
Towards Minimum Traffic Cost and Minimum
Response Latency: A Novel Dynamic Query

Protocol in Unstructured P2P Networks
Chen Tian1 Hongbo Jiang1 Xue Liu2 Wenyu Liu1 Yi Wang1

1Department of EIE, Huazhong University of Science and Technology, Wuhan, Hubei, China
2School of Computer Science, McGill University, Montreal, Quebec, Canada

1{tianchen,hxj,liuwy,ywang}@mail.hust.edu.cn, 2xueliu@cs.mcgill.ca

Abstract—Controlled-flooding algorithms are widely used in
unstructured networks. Expanding Ring (ER) achieves low re-
sponse delay, while its traffic cost is huge; Dynamic querying
(DQ) is known for its desirable behavior in traffic control, but it
achieves lower search cost at the price of an undesirable latency
performance; Enhanced dynamic querying (DQ+) can reduce
the search latency too, while it is hard to determine a general
optimum parameters set. In this paper, a novel algorithm named
Selective Dynamic Query (SDQ) is proposed. Unlike previous
works that awkwardly processing floating TTL values, SDQ
properly select an integer TTL value and a set of neighbors to
narrow the scope of next query. Our experiments demonstrate
that SDQ provides finer-grained control than other algorithms:
its latency is close to the well-known minimum one via ER; in
the mean time its traffic cost also close to the minimum. To our
best knowledge, this is the first work capable of achieving best
performance in terms of both response latency and traffic cost.
In addition, our experiments also demonstrate that SDQ works
well in various network topologies.

Index Terms—Distributed applications, distributed networks,
distributed systems, resource discovery, Selective Dynamic Query,
peer-to-peer networks, query algorithm

I. INTRODUCTION

There are three types of architecture for peer-to-peer net-
works: centralized, decentralized but structured, and decen-
tralized and unstructured [1]. Resource query is the process
of searching for one or multiple copies of an item in a large,
connected peer-to-peer network. Methods and performance of
resources query are greatly different in these architectures.
In decentralized and unstructured systems, neither a central
server nor any precise control over network topology/resources
placement is required. Therefore, the unstructured peer-to-
peer networks present considerable challenges to the design of
query algorithms. Gnutella [8] and Limewire [9] are examples
of such a system. To find a file, the simplest idea is blind
flooding: the request node propagates the query to the entire
network. This method is un-scalable at all as it could cause
huge traffic in large-scale networks like Gnutella. Efficient
algorithms should retrieve sufficient results with minimum
network traffic and lowest search latency.

Two main categories of enhanced query protocols are de-
veloped for unstructured networks. Controlled-flooding based
algorithms try to control the flooding process instead of simple
flooding: a preset TTL (time-to-live) value is carried in the

packet so that the scope of the search is controlled by the TTL
values. Controlled-flooding based algorithms are widely used
in unstructured networks such as wireless ad hoc networks and
sensor networks. Expanding Ring (ER) is the first protocol [3]
of this type. Several researchers [1], [2] have compared the
performance of ER [3] with other algorithms in the context
of peer-to-peer networks; the Gnutella developer community
proposed the Dynamic Query (DQ) technique to retrieve
sufficient results at a relatively lower traffic [4]; Jiang et al.
analyzed the DQ protocol and proposed an enhanced version
(DQ+) [5], [13] in unstructured peer-to-peer networks.

Another category of query protocols is random-walk based.
The query node sends out a query packet to be forwarded
in some random fashion until it finally hits the target [1]. In
general, random-walk based algorithms can reduce network
traffic and enhance the system scalability; at the same time,
they usually result in much longer search latency, and the num-
ber of retrieved results varies greatly for different underlying
network topologies [1], [2], [6]. For energy-constrained appli-
cations such as sensor networks, random-walk based protocols
are considered good choices. When adopted in unstructured
peer-to-peer networks, their response latencies are too high
compared to controlled-flooding based algorithms.

Our work also falls in the category of controlled-flooding.
While some works had been done to search single node/objects
[3], [14], [15], here we focus on multiple-copy-search al-
gorithms, which are universal in real Internet peer-to-peer
applications. In this paper, we propose a novel algorithm
that could minimize the cost of search and maximize user
perceivable quality of service. This paper makes the following
contributions:
• We find the unsatisfactory design of previous dynamic

query algorithms by extensive analysis and experiments.
Specially, we find the latency using DQ+ [5] is still too
high, and the usage of TTL floating value is not practical
and efficient. On the other hand, we find that the neighbor
heterogeneity can be exploited.

• We present a novel algorithm named Selective Dynamic
Query (SDQ) which is capable of achieving almost the
same performance as DQ+ in terms of traffic cost, as
well as achieving almost the same performance as ER in
terms of response latency. We argue that our SDQ is the

37th International Conference on Parallel Processing

0190-3918/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPP.2008.78

1

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 4, 2008 at 20:53 from IEEE Xplore. Restrictions apply.

best controlled-flooding algorithm for unstructured peer-
to-peer networks. Further, unlike DQ+, there is no need
for SDQ to modify query message format due to the use
of integer TTL values.

• We evaluate searching algorithms using two more topolo-
gies besides Gnutella. We show that our SDQ also works
well in topologies other than Gnutella. SDQ adapts better
than DQ+ to Flat and Power Law topologies since it
results in better standard deviations of up to 75 percent.

• We show SDQ can work well when the replica is not
uniformly distributed. For a skewed replica distribution,
SDQ achieves almost the same performance as for a
uniform distribution.

The remainder of this paper is organized as follows. We
present the works of dynamic querying algorithms and discuss
their ambiguities in Section II. Section III introduces the
intuition behind SDQ algorithm. Section IV gives details of
SDQ design. The simulation results and analysis are presented
in Section V. Finally, we summarize our results and draw our
conclusions in Section VI.

II. DYNAMIC QUERYING ALGORITHMS

A. Backgrounds

We first clarify some definitions. TTL value of a query
packet indicates the hops of the farthest reached nodes from
the query node. To be convenient, we also use nTTL value,
which is TTL minus 1, to denote the hops of the farthest
reached nodes from the query node’s direct neighbor. Besides,
we assume the query node could only get its direct neighbors’
degree information (number of direct neighbors), which is
likely to be the case in practice.

Assume a neighbor has degree d which can be known,
and the average degree of the network is D which can be
estimated. As the degree of intermediate nodes are unknown,
we adopt the average number of neighbors per node D = 24 of
Gnutella characterization from [7] as their estimation. Horizon
refers to expected number of queried peers. If nTTL is given,
the horizon within nTTL hops from this neighbor H can be
estimated by

H = (d− 1)
nTTL−1∑

i=0

(D − 1)i. (1)

On the other hand, if H is specified, then nTTL values
required to reach H via this neighbor can be calculated:

nTTL ≈ log(D−1)

H(D − 2)
d− 1

. (2)

The number of already visited nodes Hes can be estimated by
(1). Let Rc be the results already collected, then the estimation
of search item popularity Pes can be given by

Pes = Rc/Hes. (3)

Expanding Ring (ER) algorithm is the forerunner of con-
trolled flooding query. ER uses successive floods with increas-
ing TTL values: a peer starts a flood with a small TTL

value (usually equals 2), and waits to see if the search is
successful to retrieve sufficient results; if it is, the process
stops; otherwise, the node increases the TTL by 1 and starts
another flooding phase. This iterative process repeats until the
required number of results is returned. ER algorithm often
incurs huge overshooting and returns much more results than
necessary [1]. A good search algorithm should be able to
retrieve just sufficient (small or no overshooting) results for
a query with a given certain required number hence results in
low network traffic cost.

B. Dynamic Querying

Dynamic Querying (DQ) [4] is proposed by the Gnutella
developer community. Based on the estimated popularity of
the searched item, DQ dynamically adjust the scope of search
by setting TTL value for next query. DQ works as follows.

(1) Probe phase: the query node floods a query towards
a few neighbors with a small TTL value to estimate the
popularity of the searched items. The search process stops
if enough results are retrieved, otherwise it enters iterative
flooding phase.

(2) Iterative flooding phase: an iterative process takes place
to retrieve sufficient results. In each iterative step, the query
node first computes Hes , then gets Hne (the required number
of peers should be contacted in next query) by average Hes

with remaining connections. Let Rl and Cl denote the numbers
of un-retrieved number of results and remaining connections
respectively, then Hne for next query could be calculated as

Hne =
Rl/Pes

Cl
=

Rl ∗Hes/Rc

Cl
. (4)

Then DQ chooses another neighbor, calculates the nTTL
value for a query flooding to that neighbor by (2) and
propagates a query with that TTL value to the neighbor
peer. This iterative process stops when the desired number of
results is returned, or all neighbor peers have been visited.
Intuitively, this flooding algorithm is dynamic because the
query node dynamically estimates the item’s popularity to
adjust a TTL value in each iterative flooding. Sufficient results
can be retrieved at lower network traffic overhead than a blind
flooding algorithm [4].

The problem is: the obtained TTL values are always
floating numbers, not integer values consistent with TTL
definition. A direct approach is to round this floating number
into an integer as DQ works. DQ Specification in [4] proposes
to round a floating value towards lower TTL.

C. Enhanced Dynamic Querying

Original dynamic querying algorithm reduces traffic cost
at the price of undesirable latency performance. Nevertheless,
latency performance is critical to user perceived quality of ser-
vice in Internet applications. DQ algorithm is too conservative
in propagating query packets to the network: when there are
many remaining neighbors, a query packet is propagated to
only a small fraction of the required number of peers. This
method is doomed to have a high latency [5].

2

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 4, 2008 at 20:53 from IEEE Xplore. Restrictions apply.

If in each iterative step the TTL is set to be a larger value
and the query packet is propagated to a bigger number of
peers, intuitively in just a few iterations, there will be enough
returned results [5]. This is the intuition behind DQ+. The
main difference between DQ and DQ+ lies in the iterative
process. DQ+ iterative process is (1) greedy - in each iterative
process, the query node propagates a query packet to a new
neighbor hoping to find all the required number of results via
this neighbor alone; and also (2) conservative - at the same
time to avoid overshooting, the query node uses a Pearson’s
confidence interval method to provide a safety margin on the
estimated popularity of the searched item. Given the required
number of query-results Rc and confidential parameter δ ≥ 0,
conservative estimation Res of the true mean expected number
of returned results is obtained by

Res = Rc + δ/2 + δ
√

Rc + δ2/4, (5)

Res is the upper limit of Pearson’s confidence interval. This
result reveals: if there is Rc ≥ 0 returned results, then the
expected number of returned results is less than Res with a
probability determined by the parameter δ. For example, when
δ = 1, the confidence level is about 68% , and if δ = 3, the
confidence level is about 99.7%. Hne is calculated by

Hne = Rl ∗Hes/Res. (6)

To handle the obtained floating TTL values, DQ+ uses two
different approaches: integer and floating. DQ(i)+, the integer
version of DQ+, has the same problem as that in DQ, the
TTL value is rounded up or down to an integer by a boundary
value. The ratio between picking the ceiling and picking the
floor is 0.3:0.7 in [5], simply given without any support. DQ+
algorithm also chooses δ = 3 to provide a high confidence
level.

In DQ(f)+, the floating version of DQ+, floating TTL value
is supported by modify peers’ forwarding algorithm. At the
last hop, a relay peer only propagates query packets to a
subset of its neighbors by utilizing the decimal fraction of the
TTL value. Let frac denotes the fraction part of TTL, the
forwarding probability should be equal to (dfrac−1)/(d−1).

D. Unsatisfactory design of dynamic query family

Dynamic query family makes a great progress in the re-
search of query protocols in unstructured peer-to-peer net-
works. But its design, which is focused on float TTL values
calculation and processing, is unsatisfactory.

As mentioned above, there are two approaches to handle
floating TTL value. Let’s discuss the simple rounding ap-
proach first. Both DQ and DQ(i)+ adjust the next TTL value
by rounding the floating values. The difference between one
integer TTL and the next is so great in terms of the number
of peers reached that this TTL rounding calculation should be
carefully dealt with. DQ Specification in [4] proposes to round
a floating value towards lower TTL. A set of simulations,
which will be presented in Section V, suggest that this rule is
inefficient because of the one by one neighbor query nature
of DQ: be more aggressive from the very beginning could

make the popularity estimation converge faster hence reduce
variance in later queries. In DQ(i)+, the TTL value is rounded
up or down to an integer by a boundary value. The ratio
between picking the ceiling and picking the floor is 0.3:0.7
in [5], which means the boundary to ceiling is 0.3 and only
values with decimal fraction bigger than 0.7 could be ceiling.
It is found that an optimized boundary may relate to the item
popularity, suggest that this ratio is somehow an experimental
optimization more than a result of theoretical analysis.

Adjust the next query scope of search by rounding TTL
floating value has two serious problems. First, it is difficult
to determine a general round boundary. This boundary is
neither a result of theoretical analysis nor an experience
value, but more a conservative suggestion as in [4] or an
experimental optimization as in [5]. A boundary value can’t be
optimized before we know the popularity-which is supposed
to be estimated during the query process itself. Second, a fixed
boundary is not optimized for individual query. For example,
if we pick the ceiling and flooring as 0.3:0.7 [5], then two
floating nTTL values 2.695 and 2.705 would be rounded
to 2 and 3 respectively. In Gnutella the former would reach
only hundreds of peers and the latter would reach thousands,
nearly tens of times than the former. While in DQ+ popularity
calculations, their real horizon H2 times H1 should be equal
to

(D − 1)nTTL2−nTTL1 = (D − 1)0.01 ≈ 1.032. (7)

This situation is obviously unreasonable, inappropriate, and
risky of overshooting or latency variance.

The second approach of handling floating TTL values
requires complicated implementation and deployment issues:
the vast amount of existing peers should be modified to support
this approach; otherwise its advantage for the request node is
not obvious. In a real Internet world, an important issue related
to deployment is the incentives for users to adopt the new
enhanced protocol. We argue that incentives for adopting the
floating version of dynamic querying algorithm are unclear,
especially at the startup deployment stage. Those nodes first
adopting the protocol do not benefit from the adoption of this
algorithm. If such a node initiates a query, support of the last
hop peers is not guaranteed, which results in longer latency
and bias estimation of popularity. In one word, a node maybe
make modification and relay a floating TTL value packet to
represent someone else’s benefits instead of its own. Therefore,
realistic users in the current networks may lack the incentives
to support floating versions of dynamic query algorithms.

III. INTUITION OF OUR ALGORITHM

Before delving into the details, we present observations
first. In previous dynamic query algorithms DQ/DQ+ [5],
when there are many remaining neighbors, in each iterative
process only one query packet is propagated to only one
neighbor trying to retrieve all the remaining results. Assume in
a Gnutella scenario (average degree is 24) there is one iteration
of DQ+ with next neighbor degree 11, the expected horizon
for next query Hne is estimated to be 8324. In this case,

3

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 4, 2008 at 20:53 from IEEE Xplore. Restrictions apply.

Fig. 1. Node degree distribution in (a) Flat topology (b) Power Laws topology and (c) Gnutella

nTTL = 3.10 should be used. Also assume there are other
26 neighbors left with diverse degrees, and 10 of them have
total degrees sum up to 549. This implies that this query may
be completed by this group of neighbors together by a group
of nTTL = 2 packets. It is clear that the optimal utilization
of neighbor heterogeneity is not achieved yet.

Furthermore, the results already involving Rc is extremely
varying in the startup phase when the number of contacted
peers is not large enough. If the estimation of search item pop-
ularity Res is not properly deduced, the risk of overshooting
exists. That is why DQ+ needs a very conservative estimation
of the popularity of the searched item. Such a conservative
estimation of popularity has little chance to complete the
query in the first one or two iterations, hence it is difficult to
further reduce response latency. Here the questions are: why
do we have to undertake the high risk of TTL choice in a
TTL rounding scenario? Why do we have upgrade millions
of reluctant users to support floating TTL value?

To explore the degree heterogeneity of all remaining neigh-
bors, the main idea behind Selective Dynamic Query (SDQ) is:
rather than adjusting the scope of search based on processing
the floating TTL value, SDQ dynamically selects a proper
integer TTL value and the corresponding next query neighbors
group based on the estimated popularity.

We emphasize that SDQ is (1) well-planned - it always
tries to finish a query in a small TTL value, so it can limit
the range of flooding hence the chance of overshooting, as
well as reduce latency in each round; (2) greedy - in each
iteration, the source peer propagates query packets to a set of
neighbors by a selected TTL, to find the required number of
results via these neighbors at one time, and (3) safe - after
fixing on a low integer TTL value, SDQ focuses on neighbor
selection. Take TTL = 3/nTTL = 2 situation as an example,
one more neighbor would incur no more than hundreds of
transmitted packets and a few overshooting results, while in
DQ+ an aggressive TTL value selection may bother thousands
of peers.

If in each iterative step the TTL value is selected wisely
and the query packet is propagated to the right number of

neighbors, then it is expected that within only one or two
iterations, there will be enough returned results and the cost
and latency could be minimized. This is the intuition behind
our approach: the source peer always tries to explore the
degree heterogeneity of the whole remaining neighbors group.
Authors of [12] also try to improve performance of random
walk based protocols by exploiting neighbor heterogeneity.
However, its design purpose, applicable areas and details are
completely different from ours.

As mentioned above, DQ(f)+ also avoid TTL value round-
ing, while users are unlikely to have incentives to upgrade.
SDQ algorithm does not require any upgrade in other peers
except the query node itself, hence a flag day for transition is
not necessary. SDQ benefits users immediately, and those who
adopt the SDQ earlier benefit earlier. In one word, its design
satisfied both altruism and self-interest.

IV. ALGORITHM DESIGN

A. Overview

Like DQ/DQ+, SDQ algorithm comprises two search
phases: a probe phase and an iterative flooding phase.

(1) Probe phase: This phase is identical with DQ+ in [5].
(2) Iterative Flooding phase: Based on the estimated hori-

zon of next query and the total remained degrees of unused
neighbors, SDQ selects a proper integer nTTL value and
the number of required degree for next query; after that,
a proper set of neighbors is picked out by the number of
required degree; query packets with this nTTL value are then
propagated via these neighbors. The iteration process stops if
the desired number of results are returned; otherwise a new
estimated horizon is obtained and iterated to select another
nTTL value and another set of neighbors for next query.
This process continues until the desired number of results are
obtained or all neighbors are used. Hereby are the pseudo
codes of iterative phase algorithm.
1: Rl ← results need − results received {results number remains to

be retrieved }
2: Hes ← horizon esimated {estimated number of touched nodes}
3: Dl ← degree remain { total degrees of available neighbors}
4: Hne ← Estimation(Rl, Hes) {estimation of next horizon }

4

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 4, 2008 at 20:53 from IEEE Xplore. Restrictions apply.

5: Dne, nTTL ← NextQueryTTL(Hne, Dl) { calculate proper nTTL
and required degree for next query}

6: SelectQuerySet(Dne, nTTL) {select a proper set of neighbors}

B. Select next TTL

In the previous algorithm, the number of all the remaining
neighbors’ degrees Dl is critical here. Consistent with [5], we
deduce equation (8) to calculate nTTL values and how many
neighbors d should be covered in next given horizon.

d ≈ H(D − 2)
(D − 1)nTTL

+ 1. (8)

Starting from a low nTTL value (in general 1 or 2), we
iteratively calculate the required number of selected neighbors’
set Dne. If Dne is less than current total remaining degrees,
this nTTL value can be selected as the next query nTTL
candidate. For example, if Dl = 389 and Dne = 380 under
nTTL = 2 condition, then next query would select almost
all remaining neighbors into query set. If this iteration can
not complete the query, there is a high risk of query failure
because almost all neighbors are used. We provide a safety
margin by limiting used degrees in one round to be no more
than two third of all remain degrees. Hereby are the pseudo
codes of next TTL calculation.
1: Dl ← degree remain {total degrees of available neighbors}
2: Hne ← Estimation(Rl, Hes) {estimation of next horizon}
3: for nTTL = 1 to MAX TTL ALLOWED do
4: Dne ← nTTL∗(AV ER DEGR−2)

pow(AV ERE DEGR−1,nTTL)
+ 1

5: if Dne ≥ 2
3
Dl then

6: continue
7: else
8: return Dne, nTTL
9: end if

10: end for

C. Calculating next query sets

Selecting optimum subset from the neighbor set to match
Dne can be solved by mathematical programming. Even with
a smaller confidence level than DQ+, popularity and horizon
estimations are still conservative in SDQ. Here in neighbors’
selection we could deliberately introduce a little overhead to
seek balance. Let n denote neighbor group index, and A =
{ai, 1 ≤ i ≤ n} to be the group of neighbors’ degree. We
need to solve the following integer programming.

Get : xi = 0||1, 1 ≤ i ≤ n

Target : min(
∑n

i=1 aixi)
Constraint:

∑n
i=1 aixi ≥ Dne

, (9)

By using iterative Knapsack programming, we can solve
the above integer programming problem although it is com-
putationally heavy. We could also choose a simple calculation
to approximate it: before each iteration, all remain neighbors
with their degree numbers are randomly organized to a list; if
Dne is larger than zero, we select the list head and subtract its
degree from Dne; the loop continues until Dne value is smaller
than zero; at last the total degrees of all selected neighbors
should be a little more than required. As simulation results
of two calculations are similar, we use the simple one as our
standard implementation.

V. EVALUATION

A. Evaluation methodology

We have implemented all algorithms in an event-driven
simulator. We have followed the protocol specifications [1],
[3]–[5]. Except for expanding ring, a node with degree at least
15 is picked to manage a search process. There is no restriction
on the degree of peers which forward queries. We use the
approach described in [4], [5] to estimate theoretical horizon
and the average popularity of the searched item. The timeout
interval is set to TTL times 2.4 seconds as recommended.

We test the performance in three different topologies: (1)
in Flat topology model designed by Waxman [11], where the
nodes are randomly placed on an Euclidean plane; (2) the
Power Laws topology generated using [10]; (3) a snapshot of
the Gnutella network topology on Feb 2, 2005 [7]. For each
topology, the mean node degree is 24 and Figure 1 shows the
node degree distributions. 8 different objects are located in
160K peers. Each object with replication ratio p is distributed
randomly. A common probe phase suggested by [4] is used:
the query is propagated down three neighbors in the neighbor
list with nTTL = 1. Replication ratio and required number
of results are specified.

The used evaluation metrics include: (1) Response latency:
the search latency is defined as the total time needed for com-
plete one query process and is the most important; (2) Number
of returned results: for a query with a required number N of
results, a good search algorithm should retrieve the number of
results close to or only a little more than N ; (3) Number of
transmitted packets: the number of query messages is defined
as the total amount of query messages generated during the
flooding process; (4) Success Ratio: a query retrieved enough
or more results than needed is considered as successful, so
success ratio indicates the stability of a algorithm.

B. DQ boundary value probe

In this subsection, we try to probe the best boundary values
for DQ, (the only strategic parameter). The calculated floating
TTL value in DQ is rounded up or down to an integer value
based on the boundary. That means if the boundary to ceiling
is 0.3, only values with decimal fraction bigger than 0.7 could
be ceiling, others should be flooring. Each search targets for
50 results, and four replication popularity scenarios - 0.005,
0.01, 0.02 and 0.03, are evaluated. In each case, 11 simulations
are performed in total: boundary values increase from 0 to 1
with an incremental step 0.1. The bigger the boundary value
is, the bigger chance of ceiling the TTL value hence bigger
number of returned results in each iteration. We expect that the
success ratio and number of return results may increase with
the increase of boundary value, and the latency may decrease
at the same time.

Fig.2 shows the results in Gnutella topology. We can see
in Fig.2(a) that despite the variety of replication ratios, all
results are close to 100% success (Success Ratio=1) when
the boundary value is bigger than 0.9. Whatever the boundary
is, DQ could control the traffic well as shown in Fig.2(b).

5

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 4, 2008 at 20:53 from IEEE Xplore. Restrictions apply.

Fig. 2. Rounding Boundary impact to DQ

The response delay decreases dramatically when the boundary
value increases. It is clear that in software implementations,
simply ceiling the TTL value is the best choice: we will have
the lowest latency while reduce traffic cost. If we conform to
the specifications in [4] to round a floating TTL towards lower
value (boundary=0.0), the results would be pretty inefficient(at
least in object popularity less than 0.03 situations which is
verified by our study). After tracing the simulation, we found
this is because the hop- by-hop queries nature of DQ: a more
aggressive start would retrieve more results without taking the
risk of overshooting; more contacted horizon also simplifies
popularity estimation and reduces variance in later iterations.

C. DQ(i)+ and DQ(f)+ parameters prob

DQ(i)+ strategy probe Next we probe the best boundary for
DQ(i)+ and again use the same settings for DQ: search for 50
results, replication value set to 4 scenarios, and eleven bound-
ary values are evaluated. Three simulations are performed for
different confidential parameters δ = 1, 2, 3 respectively. Fig.3,
4 and 5 give the results.

We can find that on average, each confidential parameter
can find a proper boundary: (0.3,0.4,0.5) for δ = 1, 2, 3
respectively. However, we observed that small δ results in big
corresponding standard deviations, which implies algorithm
instability. As stated before, a boundary could be neither a
result of theoretical analysis nor an experience value, but a
conservative suggestion or an experimental optimization.

Fig. 6. DQ(f)+: Confidential Parameter impact

DQ(f)+ confidential parameter probe Although not bothered
by boundary selection, DQ(f)+ still needs to fix its confidential
level. Again, each search targets for 50 results and replication
value set to 4 scenarios. As success ratios are always nearly 1
in DQ(f)+, other two metrics are shown in Fig.6. Replication
ratio are used as x-axis. Obviously, δ = 1 is not applicable.
When the ratio increases, the traffics cost could be huge.

TABLE I
GNUTELLA TOPOLOGY RESULTS

algo R̄ σR P̄ σP L̄ σL

ER 218 140.88 28551 24981 15.44 3.02

DQ 57.58 26.74 6374.90 3614.37 73.47 31.59

DQ(f)+1 52.89 5.78 5815.30 956.52 35.15 14.04

DQ(f)+2 51.50 6.45 5657.99 1074.07 51.11 15.95

DQ(f)+3 50.69 1.63 5571.28 786.36 63.91 15.72

DQ(i)+1 63.44 29.13 7032.84 3599.27 54.94 23.43

DQ(i)+2 54.28 11.68 5957.17 1577.93 65.02 22.18

DQ(i)+3 51.87 4.40 5668.01 902.98 73.44 24.41

SDQ+1 54.28 7.99 5961.17 1219.00 23.27 7.16

SDQ 56.16 13.11 6172.79 1785.72 19.51 5.63

TABLE II
POWER LAW TOPOLOGY RESULTS

algo R̄ σR P̄ σP L̄ σL

ER 156.58 84.57 20517.58 26205.81 14.39 0.22

DQ 64.32 47.86 7293.81 11069.89 72.26 33.45

DQ(f) 54.12 28.21 6019.59 5230.43 36.44 13.46

DQ(i) 70.77 33.08 7874.77 4182.59 60.16 27.84

SDQ 55.87 12.95 6112.67 1767.18 23.98 6.74

TABLE III
FLAT TOPOLOGY RESULTS

algo R̄ σR P̄ σP L̄ σL

ER 160.55 94.71 21873.81 21287.84 14.76 1.81

DQ 60.24 26.73 6777.20 3419.23 73.09 29.49

DQ(f) 54.50 28.43 6188.98 7579.10 36.14 14.71

DQ(i) 62.91 27.46 7142.53 3559.30 61.39 28.12

SDQ 55.71 14.21 6214.30 1962.09 25.26 8.02

TABLE IV
SKEWED REPLICA DISTRIBUTION

algo R̄ σR P̄ σP L̄ σL

ER 194.03 132.55 37268.52 57148.25 15.45 3.00

DQ 63.54 49.41 8627.66 16968.56 70.31 33.36

DQ(f) 60.65 55.30 8059.83 15511.83 36.02 15.99

DQ(i) 67.53 51.76 9257.11 17472.37 54.79 27.31

SDQ 60.48 23.47 7731.30 5343.57 24.85 8.64

D. Performance comparison
In this subsection we make comparison among expanding

ring (ER), dynamic query (DQ), enhanced dynamic query

6

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 4, 2008 at 20:53 from IEEE Xplore. Restrictions apply.

Fig. 3. Rounding Boundary impact to DQ(i)+: Confidential Parameter 1

Fig. 4. Rounding Boundary impact to DQ(i)+: Confidential Parameter 2

Fig. 5. Rounding Boundary impact to DQ(i)+: Confidential Parameter 3

DQ(i)+/DQ(f)+ and Selective Dynamic Query (SDQ) using
three aforementioned network topologies. Each search is for
50 results, and replication value set to 0.01. DQ will round
all its obtained floating TTL value to upper ceil; DQ(i)+ use
0.3 as the boundary value. Average outputs of 1000 runs are
given together with their standard deviations.

We refer R̄/P̄ /L̄ as the mean value of Results obtained,
Packets transmitted, Response Latency respectively, and σR,
σP , σL as their corresponding standard deviation. The num-
ber after algorithm name denotes confidential parameter δ
for DQ(f)+/DQ(i)+/SDQ respectively, for example, DQ(f)+3
means δ = 3 and SDQ means no conservative estimation.
Due to space limit, we only provide results with varying δ
values in Table I. To achieve fair comparison, for the rest of
the simulations we uniformly set δ = 1 for those algorithms
where this parameter is required.

Table I, Table II and Table III show the results in three
network topologies. The performance differences of the al-
gorithms are significant. In terms of transmitted packets,
expanding ring has almost 3-4 times of traffic cost compared
with others. DQ(f)+ has the minimum number of results
returned and the minimum number of transmitted packets,
which reflects its effect of fine-grain control in last forwarding

hop. With regard to latency, DQ has the most undesirable
characteristic including average value and variance. This is
the consequence of its conservative connection by connection
query nature. DQ(i)+ and DQ(f)+ fall into the same level.
We argue that SDQ is the best one here: its performance is
close to ER in terms of delay, and is close to DQ algorithms
in terms of transmitted packets. Also, SDQ exhibits a good
performance in all three network topologies. In Table II and
Table III, we found that SDQ results in much smaller number
of transmitted packet (P̄) and much smaller latency than other
DQ algorithms. Also, in Flat and Power Law topologies, SDQ
is significantly stable with a small variation compared with
other DQ algorithms. Next, we turn to investigation of the
impact of δ. Table I shows that the larger δ is, the better
traffic controlled and the larger response latency are. This
characteristics are exhibited by both DQ(f)+/DQ(i)+/SDQ.
However, latency of DQ(i) increases quickly with δ increases.
We trace the simulations and find that, when there are only
1 or 2 results still need to be retrieved, too conservative
estimation makes DQ(i) staying in nTTL = 1(TTL = 2)
state continuously, and thus obstructs finishing the search.

7

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 4, 2008 at 20:53 from IEEE Xplore. Restrictions apply.

Fig. 8. Performance comparison for replica ratio impact: (1)success ratio (2)number of results and (3)latency.

Fig. 7. Performance comparison with a variety of network sizes: (1)number
of transmitted packets and (2)latency.

E. Sensibility to network configuration

Skewed replica distribution Shown in Table IV, we turn to
study skewed replica distribution instead of uniform one with
Flat network topology which is the only case that incorporates
Euclidean proximity. 80% replica are put on the left half of
area, and the rest 20% replica on the right. Also, SDQ shows
a good performance, resulting in a small traffic cost and small
latency. Furthermore, Figure 7 shows the results in different
network scales. Again, SDQ archives good performance in
terms of both traffic cost and latency.
Sensibility to replication ratio To extensively evaluate al-
gorithm performance under different conditions, we study
ER/DQ(f)+/SDQ in a broader range. First we set the number
of returned results to 50 and evaluate algorithm performance
in different replication values. The replication values are
increased from 0.004 to 0.03 by a 0.002 step. Totally 14
scenarios are scheduled, each with 1000 runs. The average
success ratio, returned results and latency are shown in Fig-
ure 8 respectively. We omit results of transmitted packets here
because of its high relevance with return results. Success ratio
metric is added to illustrate the algorithm stability.

VI. CONCLUSION

In this paper, we propose a novel searching protocol:
Selective Dynamic Query (SDQ) in unstructured P2P net-
works. Rather than adjusting the scope of search based on the
floating TTL value processing in DQ/DQ+, SDQ dynamically
selects the next query neighbors group based on the fine-grain
estimated popularity and a proper TTL value. Our experiment
results show that compared with previous two versions of DQ+
search algorithm, the SDQ algorithm on average reduces 50%
latency with almost the same traffic cost. The latency and
the traffic of SDQ are all close to minimum, while it still

retrieves sufficient results for a query. We will further explore
SDQ for a wider range of applications, in particular, other
unstructured networks such as wireless ad hoc network and
sensor networks.

ACKNOWLEDGMENT

The project is supported by The National Natural
Science Foundation of China (No.60572063) and Chi-
nese National High-Tech Research and Development Plan
(No.2007AA01Z223). Mr. Ho Simon Wang, at Academic
Writing Center of HUST, provides tutorial help to improve
the linguistic presentation of the manuscript.

REFERENCES

[1] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. ”Search and replication
in unstructured peer-to-peer networks”. In Proceedings of International
Conference on Supercomputing, November 2002.

[2] C.Gkantsidis, M. Mihail, and A. Saberi. ”Hybrid search schemes for
unstructured peer-to-peer networks”. IEEE INFOCOM 2005.

[3] N. Chang and M. Liu. ”Revisiting the TTL-based controlled flooding
search: Optimality and randomization”. In Proceedings of ACM Mobi-
Com, September 2004.

[4] A. Fisk, ”Gnutella dynamic query protocol v0.1,” May 2003,
http://www9.limewire.com/develop-r/dynamic query.html.

[5] H. Jiang and S. Jin. ”Exploiting Dynamic Querying like Flooding
Techniques in Unstructured Peer-to-peer Networks,” in Proceedingns of
IEEE Internet Conference on Network Protocol (ICNP), October, 2005.

[6] C. Gkantsidis, M. Mihail, and A. Saberi. ”Random walks in peer-to-peer
networks”. In Proceedings of IEEE INFOCOM, March 2004.

[7] D. Stutzbach and R. Rejaie. ”Characterizing the two-tier Gnutella topol-
ogy”. In Proceedings of ACM SIGMETRICS (Poster), June 2005.

[8] Open Source Community. Gnutella. In http://gnutella.wego.com/, 2001.
[9] Limewire. http://www.limewire.com/
[10] C. Palmer and G. Steffan: ”Generating network topologies that obey

power laws”, in Proc. IEEE Globecom 2000.
[11] B. Waxman: ”Routing of multipoint connections”, IEEE Journal on

Selected Areas in Communications, vol. 6, no. 9, pp. 1617C1622,
December 1988.

[12] Q. Lv, S. Ratnasamy, and S. Shenker. ”Can heterogeneity make Gnutella
scalable”, In proceedings of first international workshop on peer-to-peer
systems (IPTPS), 2002

[13] S. Jin and H. Jiang. ”Novel Approaches to Efficient Flooding Search in
Peer-to-Peer Networks”, Computer Networks, Vol.51(10), 2007.

[14] N. Chang and M. Liu, ”Controlled flooding search with delay con-
straints”, in IEEE INFOCOM , April 2006, Barcelona, Spain

[15] N. Chang and M. Liu, ”Optimal controlled flooding search in a large
wireless network”, in Proc. 3rd International Symposium on Modeling
and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt’05),
April 2005, Trentino, Italy

8

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 4, 2008 at 20:53 from IEEE Xplore. Restrictions apply.

