A is normal and 16 k6 L� 1 then
min
z2Kk

kb� Azk
kbk ¼ mkþ1 min

16 j6 kþ1

bj

kbk
Ykþ1

l¼1;l 6¼j

jkl � kjj
jklj

( )
ð3:3Þ
where bj is the norm of the orthogonal projection of b onto the eigenspace
associated with kj, 1=

ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p
6mkþ16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ 1ÞðL� kÞ

p
and k1; . . . ; kkþ1 are

k þ 1 distinct eigenvalues of A that maximize
Qkþ1

j¼1 bj

Qkþ1
l¼jþ1 jkl � kjj. Hence we

can obtain
Fk ¼
mkþ1 min

16 j6 kþ1

bj
kbk
Qkþ1

l¼1;l 6¼j
jkl�kjj
jklj

n o
mk min

16 j6 k

bj
kbk
Qk

l¼1;l 6¼j
jkl�kjj
jklj

n o
Suppose there exists index s such that: minimum both
bj

kbk
Ykþ1

l¼1;l 6¼j

jkl � kjj
jklj

( )
and

bj

kbk
Yk

l¼1;l 6¼j

jkl � kjj
jklj

( )
then
Fk ¼
mkþ1

mk

jkkþ1 � ksj
jkkþ1j

:

For this particular case the following examples illustrate how to interpret

the condition (3.1) in Theorem 3.1 for different eigenvalue distributions. We

cite [7, Example 4.1], matrix A has one cluster of eigenvalues centered at a

point c in the complex plane with radius � > 0, and a single outlier cþ d. Then
jdj is the absolute distance between cluster and outlier. We make three as-
sumptions: first the absolute separation between cluster and outlier is much

larger than the absolute cluster radius, jdj � �; second, the relative cluster
radius is small, �=jcj < 1; and third, the outlier is farther away from zero than

the cluster, jcþ djP jcj. Then one can show [8, Section 5.2] that in iteration k,
min
z2Kk

kb� Azk
kbk � d

cþ d

����
���� �

jcj

	 
k�1
If we examine the condition (3.1) in Theorem 3.1, we obtain Fk � �=jcj. Since
�=jcj < 1 then we get ð1=F 2k Þ þ F 2k�1 > 2. This suggests in the exact arithmetic

we can say there is no peaks in the Lanczos residual norm plot for this par-
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ticular case. The result is same for [7] Example 4.2. Here the matrix A has one

cluster of eigenvalues centered at c and a second cluster at cþ d. The two
clusters have the same number of eigenvalues and the same absolute cluster

radius � > 0. The absolute cluster separation is jdj. �

IV. The convergence of Ritz value. Also in [1], J. Cullum presented empirical

evidence that the formation of peaks in the Lanczos residual norm plot cor-

related with the stabilization of the Ritz values [11]. From this he inferred that

peaks formations correspond to the identification or re-identification of certain

portions of the solution space, as indicated by the Ritz values convergence to
the eigenvalues of A.
In his numerical experiments, he observed that the convergence of each Ritz

value approximation appears to initiate the formation of a peak. The subse-

quent pictorial convergence of such an approximation appears to correspond

to the down side of such a peak. However, this is not always true. In our

numerical experiment, we observe such a phenomenon: when the Ritz values

converge to the eigenvalues of A, there is no peaks in the Lanczos residual
norm plot. (our numerical experiment is in Section 4). How to explain the two
different phenomena?
Fig. 3. The convergence curves of Lanczos.
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In my opinion, the Ritz value closes to a right or wrong eigenvalue is an

important factor. When the Ritz value is close to a wrong eigenvalue in
passing, it appears to initiate the formation of a peak. Moreover, which eigen-

values of A are approximated by the Ritz values? [9] contain related results.
4. Numerical experiments

In this Section we give some numerical experiments for solving linear sys-

tems Ax ¼ b to examine our conclusions. We specified a diagonal matrix R by

specifying a few small eigenvalues and spacing the remaining eigenvalues

equidistantly situated within a specified interval. In each example the conver-
gence tolerance was � ¼ 10�12.
Table 1

The numerical results of Example 1

k Fk 1=F 2k þ F 2k�1

28 0.8308 2.0084

29 0.9084 1.9022

30 0.9582 1.9144

31 0.9827 1.9537

32 0.9930 1.9797

33 0.9971 1.9919

34 0.9986 1.9970

35 0.9991 1.9990

86 0.5962 3.0126

87 0.8971 1.5981

88 0.9614 1.8867

47 0.7449 2.2229

48 0.8681 1.8819

49 0.9501 1.8615

50 0.9842 1.9350

51 0.9954 1.9780

52 0.9987 1.9934

53 0.9996 1.9981

54 0.9999 1.9995

55 0.9999 1.9999

68 0.6064 2.9473

69 0.8317 1.8134

70 0.9608 1.7750

71 0.9931 1.9371

72 0.9989 1.9884

73 0.9998 1.9981

74 1.0000 1.9997

75 1.0000 2.0000

76 1.0000 2.0000

77 1.0000 2.0000
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Example 1. We denote the 100� 100 matrix as Að100; 100Þ, which has four
small eigenvalues k1 ¼ 10�6, k2 ¼ 10�4, k3 ¼ 10�3, k4 ¼ 10�1 and kk ¼ 0:1þ
ðk � 1Þ � d, d ¼ 0:1ð56 k6 100Þ. Let the right-side vector b ¼ diagðAÞ. The
result and the graph of convergence are shown in Fig. 3 and Table 1.

In Fig. 3 we observe that over iterations 28–35, 47–55, 68–77 and 86–88 the

Lanczos residual norms are increasing. For special case b ¼ 1, Fk values are
listed in Table 1.
Remark. From Table 1 we also observe over iterations 28–35, 48–55, 69–73 the

values of Fk are larger than
ffiffiffi
2

p
=2 and Fk > Fk�1. However, there is a problem

which cannot be ignored. From iterations 74–77 the Lanczos residual norms

are increasing, but the values of Fk are equal to 1, i.e., ck ¼ 0ð\ðKk;AKkÞ ¼
p=2Þ.
Example 2. Denote the matrix by Að100; 100Þ, its eigenvalues kk ¼ 0:1þ ðk�
1Þ0:1, k ¼ 1; 2; . . . ; 100. Let the right-side vector b ¼ diagðAÞ. The graph of
convergence is shown in Fig. 4.
Fig. 4. The convergence curves of Lanczos.
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In Fig. 4 the residual norm plot is smooth and we cannot see any peaks in

the Lanczos residual norm plot. We further observe in Fig. 4 at iteration 36,
hð36Þ
1 ¼ 0:1001, i.e. the first Ritz value is close to the right eigenvalue k1. Con-
sider Fig. 3 for Example 1, peaks occur at iterations 35, 55, 77, and 87. At

iteration 24, hð24Þ
1 ¼ 0:10002278, i.e., the first Ritz value is close to the wrong

eigenvalue k4. At iteration 40, h
ð40Þ
1 ¼ 0:0010, i.e., the first Ritz value is close to

another wrong eigenvalue k3. At iteration 62, the first Ritz value is close to k2,
hð62Þ
1 ¼ 0:0001. At iteration 88, hð88Þ

1 ¼ 0:000001, now the first Ritz value finds
its way to the right eigenvalue k1. Figs. 3 and 4 indicate that there may be a
certain relationship between the formation of peaks and the convergence of
Ritz values. However, the qualitative analysis of this relation we do not know.

Perhaps, this is still an open problem.
5. Summary

The theorems and experiments described in the preceding sections provide

some insight into the behavior of residual norm plots for both Lanczos and
MINRES. Using the relationship between the orthogonal residual norm and

the minimal residual norm, we provide a plausible explanation for the erratic

behavior of typical residual norm plots generated by Lanczos. And we also

observe that this erratic behavior is due to a Ritz value in passing closes to a

wrong eigenvalue.
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