
104 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 8, NO. 2, JUNE 2011

Improving Application Placement for
Cluster-Based Web Applications

Chen Tian, Hongbo Jiang, Member, IEEE, Arun Iyengar, Fellow, IEEE, Xue Liu, Member, IEEE, Zuodong Wu,
Jinhua Chen, Wenyu Liu, Member, IEEE, and Chonggang Wang, Senior Member, IEEE

Abstract—Dynamic application placement for clustered web
applications heavily in uences system performance and quality
of user experience. Existing approaches claim that they strive
to maximize the throughput, keep resource utilization balanced
across servers, and minimize the start/stop cost of application
instances. However, they fail to minimize the worst case of
server utilization; the load balancing performance is not optimal.
What’s more, some applications need to communicate with each
other, which we called dependent applications; the network cost
of them also should be taken into consideration.

In this paper, we investigate how to minimize the resource
utilization of servers in the worst case, aiming at improving
load balancing among clustered servers. Our contribution is two-
fold. First we propose and de ne a new optimization objectives:
limiting the worst case of each individual server’s utilization,
formulated by a min-max problem. A novel framework based
on binary search is proposed to detect an optimal load bal-
ancing solution. Second, we de ne system cost as the weighted
combination of both placement change and inter-application
communication cost. By maximizing the number of instances of
dependent applications that reside in the same set of servers,
the basic load-shifting and placement-change procedures are
enhanced to minimize whole system cost. Extensive experiments
have been conducted and effectively demonstrate that: 1) the
proposed framework achieves a good allocation for clustered web
applications. In other words, requests are evenly allocated among
servers, and throughput is still maximized; 2) the total system
cost maintains at a low level; 3) our algorithm has the capacity of
approximating an optimal solution within polynomial time and
is promising for practical implementation in real deployments.

Index Terms—Load balancing, application placement, algo-
rithm design, cluster-based service, class constrained multiple-
knapsack problem.

I. INTRODUCTION

WEB applications make it possible to deliver critical ser-
vices provided by organizations directly to clients [1]–

[3]. Modern web applications typically run on top of a
middleware system, which is responsible for processing client
requests and for allocating resources at a high rate [4].
Clustering technology enables middleware systems to achieve

Manuscript received May 28, 2010; revised November 30, 2010. The
associate editor coordinating the review of this paper and approving it for
publication was H.-G. Hegering.

C. Tian, H. Jiang (corresponding author), Z. Wu, J. Chen, and W. Liu are
with Huazhong University of Science and Technology, Wuhan, China, 430074
(e-mail: hongbojiang2004@gmail.com).

A. Iyengar is with IBM T.J. Watson Research Center, Hawthorne, NY
100086.

X. Liu is with the University of Nebraska-Lincoln, Lincoln, NE, 68588-
0150.

C. Wang is with InterDigital Communications, PA, 19406.
Digital Object Identi er 10.1109/TNSM.2011.050311.100040

high degrees of scalability and availability. On the other hand,
it also poses great challenges in scalable and high performance
computing. For instance, it is often cost-inef cient when
designing data centers to simultaneously handle the potential
peak demands of all the applications [5], due to the dynamical
uctuation of request rate. As a result, the middleware systems

are supposed to allow dynamical resource allocation to meet
different performance requirements from diverse applications.
The problem becomes dynamic application placement: given
a set of machines1 with constrained resources2 and a set of
Web applications with dynamically changing demands, how
many instances of each application should be run, and where
should they be placed?

In past work, this problem has been generally formulated as
a variant of the Class Constrained Multiple-Knapsack Problem
[7], [8], with multiple objectives such as maximizing the
throughput of the whole system, and minimizing the distur-
bance due to application instance placements start/stop, just
to name a few. The scheme in [6] is advantageous over other
placement algorithms in terms of computational scalability,
application satis ed demand and placement change. However,
its load balancing is not optimized: part of the servers could
be on heavy load after an execution of application placement
algorithm. We will illustrate this problem by a server load
distribution example in Section IV-B: all we need to know here
is that when the total system load is 50%, only 22% servers
have utilization close to the whole system load; however, there
are a number of servers have load higher than 80%, and some
of them even have 100% utilization. As a result, the response
time on the servers with high utilization could be signi cantly
increased [9] and the clients served by these servers may
be exposed to unnecessary long response latency, which is
unfavorable for real-time web-based applications such as mul-
timedia streaming. To alleviate this problem, the worst case
of individual server utilization3 should be minimized and load
balancing in the whole system should be improved.

Another problem of previous works is their cost model:
only start/stop cost of application instances are considered. We
found from the industrial practise that, a few web applications
have extensive communications among themselves, which

1In this paper, we alternatively use the terms of machine, nodes, or server
unless explicitly explained. All these terms are referred to as the web servers
that handle the client requests.

2Like [6], this paper only considers CPU and memory resources. However,
our framework can be easily extended to deal with other types of resources.

3In this paper, we refer to the worst case of individual server utilization as
the highest CPU utilization among all machines.

1932-4537/10/$25.00 c⃝ 2011 IEEE

TIAN et al.: IMPROVING APPLICATION PLACEMENT FOR CLUSTER-BASED WEB APPLICATIONS 105

we called dependent applications. Mostly the dependency is
paired: application a’s instance needs data from application b’s
instance, and vice visa. The inter-application communication
should also be taken into system cost consideration: rst they
utilize network bandwidth; second the communication latency
among application instances, if they are placed in different
servers, can slow down the applications and deteriorate per-
formance. To reduce this cost, there is an demand to place
the dependent application instances in the same set of servers
(i.e.,localize the inter-application communication) as many as
possible.

In this paper, we propose an enhanced application place-
ment framework, which complements previous works and has
contributions in the following four aspects.

• Improving Load Balancing. Previous studies [5], [6]
presented approximation algorithms to deal with multiple
optimization objectives in terms of throughput, placement
changes, and load balancing. While acknowledging the
effectiveness of the problem statement with those ob-
jectives, in this paper, we propose to integrate a new
optimization objective: limiting the worst case of each
individual server’s CPU utilization, formulated by a min-
max optimization problem. By doing so, the system load
balancing performance is greatly improved.

• Reducing overall system cost. We introduce the con-
cept of dependent application and argue that the inter-
application communication cost should also be controlled.
We de ne system cost as the weighted combination of
both placement change and inter-application communi-
cation cost. By maximizing the number of instances
of dependent applications that reside in the same set
of servers, the basic load-shifting and placement-change
procedures are enhanced to minimize whole system cost.

• A transformed nal balancing with min-cost ow
problem: Due to the additional worst case constraint
in the optimization objectives, the nal balancing is
a non-trivial optimization problem. By integrating the
constraints obtained from the rst two stages in our
frameworks, we transform this optimization to a min-cost
ow problem, which can be solved in polynomial time

using existing algorithms.
• Practical approximation algorithm and extensive eval-

uation results: In our enhanced framework, the place-
ment algorithm is based on binary search to dynamically
probe the optimal application placement solution. It is
desirable that our placement algorithm is able to nd
the near optimal solution within polynomial time. We
conduct extensive evaluations and our results demon-
strate that, compared with state-of-the-art algorithms, our
framework achieves better allocation for clustered web
applications: more balanced server load, as well as less
system cost.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Our enhanced framework is
proposed in Section III. Performance evaluation of our new
algorithm is presented in Section IV. Section V concludes the
paper.

II. RELATED WORK

Our work extends the research in application placement
described in [6], [10], [11]. With our experiments we demon-
strate that a utility-driven system outperforms demand-based
approach in terms of application satisfaction fairness. Among
them, the framework in [6] for dynamic application placement
is a representative example and it outperforms other existing
techniques.

Fig. 1 depicts the typical diagram of the Web application
control loop for application placement. The system is com-
posed of front-end Request Router, Application Placement
Controller, Placement Executor, Back-end Machines, and Ap-
plications. The request router receives external requests and
forwards them to the application instances. The placement
controller periodically calculates a placement solution that
optimizes certain objective functions, and then passes the
solution to the placement executor to start and stop application
instances accordingly.

A popular approach to dynamic server provisioning is to
allocate full machines to applications as needed [12], which
does not allow applications to share machines. The algorithm
proposed in [13] allows applications to share machines, but
it does not change the number of instances of an application
and only considers one bottleneck resource.

Placement problems have also been studied in the opti-
mization literature, including bin packing, multiple knapsack,
and multi-dimensional knapsack problems [14]. The special
case of the problem with uniform memory requirements was
studied in [7], [8], and some approximation algorithms were
proposed. Meta-scheduling algorithms for grid and parallel
computing also deal with the placement problem [15].

A disk load balancing criterion which combines a static
component and a dynamic component is described in [16]. The
static component decides the number of copies needed for each
movie by rst solving an apportionment problem and then
solving the problem of heuristically assigning the copies onto
storage groups to limit the number of assignment changes.
The dynamic component solves a discrete class-constrained
resource allocation problem for optimal load balancing, and
then introduces an algorithm for dynamically shifting the
load among servers (i.e. migrating existing video streams).
A placement algorithm for balancing the load and storage in
multimedia systems is described in [17]. The algorithm also
minimizes the blocking probability of new requests.

Xueyan’s work [18] and Hsiangkai’s work [19] are focused
on content replica placement and request routing in content
distribution networks; these works are related to our topic.
However, in our scenarios all servers are considered centrally
located together instead of geographically distributed.

III. ENHANCED APPLICATION PLACEMENT FRAMEWORK

A. New Formulation of the Application Placement Problem

Application placement addresses the problem of how to
distribute applications among multiple processors in order to
maximize performance. Apart from [6], this paper is based
on the basic idea that the worst case load performance of
individual machines should be minimized rst. From the users’
point of view, it is undesirable to experience a long response

106 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 8, NO. 2, JUNE 2011

Fig. 1. Control loop for application placement (adapted from [6]).

TABLE I
SYMBOLS USED IN THIS PAPER

N The set of machines.

n One machine in the set N.

M The set of applications.

m One application in the set M.

I The placement matrix. Im,n = 1 if application m is
running on machine n; Im,n = 0 otherwise.

L The load distribution matrix. Lm,n is the CPU cycles
per second allocated on machine n for application m.
L is an output of the placement algorithm; it is not
measured from the running system.

Γn The memory capacity of machine n.

Ωn The CPU capacity of machine n.

γm The memory demand of application m, i.e., the
memory needed to run one instance of application
m.

ωm The CPU demand of application m, i.e., the total
CPU cycles per second needed for application m
throughout the entire system.

ω′m The satis ed demand of application m by previous
stage.

New de nitions

ρ the utilization of the entire system.

ρn the utilization of machine n.

p the utilization fraction parameter of the entire sys-
tem.

p∗ the optimum utilization fraction parameter of the
entire system.

c the calculated number of needed placement change.

p− the lower bound of the utilization fraction parameter.

p+ the upper bound of the utilization fraction parameter.

R The application dependence matrix. Rm1,m2 = 1 if
application m1 and m2 have inter communication
with each other.

h the localized fraction of all inter-application commu-
nication.

s the system cost.

time due to high load at a server. Intuitively, if the worst
case of each individual machine utilization is minimized, the
application demand will be spread to a broader range and thus
distributed more evenly. Thus, our approach can improve the
balance among the servers.

Table I lists symbols used in this paper4. The inputs to the

4The table directly inherits symbols of previous works and is extended with
new de nitions.

placement controller include the current placement matrix I∗,
the CPU and memory capacities of each machine (Ωn and Γn),
and the CPU and memory demands of each application(ωm and
γm). Both values correspond to only the workload controlled
by the placement controller. Capacity used by other workloads
should be subtracted prior to invoking the algorithm. The
outputs of the placement controller are the updated placement
matrix I and the load distribution matrix L.

The system has two main costs: one is the start/stop cost
of application instances when performing placement change;
the other is the communication cost among dependent ap-
plications. Let I∗ denote the old placement matrix, and I
denote the new placement matrix. Let c demote the number
of placement change, h denote the localized percentage of
all inter-application communication, we have two symbols.
Note that we assume that inter-application communication is
proportional to an instance’s load; hence we use localized
application load, i.e., loads of two dependent applications that
resides in the same set of servers, to indirectly denote the
localized inter-application communication.

c =
∑
m∈M

∑
n∈N

∣∣∣Im,n − I∗m,n
∣∣∣

h =

∑
n∈N
∑

m1∈M
∑

m2∈M Im1,nIm2,nRm1,m2(Lm1,n + Lm2,n)∑
m1∈M

∑
m2∈M Rm1,m2(ωm1 + ωm2)

It is obvious that, c should be minimized and h should be
maximized. In addition, ρ and ρn denote the utilization of the
entire system and the utilization of an individual machine n
respectively. From the view of load balancing, ρn should stay
close to ρ.

ρn =

∑
m∈M Lm,n

Ωn

ρ =

∑
m∈M
∑

n∈N Lm,n∑
n∈N Ωn

The placement controller should rst attempt to nd a place-
ment solution that maximizes the total satis ed application
demand. Secondly, it also tries to minimize the total system
cost, including the number of application starts and stops,
because placement changes disturb the running system and
waste CPU cycles, and the cost of dependent application
communications. We use weight values α and β to adjust
their weights in the system cost s 5. Our approach also
minimizes the worst case load utilization to balance the load
across machines. These objectives are listed in the formulated
problem below:

(i)Maximize:
∑
m∈M

∑
n∈N

Lm,n

(ii)Minimize: s = 100 ∗ (α ∗ c
|N| + β ∗ (1 − h))

(iii)Minimize: p = max
n∈M

(ρn) = max
n∈M

(∑
m∈M Lm,n

Ωn

)

(iv)Minimize:
∑
n∈N
|ρn − ρ|

=
∑
n∈N

∣∣∣∣∣∣
∑

m∈M Lm,n

Ωn
−
∑

m∈M
∑

n∈N Lm,n∑
n∈N Ωn

∣∣∣∣∣∣

(1)

5In current implementation we let them equal weighted, hence α = β = 1

TIAN et al.: IMPROVING APPLICATION PLACEMENT FOR CLUSTER-BASED WEB APPLICATIONS 107

Subject to:

(a)
∑
m∈M
γmIm,n ≤ Γn,∀n ∈ N

(b)
∑
m∈M

Lm,n ≤ Ωn,∀n ∈ N

(c)
∑
n∈N

Lm,n ≤ ωm,∀m ∈ M

(d)Im,n = 0⇒ Lm,n = 0,∀m ∈ M,∀n ∈ N

(e)Lm,n ≥ 0, Im,n ∈ {0, 1},∀m ∈ M,∀n ∈ N.

(2)

Constraint set (a) speci es that the memory demand of all
applications in machine n should not exceed the memory
capacity; (b) speci es that the total CPU cycles consumed
in each machine should not exceed the machine’s CPU ca-
pacity; (c) speci es that the total allocated CPU cycles to an
application should not exceed its demand; (d) speci es that an
application can be serviced in a machine if and only if it is
stored at that machine; (e) de ne the variables’ feasible range.

This problem is NP hard, and we develop an approximation
algorithm to solve it. Before presenting its details, we rst give
a high-level description and outline the key ideas behind the
algorithm. Observe that the satis ed CPU demand provided
by each single machine is directly con ned by the constraints
of Equation 2(b). If we scale all Ωn down by the same ratio
p ≤ 1, the constraints of Equation 2(b) are changed to

(b)
∑
m∈M

Lm,n ≤ p ∗ Ωn,∀n ∈ N, ρ < p ≤ 1 (3)

Then if we solve the placement problem, it is guaranteed that
ρn ≤ p from the de nition of ρn.

Theorem 1: The decrease of p converges to p∗.
Proof: Suppose ρ ≤ p1 ≤ p2 ≤ 1 and denote a solution of

p1 by I1 and L1 respectively. Since all other constraints need
to be met, we have:∑

m∈M
L1 ≤ p1 ∗ Ωn ≤ p2 ∗ Ωn,∀n ∈ N

Hence a solution of p1 is also a solution of p2.
A p value is an acceptable value if all constraints are

satis ed. Above all, the total satis ed application demand
should still be maximized. A lower p value reduces the
feasible region compared with the original formulation. To
ful ll the demand, more placement changes may be needed.
The two objectives may con ict with each other and a trade-
off handling is required.

We use the MaxDemandMinChange algorithm in [6] as
the baseline algorithm of our framework. After running the
baseline algorithm rst, we get the maximum demand that
can be satis ed max_demand′ and the corresponding system
cost s′. The next step is to obtain p. The original objectives
(i) and (ii) now can be transformed to the constraints: max
demand should be strictly satis ed and the system cost should
be controlled. For each new formulation of p, our framework
attempts to optimize objectives (iii) and (iv).

We enhance the baseline algorithm with the optimization
of communication cost in the basic load-shift and placement
change procedures (extension presented in Section III-B1).
Our algorithm repeatedly probes the minimum p in multiple

rounds. In each round, it xes a p value and uses the MaxDe-
mandMinCost algorithm to calculate the maximum total
application demand that can be satis ed max_demand by the
current p value together with the system cost s to see if this
p value is acceptable. p will nally converge to the optimum
value p∗.

B. The Full Placement Algorithm

The next problem is how to optimize p as quickly as
possible. We develop an algorithm based on Binary Search.
Instead of a blind probe, the upper bound of p, p+, and
the lower bound of p, p− are calculated iteratively. In each
iteration, either p+ or p− are updated. The full high level
pseudo code is depicted in Algorithm 1 where the function
MaxDemandMinCost is shown in Algorithm 2 and the
function BoundAcceptable is shown in Algorithm 3. The
general process is composed of three main building blocks:
initialization, iterative optimizing and nal rebalancing.

Algorithm 1 PlaceFrame()
Require: : output: L′′m,n: the load distribution matrix; I′′m,n: placement matrix.
1: p+ = 1, p− = ρ, p = 1;
2: MaxDemandMinChange(max_demand′ , s′);
3: while p+−p−

p+ > ε do

4: p = p++p−
2 ;

5: MaxDemandMinCost(max_demand′, s′, L′m,n);
6: if BoundAcceptable() then
7: p+ = p; //decrease the upper bound of p value
8: else
9: p− = p; //increase the lower bound of p value

10: end if
11: end while
12: p′ = p+;
13: ω′m =

∑
n∈N L′m,n;

14: Final_Rebalancing();
15: I′′m,n = I′m,n;

Algorithm 2 MaxDemandMinCost()
Require: Input: p: the maximal machine utilization threshold.

Output: calculated max satis ed demand max_demand and the cost s.
Lm,n: the load distribution matrix.

1: for i = 0 to K // K=10 by default; do
2: calc_max_demand_satis ed_by_current_placement ();
3: if all_demands_satis ed then
4: if worst_case_satis ed then
5: //the maximal machine utilization
6: //is less than the given threshold p;
7: break out of the loop;
8: end if
9: end if

10: . . . // we omit the details about placement changes.
11: end for

1) Initialization: In the initialization phase(lines 1-2 in
Algorithm 1), we set p− with ρ, and p+ with 1, p = 1. After
performing the function MaxDemandMinChange() described
in [6], we obtain max_demand′ and c′, which will be used as
constraint parameters in the later iterative optimizing phase.

For simplicity, we omit details about the algorithm in
this paper. Brie y speaking, it strives to probe the maximal
application demand by means of iteratively making placement
changes in order to increase the total satis ed demand, for
instance, stopping “unproductive" application instances and

108 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 8, NO. 2, JUNE 2011

Algorithm 3 BoundAcceptable()
Require: Input: max_demand′ and max_demand: the demand satis ed before

and after updating worst case machine utilization constrains; Cost s′ and
s: the system cost before and after updating worst case machine utilization
constrains.

1: if max_demand′ == max_demand then
2: if BOUNDED then
3: if s > s′ then
4: return FALSE;
5: end if
6: end if
7: return TRUE;
8: end if
9: return FALSE;

starting useful ones. We also made some minor modi cations
to this function. For example, by integrating an additional
optimization objective, the system stops making application
changes only when the worst case (the maximal machine
utilization) is less than a given threshold p.

2) Iterative Optimizing: The system attempts to iteratively
decrease the upper bound or increase the lower bound of
p (lines 3-11 in Algorithm 1) in order to proximate an
optimal solution. The revised problem with parameter p is then
addressed by continuously identifying whether the updated
value of p is acceptable or not. If the solution is acceptable, p+

is updated; otherwise p− is updated. As such, the difference
between p+ and p− is decreased. That is, the system strives
to nd the optimal value for p based on binary search. This
loop executes until the difference between p+ and p− is small
enough. For an ε−approximation of the optimum value p∗, the
iterative search can be completed in O(log2(1/ε)) rounds [20].
The nal p value is a good approximation to constrain the
worst case of the machine utilization across all machines.

MaxDemandMinCost is an extension of the baseline al-
gorithm to support the minimization of, besides instance
start/stop cost, inter-application communication cost. We cur-
rently can deal with paired-dependency: two applications have
communications with and only with each other; we plan to ex-
tend the algorithm to more complex dependency relationships
in next step.

The main improvement to MaxDemandMinChange is the
load-shifting part. For example, application a and b are depen-
dent to each other. MaxDemandMinCost algorithm identi es
all those servers that already contain both a and b instances,
say, Group 1; and all those servers contain either a or b
instances, say, Group 2. After sorting the machines in an
increasing order of residual memory, our algorithm sort those
servers in Group 1 and put them in the head of list, and
those servers in Group 2 in the tail of list. The intuition
here is to shift the load of dependent application from Group
2 to Group 1. Instances of dependent application in Group
2 servers are more likely to be idle after the load-shifting
phase, hence easier to deal with in the placement change phase
In the placement change phase, each time we only change
one instance per dependent pair. For each pair of dependent
applications, we nd one server in its Group 2 with the most
appropriate residual memory and the largest idle CPU power,
add the missing application’s instance, and move it to Group
1.

3) Final Rebalancing: The last step of the algorithm is
Final Rebalancing(line 14 in Algorithm 1). In [6], the nal
load-balancing component from [10] was used, which moves
the new application instances across machines to balance the
load, while keeping the total satis ed demand and the number
of placement changes the same.

While the basic idea of our Final Rebalancing component
is similar to [6], [10], it differs from previous work in the
following ways: it not only keeps the total satis ed demand
and the number of placement changes the same, but also keeps
the maximal machine utilization less than the given threshold
for the worst case. That is, the system attempts to nd another
load distribution matrix L′′ that satis es the same demand
for all dynamic clusters while achieving more balanced load
across machines. We calculate L′′ by solving the following
optimization problem:

Minimize:
∑
n∈N

∣∣∣∣∣∣∣
∑
m∈M

L′′m,n − ρ ∗Ωn

∣∣∣∣∣∣∣ (4)

Subject to:
∑
m∈M

L′′m,n ≤ p′ ∗Ωn,∀n ∈ N

∑
n∈N

L′′m,n = ω
′
m,∀m ∈ M

I′m,n = 0⇒ L′′m,n = 0,∀m ∈ M,∀n ∈ N

(5)

Here p′ presents a constraint for the worst case machine
utilization and w′m is the satis ed demand of application m
calculated during the rst two phases (line 12-13 in Algo-
rithm 1). The goal of the last phase is to reassign the load
across machines, accordingly balancing the load and making
all ρn as close to system load ρ as possible. We transform the
problem in the last phase into a min-cost ow problem [21]
as shown in Fig. 2. In this gure, from left to right, we can
see

• Source node S has outbound edges to every application
vertex m, where the capacity of the edge S → m is equal
to load-dependent requirement ω′m and its cost is equal
to 0.

• Each application vertex m has outbound edges to machine
vertices n representing the machines that the application
is placed on, conform with Im,n. The capacity of edge
m→ n is equal to ω′m and its cost is equal to 0.

• Each machine vertex n has an outbound edge to the ideal
auxiliary machine vertices n′ that corresponds to the same
physical machine. The capacity of the edge n → n′ is
equal to the desired upper bound usage of the machine
ρΩn and its cost is equal to 0.

• The rebalancing vertex R has inbound edges from ma-
chine vertices n → R, whose capacity is equal to
(p − ρ)Ωn. The cost of these inbound vertices in 1.

• The rebalancing vertex R has outbound edges to ideal
machine vertices R→ n′. Each such edge has the capacity
ρΩn and the cost of 1.

• All ideal machine vertices have an outbound edge to the
sink node T , with capacity limit equal to ρΩn and the
cost of 0.

TIAN et al.: IMPROVING APPLICATION PLACEMENT FOR CLUSTER-BASED WEB APPLICATIONS 109

Fig. 2. Transformed Rebalancing Problem.

The ow max_demand is injected into the network at source
node S and leave the network at sink node T . This network
will push each ρn close to system load ρ because any deviation
from ρ incurs a cost. This min-cost ow can also be solved
by linear programming [20], as a linear function is needed to
be optimized, and all constraints are linear.

C. Discussion

Next we turn to the time complexity of our placement algo-
rithm. For the rst phase of Initialization, the computational
time is the same as the previous placement algorithm in [6],
whose time time complexity is O(|N|2.5). For the second phase
of Iterative Optimizing, the computational time is the time of
the previous placement algorithm multiplied by the number
of iterations of the outer loop (lines 3-11 in Algorithm 1).
Note that the outer loop is based on Binary Search: in each
iteration, either p+ or p− are updated, and the search scope is
halved, until the relative error is less than a given threshold,
de ned by ε. Since for an ε−approximation of the optimum
value p∗ the iterative search can be completed in O(log2(1/ε))
rounds [20], the overall computational time of the second
phase is O(|N|2.5log2(1/ε)). In our implementation, ε is set
to be 0.01, that is, the outer loop is only performed a few
rounds. As such, the time complexity of the second phase
becomes O(|N|2.5). For the last phase of Final Rebalancing,
the time complexity is O((|N|+ |M|)2.5) [20]. Overall, the time
complexity of our placement algorithm is O(|N|2.5) when it is
assumed that |N| is comparable to |M| value, which is similar
to the time complexity of the previous algorithm in [6].

We assume that the placement controller produces a new
placement solution that optimize certain objective function
based on the current inputs such as γm and ωm periodically
every T miniatures (e.g., T=15 minutes). That is, during this
period, it is assumed that the system with all running appli-
cation instance will not signi cantly changes. Accordingly,
the optimal worst case value p∗ will not change signi cantly
during this period as well.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of our proposed
framework. First, we describe the evaluation methodology and
explain how experiments are set up. Then we present the load
balancing example in Section IV-B as an illustration to our
main objective. After that, we present simulation results of the
proposed framework under different scenarios. The cost and

sensitivity analysis are given in Section IV-D and Section IV-E
respectively.

A. Evaluation Methodology

Experimental Setup: Uniform application demand distri-
bution is assumed because there is no signi cant difference
between uniform and power-law distributions [6]. In addition,
the demand of each application is normalized proportionally
to the total application demand. The application demands
change from cycle to cycle. We conduct experiments with
two different demand changing patterns. With a vary-all-
apps pattern, each application’s demand changes randomly
and independently within a ±20% range of its initial demand.
With a reset-all-apps pattern, the demands in two consecutive
cycles are independent of each other. This pattern represents
the most extreme demand change for severe cases.

All experiments are con gured as follows. De ne CPU
Load Factor Lcpu as the ratio between the total CPU demand
and the total CPU capacity. That is, Lcpu =

∑
m∈M ωm∑
n∈N Ωn

, where
ωm is the CPU demand for application m, and Ωn is the
CPU capacity of machine n. Also let Application Load Factor
Lmem stand for Lmem =

|M|γ
|N|Γ , where γ is the average memory

requirement of applications, Γ denote the average memory
capacity of machines, and |M| is the number of applications.
Note that 0 ≤ Lmem ≤ 1 dictates the number of applications
instead of the real memory requirement; an application may
need several instances to meet the demand, and the problem is
most dif cult when Lmem = 1. We uniformly distribute the con-
guration of machines over the set (1GB:1GHz, 2GB:1.6GHz,

3GB:2.4GHz, 4GB:3GHz), where the rst number is mem-
ory capacity and the second is CPU power. The memory
requirement of applications is uniformly distributed over the
set (0.4GB, 0.8GB, 1.2GB, 1.6GB). Accordingly, the number
of machines |N| is set to be 100 in this paper. The number
of applications |M| is con gured by |M| = 2.5 ∗ |N| ∗ Lmem

according to |N| and Lmem. For example, Lmem = 0.4 leads
to the same number of applications and machines, while
Lmem = 0.8 gets doubled number of applications. Higher
values of Lmem correspond to more applications that need
to be scheduled. Below, we concisely represent the system
con guration of a placement problem as (Lcpu, Lmem, demand
variability), e.g., (Lcpu = 0.9, Lmem = 0.4, vary-all-apps).
Among all the applications, we randomly pick 2% and paired
them to simulate dependent applications.

Performance Metrics: First, we measure the maximal
machine utilization p since it can result in adverse response
time for users. Second, it is noted that the most balanced load
is a uniform distribution; hence we measure the amount of
inequality in the load distribution. Like [10], we consider the
Gini index as an alternative metric. Assume the area between
the line of perfect (uniform) distribution (45 degree line)
and the Lorenz curve of the actual distribution is A and the
area below the Lorenz curve of the actual distribution is B.
The Gini index is thus referred to as A/(A + B). This Gini
coef cient is often used to measure income inequality [22].
A Gini index of 0 indicates perfect equality while a Gini
index of 1 indicates complete inequality, or in our case,
completely unbalanced load distribution. Third, when max

110 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 8, NO. 2, JUNE 2011

Fig. 4. Server load distribution of Tang’s work with con guration (Lmem=
0.6,Lcpu=0.5,reset-all-apps).

demand should be strictly strati ed, we present the number of
placement changes, c, induced by both algorithms for compar-
ison. Fourth, we compare the execution time of our algorithm
with previous work [6]. All the reported data are averaged over
the results on 100 randomly generated system con gurations.
For each con guration, the placement algorithm executes for
7 cycles under changing application demands, including an
initial placement and 6 dynamic placement executions. Our
results show that often the rst execution is dominated by
the initial placement(Cycle 1 → 2). Therefore for most
experiments, we exclude this result and consider the ve most
recent executions. Unless otherwise stated, each reported data
point is averaged over 500 placement results.

Peer Algorithms: As already demonstrated in [6], the ap-
plication placement algorithm presented in that paper performs
better than the two algorithms in [10], [11] with respect
to maximizing demand, reducing placement changes, and
execution time. Accordingly, we compare our proposed frame-
work with the algorithm presented in [6]. For convenience
of presentation, we use Tang to stand for the placement
algorithm in [6], and This for our new placement algorithm.

B. Distribution of Server Utilization

In this illustration, we choose a typical setting where
Lmem = 0.6 and Lcpu = 0.5. The result of Tang’s work is
shown in Figure 4: the load balancing is not satisfactory,
and some servers have 100% utilization when total system
load is only 50%. As a comparison, our work shows a much
better load-balancing: shown in Figure 5, around 37% servers
have utilization close to system load; only a few servers have
utilization higher than 65% and the worst case is no more
than 80%. Consistent with our expectation, the worst case of
individual server utilization is minimized and load balancing
in the whole system is greatly improved.

C. Performance Comparison

1) Vary-all-apps: Fig. 3 shows the experimental results
with a variety of CPU load factors (Lcpu from 0.1 to 0.9)
and application load factors (Lmem=0.2, 0.4, 0.6 and 0.8). For
all these settings, the new framework proposed in this paper

Fig. 5. Server load distribution of our work with con guration (Lmem=
0.6,Lcpu=0.5,reset-all-apps).

consistently outperforms the previous algorithm in terms of
maximal machine utilization and Gini index.

First, Fig. 3 left column shows that the worst case machine
utilization p using This framework is less than that using
Tang, especially in lightly load cases. For instance, when
Lmem = 0.2 and Lcpu = 0.1, the p value using the Tang frame-
work is around two times of that using This algorithm, which
is close to ρ. Second, compared with the Tang framework,
This framework greatly reduces the Gini index shown in Fig. 3
middle column. We found the Gini index is always less than
0.1. Third, the system cost using This framework are stable
as shown in Fig. 3 right column. The reason is that our new
framework strives to reduce p and is thus capable of evenly
distributing the applications. As a result, it will not cause
considerable load uctuations. Fourth, since the system cost
of the new framework are limited by the previous algorithm
Tang, it is guaranteed that This always introduces fewer cost
than Tang while achieving better results in terms of p and Gini
index. Finally, This achieves best results in terms of p, Gini
index and cost s. However, there is no limitation on placement
changes, so it could incur higher placement change, i.e., when
Lmem = 0.6, 0.8 in Fig. 3 right column; we will discuss this in
the cost part.

2) Reset-all-apps: We next turn to the severe case when the
demands in two consecutive cycles are independent of each
other. In this case, we reset all applications every execution
during all seven cycles. Fig. 6 depicts the results. First, most
results are similar to those shown in Fig. 3. For example, the
curves of p and Gini index exhibit similar trends: p values
shown in Fig. 6 left column are almost the same as that in
Fig. 3 left column; Gini index values shown in Fig. 6 middle
column are slightly higher than those in Fig. 3 middle column.
Second, This costs shown in Fig. 6 right column are doubled
compared with those shown in Fig. 3(c). The reason is that in
Reset−all−apps scenario there is no correlation of application
demands between two consecutive times slots, which results
in more cost to achieve a balanced placement if placement
changes are not limited. Corresponding to its de nition, the
system cost of This maintains lower than Tang, while its load
balancing performance is still comparable.

TIAN et al.: IMPROVING APPLICATION PLACEMENT FOR CLUSTER-BASED WEB APPLICATIONS 111

Fig. 3. Maximal machine utilization p value, Gini index, and placement changes with con guration (Lmem=0.2,0.4,0.6,0.8,Lcpu=x,vary-all-apps).

D. Cost Analysis

System cost is a single objective, as a combination of both
placement change cost and inter-communication cost, in our
formulation. In the previous part, we can conclude that our
framework improve load balancing while maintain system
total cost at a low level. In this part, the impact to individual
cost is examined. Execution time is also presented to verify
the computational scalability.

In this illustration, we choose a typical setting where Lmem =

0.2. The localized communication h, placement change c and
execution time are shown in Figure 7.

1) Inter Application Communication: The left column in
Figure 7 shows the performance of localization of inter-
application communications. Tang algorithm does not con-
sider this cost, hence its h value is randomly low. As a com-
parison, over 60% percents inter-application communications
are localized in This algorithm.

2) Placement Change: The middle column in Figure 7
shows the performance of localization of inter-application
communications. It is clear that our algorithm has higher
placement change cost than Tang. In our earlier work, when
inter-application communication cost in not included in con-
sideration, we can achieve comparable placement change cost
and still optimize the load balancing performance. Hence we
argue that higher placement change cost is not an algorithm
defect, but a must price for optimize the inter-application
communication cost. Plus, readers can modify weight values
α and β to adjust the weight of two costs in the whole system
cost.

3) Execution Time: Figure 7 right column depicts the
relative execution time using This framework, with both vary-
all-apps both reset-all-apps pattern, compared with the Tang
framework. First, as we mentioned in Section III, the execution
time of our proposed framework is higher than that of the

112 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 8, NO. 2, JUNE 2011

Fig. 6. Maximal machine utilization p value, Gini index, and placement changes with con guration (Lmem=0.2,0.4,0.6,0.8,Lcpu=x,reset-all-apps).

previous algorithm work since the new one includes multiple
runs to perform function MaxDemandMinCost compared
with a single invocation for Tang. The execution time depends
on the speed that Algorithm 1 probes the optimal value of p∗.
Results show that the ratio between execution time using This
framework is 3 ∼ 8 times that of the Tang framework. That
is, the loop in Algorithm 1 only performs a few runs to nd
a good approximation.

While the proposed framework in this paper incurs overhead
in terms of execution time compared with previous work [6],
we believe that it provides a viable alternative solution for
application placement and is practical for real systems. First,
with optimizations that we are currently working on and ever-
increasing CPU speed, the execution time could be lowered.
Second, one option to use if execution time is a problem is to,
by setting a higher value for ε in Algorithm 1, use a lighter
weight version of the new algorithms in which the number of

iterations of function MaxDemandMinCost is reduced. That
way, one would get some of the bene ts of the new algorithm
without all of the overhead. Third, the placement controller
may not always have to execute all that frequently (e.g., every
15 minutes in [6]). In this situation, the execution time using
our framework would not be too high.

Other results show that our algorithm often converges after
only a few iterations. That is, it does not introduce too much
overhead when performing the optimization. The number of
iterations will be small when resources are tight, that is, the
values of Lcpu and Lmem are high. It is reasonable because
when resources become tighter, the optimal p∗ value is closer
to 1 hence the probe space of p in Algorithm 1 is smaller.

E. Sensitivity Analysis

In this part, we analyze the sensitivity of both algorithms
to input parameters such system hardware context.

TIAN et al.: IMPROVING APPLICATION PLACEMENT FOR CLUSTER-BASED WEB APPLICATIONS 113

Fig. 7. Localized Communication, placement changes and execution time with con guration (Lmem=0.2,Lcpu=x, under vary − all − apps (upper half) and
reset − all − apps (bottom half).

1) Fixed Memory v.s. Increasing CPU: In our normal
experiments, the CPU/memory capacity is almost linear for
each server type. In this experiment, we xed memory and
vary the CPU power of each server type. The con guration
of machines is now the set (2.5GB:1GHz, 2.5GB:1.6GHz,
2.5GB:2.4GHz, 2.5GB:3GHz). we choose a typical setting
where Lmem = 0.6 with reset − all − apps scenario. As shown
in the rst row of Figure 8, the performance is almost the
same with the original experiments.

2) Fixed CPU v.s. Increasing Memory: In this experi-
ment, we xed CPU power and vary the memory capacity
of each server type. The con guration of machines is now
the set (1GB:2GHz, 2GB:2GHz, 3GB:2GHz, 4GB:2GHz).
we again choose a typical setting where Lmem = 0.6 with
reset − all − apps scenario. As shown in the second row of
Figure 8, the performance is still almost the same with the
original experiments.

3) Smaller Application: In this experiment, we use the orig-
inal con guration of machines. Instead, we shrink the memory
requirement of applications. Now the memory requirement of
applications is uniformly distributed over the set (0.08GB,
0.16GB, 0.24GB, 0.32GB), just 1/5 of the original experi-
ment. Correspondingly, the number of applications in each
experiment is 5 times compared with the original experiment.
Intuitively, smaller application memory requirement would
signi cantly improve the permeance of placement algorithms:
smaller size is always bene cial to consolidation algorithms.

As shown in the bottom row of Figure 8, the Gini index
of both algorithms are signi cantly lower than the original
results. Overall, our algorithm is still better than Tang work.

V. CONCLUSION

We have presented a novel framework and a practical
algorithm for application placement motivated by the desire
to minimize worst case server utilization and improve load
balancing. Our algorithm dynamically allocates resources to

clustered web applications and balances load across servers
simultaneously. We have conducted extensive experiments
and demonstrated that: 1) with the proposed framework,
applications are evenly allocated among servers, throughput
is high, and system cost maintains at low level; 2) our new
algorithm is able to make application placement decisions in
polynomial time. Overall, compared with previous algorithms,
our framework achieves better load balancing, and controls
system cost.

Several opportunities exist for potential future work. These
include evaluating our algorithms on larger clusters to further
test their scalability and adding a fail-over mechanism to
ensure that the load balancer is not a single point of failure.
The most interesting topics include: there are priorities of
different applications, and some application demands should
be fully ful lled; dependency among applications can be more
complex, such as more than two applications can be mutually
dependent etc; some applications can only be allocated to
certain types of servers with speci c hardware.

ACKNOWLEDGEMENT

This work was supported in part through National Natural
Science Foundation of China (No.60803115, No.60873127,
No.61073147), National Natural Science Foundation of China
- Microsoft Research Asia (No.60933012). This work was
also supported by the Youth Chenguang Project of Wuhan
City (No.201050231080), the CHUTIAN Scholar Project of
Hubei Province, and the Scienti c Research Foundation for
the Returned Overseas Chinese Scholars, State Education
Ministry, and by Program for New Century Excellent Talents
in University, State Education Ministry.

114 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 8, NO. 2, JUNE 2011

Fig. 8. Maximal machine utilization p value, Gini index, and placement changes with con guration (Lmem=0.6,Lcpu=x, under reset − all − apps.

REFERENCES

[1] D. Li, J. Wu, Y. Cui, and J. Liu, “QoS-aware streaming in overlay
multicast considering the sel shness in construction action," in Proc.
IEEE INFOCOM, 2007.

[2] G. Tan and S. Jarvis, “Improving the fault resilience of overlay multicast
for media streaming," IEEE Trans. Parallel Distributed Syst., vol. 18,
no. 6, pp. 721-734, 2007.

[3] A. T. S. Chan, J. Cao, and C. K. Chan, “Webgop: collaborative web
services based on graph-oriented programming," IEEE Trans. Syst.,
Man, Cybernetics, Part A, vol. 35, no. 6, pp. 1874-1885, 2005.

[4] J. Liu, J. Xu, and X. Chu, “Fine-grained scalable video caching for
heterogeneous clients," IEEE Trans. Multimedia, vol. 8, no. 5, pp. 1011-
1020, 2006.

[5] K. Shen, H. Tang, T. Yang, and C. L, “Integrated resource management
for cluster-based Internet services," in Proc. OSDI, 2002.

[6] C. Tang, M. Steinder, M. Spreitzer, and G. Pacici, “A scalable ap-
plication placement controller for enterprise data centers," in Proc.
International World Wide Web Conf. (WWW), 2007.

[7] H. Shachnai and T. Tamir, “On two class-constrained versions of the
multiple knapsack problem," Algorithmica, vol. 29, no. 3, pp. 442-467,
2001.

[8] ——, “Polynomial time approximation schemes for class-constrained
packing problems," J. Scheduling, vol. 4, no. 6, pp. 313-338, 2001.

[9] S. Zhou, “A trace-driven simulation study of dynamic load balancing,"
Univ. California, Berkeley, Tech. Rep. UCB/CSD87/305, 1986.

[10] A. Karve, T. Kimbrel, G. Pacici, M. Spreitzer, M. Steinder, M. Sviri-
denko, and A. Tantawi, “Dynamic application placement for clustered
web applications," in Proc. International World Wide Web Conf. (WWW),
2006.

[11] T. Kimbrel, M. Steinder, M. Sviridenko, and A. N. Tantawi, “Dynamic
application placement under service and memory constraints," in Proc.
International Workshop Ecient Experimental Algorithms, 2005.

[12] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Krish-
nakumar, D. Pazel, J. Pershing, and B. Rochwerger, “Ocano-SLA based

management of a computing utility," in Proc. IEEE/IFIP International
Symp. Integrated Netw. Managementt, 2001.

[13] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbooking and
application pro ling in shared hosting platforms," in Proc. OSDI, 2002.

[14] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer,
2004.

[15] A. Turgeon, Q. Snell, and M. Clement, “Application placement using
performance surfaces," in Proc. International Symp. High Performance
Distributed Comput. (HPDC), 2000.

[16] J. L. Wolf, P. S. Yu, and H. Shachnai, “Disk load balancing for video
on-demand systems," ACM Multimedia Syst., vol. 5, no. 6, pp. 358-370,
1997.

[17] D. N. Serpanos, L. Georgiadis, and T. Bouloutas, “MMPacking: a load
and storage balancing algorithm for distributed multimedia servers,"
IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 1, pp. 25-30,
1998.

[18] X. Tang and J. Xu, “QoS-aware replica placement for content distribu-
tion," IEEE Trans. Parallel Distributed Syst., vol. 16, p. 2005, 2005.

[19] H. Wang, P. Liu, and J. jan Wu, “A QoS-aware heuristic algorithm
for replica placement," in Proc. IEEE/ACM International Conf. Grid
Comput., 2006.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd edition. MIT Press and McGraw-Hill, 1990.

[21] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[22] “Gini index," Available: http://en.wikipedia.org/wiki/Gini_coef cient.

TIAN et al.: IMPROVING APPLICATION PLACEMENT FOR CLUSTER-BASED WEB APPLICATIONS 115

Chen Tian received the BS, MS and PhD degrees
from the Department of Electronics and Information
Engineering at the Huazhong University of Science
and Technology, China, in 2000, 2003, and 2008
respectively. He joined the faculty as a lecture in
the Department of Electronics and Information En-
gineering at the Huazhong University of Science and
Technology, China. His research interests include
distributed networks, wireless networks and network
architecture.

Hongbo Jiang received the B.S. and M.S. degrees
from Huazhong University of Science and Tech-
nology, China. He received his Ph.D. from Case
Western Reserve University in 2008. After that he
joined the faculty of Huazhong University of Sci-
ence and Technology as an associate professor. His
research concerns computer networking, especially
algorithms and architectures for high-performance
networks and wireless networks. He is a member of
the IEEE.

Arun Iyengar received the Ph.D. degree in com-
puter science from MIT. He does research and de-
velopment into Web performance, distributed com-
puting, and high availability at IBM¡ s̄ T.J. Watson
Research Center. Arun is Co-Editor-in-Chief of the
ACM Transactions on the Web, Founding Chair of
IFIP Working Group 6.4 on Internet Applications
Engineering, and an IBM Master Inventor. He is a
Fellow of the IEEE.

Xue Liu received the BS degree in applied mathe-
matics and the MEng degree in control theory and
applications from Tsinghua University and the PhD
degree in computer science from the University of
Illinois, Urbana-Champaign, in 2006. From 2007 to
2009, he was an Assistant Professor in the School of
Computer Science at McGill University in Montreal,
Canada. He is currently an associate professor in the
Department of Computer Science and Engineering,
University of Nebraska-Lincoln. He was brie y with
the Hewlett-Packard Laboratories and IBM T.J. Wat-

son Research Center. His research interests include real-time and embedded
computing, performance and power management of server systems, sensor
networks, fault tolerance, and control. He is the author/coauthor of more than
20 refereed publications in leading conferences and journals in these elds.
He is a member of the IEEE.

Zuodong Wu received the BS from the Huazhong
University of Science and Technology, China, in
2010. He is for now a M.S. students in the Depart-
ment of Electronics and Information Engineering at
the Huazhong University of Science and Technol-
ogy, China. His research interest is optimization of
network resources.

Jinhua Chen received the BS from the Huazhong
University of Science and Technology, China, in
2008. He is for now a M.S. students in the Depart-
ment of Electronics and Information Engineering at
the Huazhong University of Science and Technol-
ogy, China. His research interest is the optimization
of network resources.

Wenyu Liu received the PhD and MS degrees from
the Department of Electronics and Information En-
gineering at the Huazhong University of Science and
Technology, China. received the BS degree from the
Department of Computer Science and Technology
at the Tsinghua University, China, in 1986. He is
a professor of electronics and information engi-
neering at the Huazhong University of Science and
Technology, China. His research interests include
image processing, distributed networks and wireless
networks. He is a member of the IEEE.

Chonggang Wang received his Ph.D. degree from
Beijing University of Posts and Telecommunications
(BUPT). He was awarded a National Award for
Science and Technology Progress in Telecommu-
nications. He is currently with NEC Laboratories
America. His research focuses on Hybrid Optical
and Wireless Networks, Sensor Networks and Ap-
plications, Cognitive Radio Networks, Ubiquitous
and Distributed Computing, and Data Center. He
is an editor of ACM/Springer Journal of Wireless
Networks and an associate technical editor of IEEE

Communications Magazine. He is a senior member of the IEEE.

