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Abstract

A new method for the weighted linear least squares problem min,||M~"/2(b — 4x)|, is
presented by introducing a row M-invariant matrix (i.e., QMQT = M). Our purpose in
this paper is to introduce new row M-invariant and row hyperbolic M-invariant re-
flections. We then show how these row M-invariant reflections can be used to design
efficient sliding-date-window recursive weighted linear least squares covariance algo-
rithms, which are based upon rank-k modifications to the inverse like-Cholesky factor
R~ of the covariance matrix. The algorithms are rich in matrix-matrix BLAS-3 com-
putations. We also provide computational experiments indicating the numerical stability
of the methods. © 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

Consider the weighted linear least squares problem [1,7-9]
min(b — Ax)"M (b — 4x), (1)
xeR”
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where

A e R™" b e R"” and rank (4) =n, and M = diag(y,....,u,), 1 > 0.

It is assumed that m>n. An equivalent formulation of Eq. (1) is

(i 8)(5)=(6) @

where 4 € R™, x € R”, see Ref. [9] for more details.

Since rank(4) =» and M is positive definite (2) has a unique solution.

Assume that @ € R™” and M € R™", then Q is said to be M-invariant if it
is nonsingular and QMQ" = M.

In a pioneering paper by Gulliksson and Wedin [2], it was shown how
Eq. (2) could be solved by using the column M-invariant matrices. In this
paper we introduce new row AM-invariant and row hyperbolic M-invariant
matrices, that play the same role as row householder reflections [3] and M-
invariant rotations [2].

We will develop efficient algorithms for the recursive weighted least squares
problem of the sliding-window type (see Refs. [5.6]).

The outline of this paper is as follows. In Section 2 we introduce the new
row M-invariant methods. In Sections 3 and 4 we show how these matrices
can be used to efficiently modify weighted least-squares solutions when
observations are added to and/or deleted from the linear system. In Sec-
tion 5 some computational experiments and some concluding remarks are
provided.

2. Row M-invariant methods

In this section we introduce a row M-invariant method which is a rank-1
modification to the identity matrix eliminating all elements in a row of a ma-
trix.
2.1. Row M-invariant reflections
Lemma 2.1 [2]. Assume that Q =1 — 2cd™,d"Md > 0, where Q is M-invariant
with M nonsingular. Then

Q=1-2Mdd"/d"Md, with O" =1,

ie., Qis areflector. The matrix Q is called an M-invariant reflection.
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Theorem 2.2. Let B be an (n + 1) x n matrix

(7Y }
2=(%) ®)
where D is nonsingular, and M = diag(p,, ..., i) with w; > 0. Then there is an
M-invariant reflection Q such that
_ {0} H
08 = (o) o 4)
Proof. Let

(e} H _ {4y
¢= (c> 97 (d) b,
We will construct Q = I — 2¢d™ such that Eq. (4) is satisfied. Then we obtain
the relation

by (e +ad™D) _ (0 5
D cdibT +&d"D D)
giving DTd = ub where y = (1 — 2¢,d,)/2¢,.

By Lemma 2.1, we have ¢ = Md/d"Md and ¢, = pu,d,/d"Md that inserted in
the expression for u gives

2upidy + 2u,dt — d"Md = 0. (6)
By expanding d"Md and using d = Db we have

d"Md = d*u, + 12(D7TB) M, (D~ "b)
enabling us to rewrite Eq. (6) as

md; + 2pmd; — p(D7Tb) M (DTh) = 0.

Solving this equation for d; we get

f 1 e -
dy = —p £ [ 12 +;—dTM1d.
1

By choosing u, we obtain d and Q = I — 2Mdd" /d"Md.

In order to avoid rounding errors we choose the negative sign of the square
root in d.

We may choose y = 1/|b||, and if |b]l, =0, we set =1 O

We have the follwing algorithm for determining the M-invariant reflection.
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Algorithm 1 (RowMR).
INPUT: An n-vector b, a nonsingular n X n-matrix D, and the weight matrix
M = diag(iy, - -, iy fi).

if ||b}|, = O then
d=0, Q=1L
else

Put x = 1/||b||,, and solve DTd = ub.
Compute d) = —u — /112 +u—’lc?TM13. Let d" = (d,, d").
end

OUTPUT: Q = [ — 2Mdd" /d"Md having the property that the first row of
QB is all zeros.

Algorithm RowMR will have good numerical properties as long as d is
solved by a numerically stable method.

In Section 3 we consider the problem of annihilating r rows. This is easily
done by applying a sequence of M-invariant reflections described above as

Q=001 Q1

2.2. Row hyperbolic M-invariant reflections

Let @ = diag(+1), and assume that Q € R™” and M € R™", then Q is said
to be hyperbolic M-invariant if it is nonsingular and QM ®QT = M ® (see Ref.
[10D.

Lemma 2.3. Assume that Q = & — 2cd",d"M®d + 0, where ¢ = diag(+1), and
Q is hyperbolic M-invariant with M nonsingular. Then

Q=@ 2Mdd"/d"Mdd, with QPQ = .
ie., Qis a hyperbolic reflector. We call Q a hyperbolic M-invariant reflection.

Theorem 2.4. Let B be an (n+ 1) x n matrix of the form

bT
2= (%)
where D is nonsingular, and M = diag(y,, ..., p,.1) with p, > 0. Assume that

DM 'D — 1/pu,bb™ > 0 then there is a hyperbolic M-invariant reflection
Q=@ —2cd", where ® = diag(—1,1,...,1), such that

05-(3). )

where D € R™".
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Proof. Let

-(3) (1)

where ¢,,d; € R,é,d € R".
From Eq. (7) we get

—bT — 2(c1d\b" + ¢1dD)
B =®B —2cd'B = 117 Tl
Q ¢ ( D — 2(édb" + éd' D)

and D'd = ub, where

_—1*2C1d1
p=—— (8)

By Lemma 2.4, we have ¢ = Md/d"M®d, and ¢, = p,d, /d"M®d which,
inserted in Eq. (8), gives

2ud? + 2p pdy + d"MPd = 0. 9)
By expanding

d™M®d = —d’p, + 12 (D7h) My (D7),
where M, = diag(y,, . - - , 4,41)> We can rewrite Eq. (9) as

wd? + 2, udy + p2(D7TH) M, (DTh) = 0. (10)
Solving for d; gives

_ 2ppx VA
L 2y,
where we have used the assumption DTM['D — (1/p,)bb" =0 giving p; —
BTD'MD-Th>0 and A = 4y, 12 (i, — (D776) My(DTh)) =0.
By choosing x we attain d,,d and Q = @ — 2Mdd" /d"M®d. [

1

We arrive at the following algorithm for determining a hyperbolic
M-invariant reflection of the kind described above.

Algorithm 2 (RowHMR).
INPUT: An n-vector b, a nonsingular n x n-matrix D, and
M = diag(p, ... 7un>”n+1)'
if |b]|, = 0, then
d=0; 0=9.
else y
Let u = 1/||5]|, and solve D'd = ub.
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Compute d, = —p— /12 — ‘—l']—[iTMlt?.

Let 47 = (d;, d").

end

OUTPUT: Q = & — 2Mdd™ /d" M ®d that has the property that the first row
of OB is all zeros.

3. Inverse updating

In this section we will solve the updating problem by M-invariant matrix
methods.
Consider the weighted linear least squares problem below

min|M; P (s — Xw)|,, (11)

weR"

where M; = diag(p,...,1,), #; > 0and X is an m x r matrix with rank(X) =n.
Let X = QR,, where Q is an M-invariant matrix with columns,

Rl — (g) e Rmxn

and R is an n x »n upper triangular matrix. Then the solution to (11) is given by
w= (R 0)Q's.

Suppose k new observations (YT ), where YT € R*", and u € R, be
added to the dating defining the weighted linear least squares problem (11). We
then show how the solution w to (11) can be updated to the solution w to

() ()9

where M = diag(M,, M;).

(12)

min
w 2

Lemma 3.1. Let

o(#)-(4)

where Q is an M-invariant matrix, R, R is upper triangular, then

() ()

where ET € R,
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Proof. Let

@ (%)) - o

then Eq. (13) gives

I=(U E)(Ig) = UR,

and U=R". O

Lemma 3.2. Assume that V = —R™"Y, R given in Eq. (13), Q is M-invariant, and
0 =0, 0, where Q; are M-invariant reflection with Q7 = I, such that

(1) = (5) ®

where I, is the k x k identity matrix and D is a k x k matrix. Then
R U
()= (%)
If U is upper triangular, then U = R, and
1 RT RT
T —
(%) - (%)

Proof. Since Q is M-invariant, then Q7T is M '-invariant. We choose row
M~ '-invariant matrix 0~ T, such that

o(0)-()

where D is nonsingular. 3
For 0~'Q = I and the definition of V', we obtain

o()- (%)

_ (9 Qn a_ (O Q12>
Q (Qzl sz) and 0 (QZI On/

Let
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We get

OL(—RTTY)+ 0], =0, Q) —Y'R'Q, =0,

OnQy + QnY"RT'Q" =0.
Since Q7 is row M~!-invariant matrix, Q,, is nonsingular. We obtain

On +0nY"R'=0 and Y =0uR+0nY" =0.

Hence
()= (%)
If U is upper triangular for
o(#)-(2)

then it is easy from Lemma 3.1 to see
rf RT RT
T _
(%)= (&) o
Theorem 3.3. Let Q satisfy the same assumptions as in Lemma 3.2, if w is the
solution to (11), then the solution to (12) is given by
w=w—ED T (u—Y"w), (16)

with E and D given in Lemmas 3.1 and 3.2.
Proof. Let

R
- (8). o (2).

where s; € R",s; € R™™", Q is M-invariant matrix.
Then Eq. (12) can be rewritten as

() (2
= min M‘l/z((;> - (;’;T)ﬂ) , (17)

min
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which is equivalent to

(;) (};) (j)=(<0)> (18)

Hence we have
R
M 0 5
YT ~T 4
o ey ((5)) 0
(0) 0
YT
where

Oy = diag(Q, I).
Since w = R™'s;, moreover let ¥ = —R"TY. Consequently, from Lemma 3.2,
there exist M-invariant matrix Q, such that

o(1)-(8) w0 (%) -(£2),

further let

o(2)- (%)

hence w = R™'5,. i
Note that w = R's, and hence from the definition of V', we have the relation

() ()0
(7 Dee()= (2 ) @

Then we get

u—Y"w\ [ DT
w T \w+ER)
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Ww=w—Ei=w—ED T(u—Y"w). O (21)

This algorithm computes w, where w solves Eq. (12).

Algorithm 3.
INPUT: An upper triangular matrix R"T and w, where QX = R and w solves
(11). A new set of k observations (YT u) and M = diag(y,,...,1,).
1. Compute ¥ = —RTY.
2. Find 0" = QFQT ,...QF. where Q; is a row M~!-invariant reflection,
such that

o*(7)=(5)

3. Update R"T to RT, i,

= 1(RT RT

T —
(%) - (%)
4. Update w to w, i.e,

w=w—EDT(u—Y"w).

The cost in flops for each step is: 1. kn?/2, 2. 15k*n, 3. kn?, 4.3k + 2kn with a
total cost for Algorithm 3 as 2kn® + 15?2 + 2kn + 3% flops. A straightforward
implementation of the rank-1 method of Pan and Plemmons [4] would require
2kn? + O(kn) multiplications. Thus, roughly speaking, Algorithm 3 requires
less flops when n>15k.

4. Inverse downdating

Let the matrix X and the vector s be given by the partition

= (3) - (5)
where zT € R¥" d € R*. Then the problem

min || /(5 — X)), (22)
is our downdating problem. Thus, we assume that we have the solution to (11)

where M; = diag(M;,M,) and want the the solution to (22) by our row hy-

perbolic M-invariant method.
Assume that Q@ = @, - - - (), where Q; are hyperbolic M-invariant reflections.

Then we define O = O, - - - O, to be used in the sequel.
We have the following lemma that is used to construct the downdating al-

gorithm.
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Lemma 4.1. Assume that RTM;'R — zM;'z" > 0. Let V = ~R "z and Q, Q be
row hyperbolic M-invariant matrices such that

o(5)-(5)

Further, assume that

o))
()-(5)

Proof. We have a row hyperbolic M-invariant matrix Q, such that
R\ (R
o(#)-(2)
Since
R
I =(R"! 0)¢<ZT>
B . R _ R
= (R 0)Q¢Q(ZT>::(U ! F)¢(0>,
where (U~} F) = (R O)Q then
n R-T U—T
()= (%)

If U is upper triangular, then U = R. [

then

Theorem 4.2. Assume that Q is hyperbolic M-invariant and Q satisfies

sV RTY_ [0 RT
If w is the solution to (11), then the solution to (22) is given by
Ww=w+FD ' (d—z"w). (24)

Proof. The proof is analogous to that of Theorem 3.3 and is omitted. [J

The following algorithm makes an inverse downdating.
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Algorithm 4.
INPUT: The lower triangular matrix R~ and w where QX = R and w solves
Eq. (11). A set of k observations (zT &), and M = diag(y, ..., #,). Then
this algorithm computes w, where W solves Eq. (22).
1. Compute ¥ = —R "z
2. Find O = 0,0, - 0:. where Q; is row hyperbolic M-invariant reflec-
tion, such that

(1))

3. Downdate BT to R,

N R—T R-—T
T _
(%)= (%)
4. Downdate w to w,

We=w+FD T (d—-z"w).

The cost in flops is for each step: 1. kn?/2, 2. 15k%n, 3. kn?, 4. 3% + 2kn.

The total cost is the same as for Algorithm 3, i.e., 2kn® + 15k%n + 2kn + 347
flops. The method of Pan and Plemmons [4] requires 34n? + O(kn) multipli-
cations.

5. Numerical experiments and remarks

In this section we provide some numerical experiments, In each of the ex-
amples given below, we indicate the length of the window used, and the
number of observations which will be added or deleted.

The numerical tests for the examples were performed using Matlab, and the
right-hand-side vector was chosen to be the row sums of the date matrix. Thus
the exact solution is the vector of all ones. The quantites reported are the
relative errors for our method and the methods of Pan and Plemmons [4] and
Bojanczyk et al. [3].

Example 1. In this example we construct a 50 x 5 matrix whose entries are
1/G+j—1),i=1,...,50, j=1,...,5 where the exact solution is known (see
Table 1). We use the Algorithm 1 and 3, and compare our methods to the rank-
1 rotation-based methods of Pan and Plemmons [4]. An M indicates our
methods and 7 indicates Pan and Plemmons’ methods.

Example 2. In this example, we use our block methods, and the number of
observations added and deleted is k= 5. In Table 2, we compare our method
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Table |

Relative error of rank-1 update

k M 1

3 5.8 x 1071 4.9 x 10712

6 4.6 x 1072 9.0 x 10712

9 1.7 x 10712 3.8x 107"

12 1.7 x 10712 1.8 x 10712

15 4.5 x 107" 1.6 x 1012

18 6.3 x 10713 23 % 10°1

21 1.6 x 10712 54 % 107"

24 1.8 x 10712 1.1 x 107"

27 44 x 1078 2.1 x 1071

30 46x 1071 23 x 1071

33 43 %1071 3.2 x 10712

36 3.0x 1071 1.9 x 10-12

39 3.8x 10" 1.8 x 10712

42 6.7 x 107 1.4 x 10712

45 4.1 % 107" 1.2 x 1071

Table 2

Relative error of block method

k M I

1 3.067 x 10712 3.782 x 10712
2 1.859 x 10-12 1.933 x 10-12
3 1.267 x 10~ 1.322 x 10-12
4 7.554 x 10-13 8.745 x 10~1
5 6.650 x 1013 6.874 % 1071
6 3.032 x 1014 4.001 x 10713
7 1.645 x 10713 4.001 x 1073
8 8.404 x 10714 2962 x 10713
9 8.404 x 10714 1.814 x 10712

and the BRLS method of Ref. [3]. M indicates our method and 7 indicates the
BRLS method.

Example 3. In this example, we add a random number 6 to all the entries in
order to control the degree of ill-conditioning (see Table 3). The smaller the
value of &, the more ill conditioned is the matrix. We use 6 = 105 and
6 = 10~°. Here we again choose k =5.

In Algorithm 3, we can know that the required flops of the step 2 are less. It
is easy to see that computational cost in the row M-invariant reflection is not
more than that in the orthogonal rotation method. Hence the method obtained
in this paper is efficient. The above tables show that the error of our block
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Table 3

Relative error

k M (10 x 107%) 1 M (10 x 107%) 1

1 9.376 x 103 3.436 x 1072 9.376 x 10~7 3.436 x 10°°
2 5.424 x 1072 7.587 x 1072 5.424 x 10~ 7.587 x 10~¢
3 4.524 x 1072 5.264 x 1072 4,513 x 10°° 5.264 x 10~
4 3.081 x 1072 2.668 x 1072 3.081 x 10-¢ 2.668 x 1076
5 1.759 x 1072 8.072 x 10~2 1.759 x 10-6 8.072 x 1077
6 8.620 x 1073 2.370 x 1072 8.620 x 1077 2.370 x 10~
7 1.193 x 102 4.436 x 1072 1.119 x 10-° 4.436 x 107
8 2.074 x 102 6.419 x 102 2.074 x 10~ 6.419 x 10°°
9 2,959 x 102 8.307 x 1072 2.958 x 106 8.307 x 10~

method is smaller. Our block method is better when the problem becomes ill-
conditioned. From these small test samples, although it can not be concluded
that the presented method of this paper is more stable or accurate, it is at least
as good as the other.

As an example, we construct a 3 x 4 date matrix and continue with the
updating and downdating process. Elements of this matrix are 1/(i + j), i =
1,...,4;j=1,2,3. Every element of the exact solution is 1. Taking M =1, then
the computed solution is

x = (1.000006,0.999980, 1.000016)".
Let M = diag(0.5,0.25,0.1667, 1), then the computed solution is
x = (0.999999, 1.000003, 0,999997)T‘

This example shows that the algorithm by selecting proper weight matrix
would be efficient for the presented ill-conditioned problems. In general, the
solution would be affected for chosen different weight matrix, but the choice of
the best weight matrix is still an open problem.
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