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Abstract

Over the past 10 years. a variety of iterative methods for saddle point problems have
been proposed. In this paper, we present a class of direct methods. the so-called gener-
alized Cholesky factorization method. for solving linear systems arising from saddle
point problems or discretization of the Stokes equations. Numerical results illustrate
the efficiency of new methods given in this paper. © 1998 Elsevier Science Inc. All
rights reserved.
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1. Introduction

Consider the linear system ol equations

G %)) ()

where 4 is symmetric positive definite, B of [ull row rank, and ¢ symmetric
positive semi-definite. Problems in this class arise frequently in the context of
minimization of quadratic forms subject to linear constraints [8]. An important
example arises from the numerical discretization of the Stokes equations. In
particular, we are concerned with the discretization of
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(93
where @ is a simply connected bounded domain in R, s == 2 or 3. This system
of the Stokes equations is a fundamental problem arising in computational
fluid dynamics [4]. Discretization of Eq. (2) by finite difference or finite element
techniques leads to a linear system of equations of (1).

In recent years, a variety of iterative algorithms have been devised for
solving saddle point problems [1.3,4,6,7]. In this paper. we have developed
the generalized Cholesky factorization for four typical matrices arising in
numerical optimization and computational fluid dynamics. Using the matrix
factorization. we cstablish a class of direct methods for solving the corre-
sponding hnear system. New methods proposed in this paper remain main
advantages of the classical Cholesky factorization for positive definite sys-
tems. Hence the new method 1s referred to as the generalized Cholesky fac-
torization method.

In the following we always assume that matrices 4 € R"". B ¢
C < 1" satisly the following condition.

Condition 1. 4 is symmetric positive definite, B is of full row rank and C is
symmetric semi-positive definite.

2. Symmetric indefinite case

Let us assume that G| is an (m + 1) * (m + n) matrix and express it as

where 4. B and C satisly Condition I. It 1s easy to see that G, is symmetric in-
definite. The purpose of this section is based on the matrix factorization of G,
to give a new algorithm for solving the linear system (1).

Firstly, we can prove the following theorem.

Theorem 1. Let Gy he an () x (in +n) matrix expressed by Eg. (3) and
A.B. C satisfy Condition I Then there abvavs exists the factorization form

. A B d (
G, = P ,,,('> — LY {4)
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where

L}_(LA 0). L},A(Lz Ly
Ly L, 0 -—L!

N

and L, € R™™ is low triangular, L., € R"" is low triangular, Ly € R""™.

Proof. Since 4 is symmetric positive definite. there always exists the Cholesky
factorization

A=L4L%.

where L, € R™™™ is nonsingular low triangular. Take

Ly =B(L})" (5)
so that
B =Lyl

1t follows that Ly is full row rank because B is full row rank. Because C is sym-
metric semi-positive definite, the matrix C + LgL} must be symmetric positive
definite. Hence we have the Cholesky factorization

LL! = C+ Lyl (6)

also let

hZ(@ 0) 1= L} QH.
Ly L, 0 —L!

Thus we have
L1 = L} LiL} _ (A BT )
‘ Lyl Lgl} —L.LT B —C/

Remark 1. From Theorem 1, we set that matrices Ly and L{ can be obtained
conveniently as long as submatrices L, Lg and L, have been computed. This is
why our method is as fast as the classical Cholesky factorization for symmetric
positive definite.

We now discuss the realization of the generalized Cholesky factorization (4)
of G] . Let

A=la] e R"™, L,=]l,.

Using the Cholesky factorization of A4, the elements of L, can be computed
from
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0 i< j.
. BV
l;, = (“u’ = 2l I/LA) t=17 (7

’ ;o1 L
(u,-,'le\ I/,A///\)//,,A i>J.

Set

1

Ly =g, =B(L) eRr"™

Then all elements g;; can be obtained from the following:

jol
g = (/»,,, - Z‘Q/A/,A)//,,, i=1lin j=1lm (8)
kol

Since
LY = C+ LylL),.
let

Lu — [14//‘1 c R

be low triangular.

Hence
0. [ <y.
’ m M i 12
l‘lv/. — ((‘I'r —+’ z/\ ]‘i’,l"\ - }Jl’ ll.r/’) - I - / N
X ~n L A . .
(C.-,i - LA 1 L8k — }_4/,- 1 iplin ) /i 1>
i=1ln. j=1lin (9)

From the above discussion, the triangular factor of () can be obtained pro-
vided that submatrices L,. L and L, have been formed. ie..

(L_, 0
L] =
LB Lu >
e
‘ 0 L)

Using the factorization expression

and

G, =LL].
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it is easy to give the solution procedure of the linear system (1). Here we des-
cribe the following.

Algorithm 1.

1. Givend4 = [a;] € R"", B = [b;] € R""™ and C = [C;;] € R"" satisfying Con-
dition I and given f € R". g € R".

. Ly = [l;;] = chol(4) or using expression (7).

. Computing Ly = [g;,| from LgL! = B or using expression (8).

L, = [v;] = chol(C + LgL}) or using expression (9).

. Computing

=)

from

()G G

6. Obtained the final solution of the linear system (1) from

(5 )6

As a special case, if we have C = 0 in the linear system (1), i.e..

<A BT)
G, = .
B 0

then we can obtain the analogous factorization form.
Using matrices L, and Lz obtained in Theorem 1, and L, full row rank. we
have the Cholesky factorization of LBL;., 1.e.,

[V SRS S

LL' =1L},

where L, € R""" is low triangular. Hence the following theorem is proved.

Theorem 2. Let

y <A BT>
G, =
B 0

and matrices A und B satisfy Condition I, then there always exists u factorization
Gy = L,L4, (10)

where

Ly = <L4 0 ) L“l = LE Lb[i
. Lg L./’ : 0 -1/
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Ly € R™™ is low triangular and the Cholesky factor of A, Ly = B(L}) bemm,
L, € R is low triangular and the Cholesky factor of LgL}.

3. Generalized semi-positive definite case

Consider the linear system

where matrices 4, B and C satisfy Condition I.
Let

—B!
G:=<: (B ) (12)

and obviously, the matrix G5 is nonsymmetric. But the symmetric part of G;.
ie., (G + G3)/2, is symmetric semi-positive definite [2,5]. So we call G5 the
generalized semi-positive definite.
As in the above discussion, we can always form the low triangular matrix L,
from symmetric positive definite matrix 4 and
-1
Ly=B(L")"
Since (' is symmetric semi-positive definite and Lg full row rank, there always
exists the Cholesky factorization, i.e.,
LL) = C+ Lyly,.

where L, € R""" i1s low triangular. Thus we have proved the following result.

Theorem 3. Assume that Gy is of

] A B
Gy = ).
B
where A, B and C satisfy Condition 1. Then there ahvays exists the generalized
Cholesky factorization,
Gy = L;LY. (13)

where

Ly O Lt LT
L= ! . L‘}[ == A 'I'H )
Ly L, : 0 L}

Ly € R™" is low triungular and the Cholesky factor of A, L. € R"" is low trian-
gular and the Cholesky factor of C + LgL}, Ly = B(L_I)fl e R
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Since the realization procedures of submatrices L. L; and L, are the same as
in Section 2. Hence we can propose an algorithm for solving the linear svstem

G G-

B ¢ J\p) \g/

Algorithm 2.

1. Given 4 =la,;] € R"".B=|b,) e B"" and C =[c;] € R"" satisfying
Condition I and given f € R". g € R".

. Ly=="1;] = chol(4) or using expression (7).

. Computing Ly = [g;;] from LyL! = B or using expression (8).

L, = [v,] = chol(C + LyL}) or using expression (9).
. Computing

(1)

from

(o)) ()

6. Obtained the final solution of the linear system (1) from

Ly Ly u)f(_n)
0o P B /o

Consider the special case where C = 0 in Eq. (12), i.e.,

Gy = :
B 0

Obviously. we can prove the following.

LU T SRS B N ]

Theorem 4. /f
B 0
and A. B satisfy Condition 1. then we have
Gy = Lyl (14)

where

L, 0 AR
Ly = ( ! e ( ! T“).
Ly L 0 L

Here matrices L and Ly are the same as in Theorem 3, and L. is the Cholesky fac-
torof LyLj. Since Ly is of full row rank. there always exists the Cholesky factor L.
of LH[,'}E.
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4. Discussion

The method described in this paper retains the main advantages of the clas-
sical Cholesky factorization. During the course of the computation, N = m + n
square roots must be taken. Condition I assures us that the arguments of these
square roots will be positive. About N*/6 flops are needed beyond n square
roots. Finally, because 4 1s symmetric positive definite, the elements of L, will
be controllable. In fact, we have the {ollowing relation,

Iy <Vay;. i=1lim k=10 (15)

Since

it follows that

n

5 S
Cii + E g,-/‘ = E L'I"/’.
kel el

If we take
M= max (g + - —g,).
I<7<n
then
lf,»[,g\z/(:‘,+ﬁ/?. i=1ln  j=11i (16)

That is, the elements of L, (or L,, L., L.) cannot become too large.

5. Numerical results

We now present the results of numerical experiments for solving Egs. (1)
and (11). All experiments were performed in MATLAB on a PC-386 computer.
Take

A"' = [a’f] = Hm -+ [m S R/qu.

where

[—[m - [l}
it j—1

i1s an m x m Hilbert matrix and /,, is an m X m unit matrix.
Also take

B = [b,] = [max(i. j)] € R'""
and
Co=le)) = o, Ul € R,
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where
2 ' T
7 "4’ b .
u,=1,-— ToWWL e (l:n)
W w
and

g, =diag(1,2,....n~ 1.0).

Thus. matrices 4,,. B and C, satisfy Condition 1.

Example 1. Solve the linear system
FEABRE
B -, )\p) \g/

m

f, = Zal/' X /+ Zh;., X (/" + /\). [ o l:nz_
i kol

" i

g = Zb,, X j—= Zq, X {m+ k)., = l:n.
i o

The vectors

) ()

where

denote the computed solution and the exact solution, respectively.
Example 2. Consider the linear system

(4 -3‘[‘) ( u) (/ )
B8 ¢ J\p) \g)

Table |
The result of Example | *

Order Algorithm 1 Gauss elimination

m # Flops Norm {x—x") Flops Norm (x—x")
10 10 3998 9.4259 x 10" 8207 2.8856 x 10 ¢
20 10 11533 34882 x 10 ! 24 125 1.0046 x 10!
30 20 50 321 47859 x 10" 100 187 22251 % 10 "
50 30 188 938 6.181& x 10Y 384 447 1.7993 < 100
50 40 267 548 17401 % 10 ¥ 540 642 44792 1y
50 50 344 524 2.0480 x 10°# 733 963 9.4886 x 10

* The Gauss elimination is provided bv MATLAB.
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Table 2

The result of Example 2 ¢

Order Algorithm 2 Gauss ehmination

m n Flops Norm (xv=x") Flops Norm (x-x)
10 10 3998 6.7242 x 10 ¢ 8207 1.8781 x 1017
20 10 11533 2.5209 x 101 24 125 10121 x 10"
30 20 S0 321 52676 x 10 1" 100 187 1.9155 % [0 ™
50 30 18K 938 6.3810 x 107 384 447 1.3570 = 10"
50 40 267 548 87125 %10 Y 540 643 81077 < 10"
50 50 344 524 1.0074 % 10 ¢ 733 965 1.3418 x {0 8

“ The Gauss elimination is provided by MATLAB.
where:

p

m n
= Zu,», X | — Zh“ x (m4+ky, i=1l:m,
i k1

"

n
¢ = Zl)" X j - ZC"’ X {m+k). i=1ln
j

©

From the above result we can see that the generalized Cholesky method pre-
sented in this paper will be efficient enough also for practical application. In
fact, it would be still efficient when €, = 0 in linear systems (1) or (11).
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