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Abstract
The Louvain algorithm is one of the most popular algorithms
for community detection. Observing that existing imple-
mentations suffer from inaccurate pruning and inefficient
intermediate state management, we introduce GALA, GPU-
Accelerated Louvain Algorithm, which incorporates two key
innovations. The first innovation is a novel modularity gain-
based pruning strategy, supported by rigorous theoretical
guarantees of optimality and able to reduce up to 76% of ver-
tices as well as their corresponding computations. To take
advantage of the memory hierarchy and parallelism of GPUs,
the second innovation is workload-aware kernels, featuring
a shuffle-based kernel founded on the warp-level primitives
for exchange states and a hash-based kernel that prioritizes
shared memory in hashtable design. GALA further scales
to multiple GPUs by minimizing the synchronization over-
head between GPUs through a dense-sparse synchronization
strategy. We evaluate the performance of GALA through
theoretical analysis and practical experiments on various
real-world graphs. The experimental results confirm that
GALA significantly improves the performance of the paral-
lel Louvain algorithm on GPUs, surpassing state-of-the-art
solutions by 6× on average.

CCS Concepts: • Computing methodologies→ Parallel
algorithms; • Theory of computation→ Graph algo-
rithms analysis.
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1 Introduction
While graph analytics have fueled advances in our under-
standing of complex connected systems, community detec-
tion is often the de facto first analysis applied to any graphs
of our interest. In a nutshell, community detection is the
problem of classifying the vertices of a graph into sets such
that the vertices in each set are more closely connected to
each other than to the rest of the graph. Because community
detection could unfold the structurally coherent vertices in
an unsupervised manner, this tool is broadly used in a va-
riety of scientific and engineering applications, including
social network analysis [17, 55], bioinformatics [20, 47], and
transportation network analysis [19, 49] among many others.
We refer the readers to [7, 26] for a comprehensive study of
community detection algorithms, systems, and applications.

While the efforts in community detection have flourished
in the recent decades [23, 27, 41, 48, 54], this paper concludes
that there mainly exist three concerted cohorts of endeavors,
i.e., graph partitioning, modularity, and label propagation.
Particularly, the perspective of our categorization centers
around the metric of how each work measures the closeness
of vertices: 1) graph partitioning minimizes the number of
edge cuts between partitions; 2) modularity considers both
the edge cuts (i.e., edges outside of the community) and the
edges inside of the community (see Equation 1); 3) label
propagation takes a majority voting mechanism, that is, a
vertex belongs to the community where most of its neighbors
belong to.
Of these measures, modularity is the one that is widely

used and keeps thriving. Initially, modularity was defined
as a measure to evaluate the quality of network partitions
by comparing the density of edges within communities to a
random distribution of edges and has since become a widely
accepted metric for assessing community structure [7]. How-
ever, modularity is not a measure without limitations: 1)
modularity cannot detect smaller communities within large
networks; 2) modularity possesses stringent serial execution
requirements. Recently, the Louvain method [9] introduced
an efficient, scalable, multi-phase approach that iteratively
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Figure 1. Examples of pruning unmoved vertices.
merges communities to maximize modularity gain, which
addresses both 1) and 2). To identify small communities,
Louvain algorithms with an adjustable resolution parame-
ter have been introduced [4, 30]. There are also approaches
based on statistical inference [27, 46] and Graph Neural Net-
works (GNNs) [14, 58] that form communities informed by
prior knowledge. However, these methods often involve too
many parameters to be specified compared to Louvain and
suffer from high computational complexity. Therefore, this
paper primarily focuses on the Louvain algorithm.

The Louvain algorithm iteratively moves vertices to maxi-
mize modularity gain in the first phase and constructs a hi-
erarchical community structure in the second phase. In each
iteration of the first phase, a vertex will evaluate the modu-
larity gain of its neighboring communities by analyzing the
weight between itself and its neighboring communities and
move to the community with the highest modularity gain.
For example, the bicolor vertex enclosed by purple dashed
lines in Figure 1(a) is to move from the blue community to
the red community for higher modularity gain.

As the size of the graphs continues to grow, the sequential
implementation of the Louvain algorithm may not be effi-
cient and scalable enough [57]. This inefficiency stems from
the computational-intensive and memory-intensive work-
load, such as evaluating modularity gain for the potential of
vertex moving to a new community. To overcome these chal-
lenges, parallel solutions have been developed for multi-core
CPU [21, 24, 51] and GPUs [8, 15, 39]. Particularly, GPUs,
with their inherent capability for massive parallelism (up to
216k concurrent threads on A100), have demonstrated partic-
ularly promising results. GPUs can simultaneously process
numerous vertices, substantially accelerating the algorithm.
While parallelization provides considerable advantages, it
is crucial to curtail unnecessary computations to achieve
optimal performance gains. Furthermore, the memory hi-
erarchy of GPUs, including registers, shared memory, and
global memory, offers significant throughput advantages for
memory-intensive operations, while the Louvain algorithm
requires frequent access and maintenance of states related
to neighboring vertices. However, existing implementations
suffer from two critical issues:

Inaccurate or insufficient pruning: In large-scale graphs,
the Louvain algorithm may need a substantial number of
iterations to converge, as illustrated in Figure 1(b). With the
iteration progress, we observe that a large portion (up to
95%) of vertices remain in their current communities, namely
unmoved. This presents an opportunity to skip processing
if we can predict these unmoved vertices and mark them
as inactive before the iteration. For instance, three green
vertices enclosed by orange dashed lines in Figure 1(a) are
in the core of the community, i.e., none of their neighbors
belong to another community, and their neighbors were un-
moved in the previous iteration. Thus, these three vertices
can be marked as inactive. We observe that existing heuristic
pruning strategies based solely on movement information
are compromised by a dual shortcoming: they either result
in a suboptimal solution or insufficiently identify the un-
moved vertices. Specifically, a strict strategy [50] marks a
vertex as inactive if all neighboring communities remain
unchanged, resulting in a high rate of false positives (91.7%),
missing most of the unmoved vertices, and offering limited
performance improvement. On the other hand, a relaxed
strategy [43, 53, 54, 61] relaxes this constraint, allowing a
vertex to be marked as inactive if its neighbors remain un-
moved in the previous iteration. While this strategy reduces
false positive instances, it introduces false negative instances,
which will ignore some potential vertex movements and
yield a suboptimal result. Practical evidence also confirms
that employing the relaxed strategy results in an average
0.38% false negative rate, leading to 0.0012 modularity qual-
ity loss. Fortunately, the Bulk Synchronized Parallel (BSP)
model, utilized by parallel implementations of the Louvain
algorithm, provides richer information beyond mere vertex
movements, allowing for the development of an efficient and
effective pruning strategy.
Inefficient Intermediate State Management: The Lou-
vain algorithm requires a more complex set of states to track
the weight between a vertex and its neighboring communi-
ties. Early attempts on GPUs [15], use global memory to store
intermediate states. This leads to a substantial performance
bottleneck, impacting overall performance. Subsequent re-
search [8, 39] have employed shared memory to maintain
intermediate states for small degree vertices, yet still do not
fully exploit the memory hierarchy of GPUs. Other research
efforts [5, 6, 29, 33, 44, 45] have explored the implementa-
tion of collections, e.g., hashtable, in the GPUs. However,
some of these [5, 33] manage a global hashtable, while oth-
ers [29, 44, 45] target for intersection operation.

In this paper, we propose GALA, an abbreviation of GPU-
Accelerated Louvain Algorithm.
GALA integrates a novel modularity gain-based pruning

strategy to reduce computation cost while preserving opti-
mality (Section 3). If a vertex has already attained a suffi-
ciently high modularity gain within its current community,
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the movement in the next iteration is redundant. The addi-
tional states provided by the BSP model enable obtaining a
tighter upper bound of maximal possible modularity gain
through moving to other communities. By comparing the
upper bound with the current modularity gain, the pruning
strategy can achieve a low rate of false positives while avoid-
ing false negatives. As shown in Figure 1(b), up to 69% of
vertices are pruned as iteration progresses. Observing that
recalculating the weight between a vertex and its current
community becomes a new bottleneck, we further propose
an efficient community weight updating approach to avoid
unnecessary recalculations.

To efficiently leverage the memory hierarchy and attached
parallelism in GPUs, we develop a novel memory manage-
ment strategy for GALA (Section 4). Considering the differ-
ent characteristics of each level of memory, we propose two
GPU kernels, namely shuffle-based and hash-based, to opti-
mize the management of the critical intermediate states. The
shuffle-based kernel maintains the states among the registers
of threads within a warp and utilizes warp-level primitives
to shuffle the states. In contrast, the hash-based kernel ex-
ploits both shared memory and global memory to maintain
intermediate states, employing a hierarchical hashtable that
gives priority to accessing shared memory. Furthermore, we
distribute the graph across multiple GPUs and propose an
adaptive strategy to scale GALA .

To evaluate the performance of GALA, we conduct exten-
sive experiments on various real-world graphs (Section 5).
The empirical evidence indicates that both the computation
pruning and memory management techniques enhance its
efficiency. Compared with state of the art, GALA outper-
forms cuGraph [1] by 17×, Gunrock [42, 59] by 53×, and
Grappolo [36, 39] by 6× on average.

2 Background
2.1 Definition

Graph: Consider a weighted and undirected graph 𝐺 =

{𝑉 , 𝐸,𝑤}, where 𝑉 is the set of vertices, 𝐸 is the set of edges
and𝑤 : 𝐸 → R is the weight function that maps each edge
to a real-valued weight. In addition, we use 𝑣 and 𝑒 = (𝑣,𝑢)
to denote a vertex and an edge, respectively, and 𝑤 (𝑒) (or
𝑤 (𝑣,𝑢)) to denote the weight of an edge 𝑒 = (𝑣,𝑢). Given
a vertex set 𝑈 , we use 𝑁𝑈 (𝑣) = {𝑢 | (𝑣,𝑢) ∈ 𝐸,𝑢 ∈ 𝑈 } to
denote the neighbors of 𝑣 that belong to the vertex set 𝑈 .
Furthermore, we use |𝑋 | to denote the weight cardinality of a
set 𝑋 . Particularly, for the edge set 𝐸, |𝐸 | = ∑

𝑒∈𝐸 𝑤 (𝑒). And
𝑑𝑈 (𝑣) =

∑
𝑢∈𝑁𝑈 (𝑣) 𝑤 (𝑣,𝑢) represents the weighted degree

of 𝑣 . For simplicity, we omit 𝑈 when 𝑈 = 𝑉 , and use 𝑁 (𝑣)
(𝑑 (𝑣)) to denote the neighbors (weighted degree) of 𝑣 .
Community: A community is represented by the symbol
C, while the set of all communities is denoted by C. As the
edge weight of a community is frequently used, we further

Algorithm 1: Phase 1 of parallel Louvain algorithm
1 Function Louvain(𝐺 (𝑉 , 𝐸)):
2 repeat
3 foreach 𝑣 ∈ 𝑉 in parallel do
4 𝑛𝑒𝑥𝑡_C[𝑣] ← DecideAndMove(v)

5 Update the community set C by 𝑛𝑒𝑥𝑡_C
6 foreach 𝑣 ∈ 𝑉 in parallel do
7 Update 𝑑C[𝑣 ] (𝑣) according to updated C

8 foreach C ∈ C in parallel do
9 𝐷C (C) ←

∑
𝑣∈C 𝑑C (𝑣),𝐷𝑉 (C) ←

∑
𝑣∈C 𝑑 (𝑣)

10 Calculate 𝑛𝑒𝑥𝑡_𝑄C according to Equation 1
11 𝑛𝑒𝑥𝑡_𝑄 ← ∑

C∈C 𝑛𝑒𝑥𝑡_𝑄C
12 Δ𝑄 ← 𝑛𝑒𝑥𝑡_𝑄 −𝑄 , 𝑄 ← 𝑛𝑒𝑥𝑡_𝑄
13 until Δ𝑄 < 𝜃 ;
14 Function DecideAndMove(𝑣):
15 𝑏𝑒𝑠𝑡_C ← argmaxC∈C Δ𝑄𝑣→C
16 return 𝑏𝑒𝑠𝑡_C

define 𝐷𝑈 (C) =
∑

𝑣∈C 𝑑𝑈 (𝑣) as the weight of the edges be-
tween the vertex set 𝑈 and the community C. Specifically,
𝐷C (C) denotes the edge weight within the community and
𝐷𝑉 (C) denotes the total edge weight of this community. Ob-
viously, 2|𝐸 | = 𝐷𝑉 (𝑉 ). Moreover, we use C[𝑣] to represent
the community that the vertex 𝑣 belongs to.
Modularity [41]: The modularity 𝑄 is defined as:

𝑄 =
∑︁
C∈C

𝑄C =
∑︁
C∈C

(
𝐷C (C)
2|𝐸 | −

(
𝐷𝑉 (C)
2|𝐸 |

)2)
(1)

It is worth noting that each edge in the community is con-
sidered twice when 𝐷C (C) is calculated.

2.2 Louvain Algorithm
The Louvain algorithm is a greedy algorithm that increases
modularity by moving a vertex to the community with the
maximal modularity gain. Considering a vertex 𝑣 moving
into community C, the modularity gain can be calculated as:

Δ𝑄𝑣→C =
1
|𝐸 |

(
𝑑C (𝑣) −

𝐷𝑉 (C) · 𝑑 (𝑣)
2|𝐸 |

)
(2)

Accordingly, the main process, namely the first phase, of
the Louvain algorithm iteratively asks each vertex to call a
DecideAndMove function formulated in lines 14-16 of Algo-
rithm 1. Specifically, this function calculates the modularity
gain Δ𝑄𝑣→C for all possible movements of each vertex 𝑣 ∈ 𝑉
to each community C ∈ C and then moves a vertex 𝑣 to
the community resulting in the greatest modularity gain.
As it is impossible to move a vertex to a disconnected com-
munity, we only consider the neighboring community C
that contains at least one of its neighbors, i.e., satisfying
∃𝑢, (𝑢, 𝑣) ∈ 𝐸 ∧ 𝑢 ∈ C. Initially, each vertex constitutes an
individual community, and this procedure iterates until no
further modularity gain is yielded.

443



PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Zhibin Wang, Xi Lin, Xue Li, Pinhuan Wang, Ziheng Meng, Hang Liu, Chen Tian and Sheng Zhong

The Louvain algorithm aims to construct a hierarchical
community structure, which requires the second phase to
build a compressed graph. In the compressed graph, a super
vertex corresponds to a community in the original graph,
while the weight of the super edge is formed by aggregating
the edge weights between two different communities. Notice
that the edge weights within a community (i.e., 𝐷C (C)) are
grouped into a self-loop edge. The two phases of the Lou-
vain algorithm are repeated until modularity convergence
is achieved. Obviously, the first phase in the initial round
dominates the overall computation [15], and we focus on it.

2.3 Parallelization of Louvain Algorithm
One crucial distinction between sequential and parallel Lou-
vain algorithms lies in how they handle state updates. Se-
quential algorithms update the state instantly as each vertex
is processed, allowing for immediate adjustments. On the
contrary, a main-streaming framework of parallel Louvain
algorithm proposed by Grappolo [36] adopts a Bulk Synchro-
nous Parallel (BSP) approach [56]. It segments the computa-
tion into iterations (supersteps), where state updates occur
only at the end of each iteration. This delayed updating ap-
proach provides a consistent view of community assignment
for all concurrent computations within an iteration. To dis-
tinguish state transitions across iterations, we use the prefix
𝑝𝑟𝑒𝑣_, 𝑐𝑢𝑟𝑟_, and 𝑛𝑒𝑥𝑡_ to denote the states in the previous,
current, and next iterations, respectively. The prefix 𝑐𝑢𝑟𝑟_ is
omitted when the context is evident.

Algorithm 1 depicts the procedure of the standard parallel
Louvain algorithm [36]. During each iteration, the algorithm
concurrently processes different vertices, evaluating the po-
tential community movements (lines 3-4). Subsequently, the
community assignments and sets in 𝑛𝑒𝑥𝑡_C are synchro-
nized and updated (line 5). In addition, the weight between
a vertex 𝑣 and its updated community C[𝑣] should also be
updated (lines 6-7) based on the next iteration assignment.
Lines 8-11 further calculate the updated modularity for the
next iteration. Following Grappolo 1, we set a threshold 𝜃

to terminate the iteration (lines 12-13). In addition to Grap-
polo , Vite [24] further extends the Louvain algorithm to the
distributed environment.

2.4 Existing GPU Implementations
Considering the massive parallelism and single instruction
multiple thread (SIMT) model in GPUs, existing GPU imple-
mentations [8, 15, 22, 38, 39] further parallelize the compu-
tation within each vertex, mostly focusing on the dominant
DecideAndMove function. A group of threads (e.g., a warp
or block) will collaborate to determine the best community
for a vertex. Unlike standard graph analytics tasks such as
BFS and PageRank, DecideAndMove requires complex inter-
mediate states, e.g., the weight between a vertex and its

1We also adopt other heuristics in Grappolo to ensure the convergence.

neighboring communities 𝑑C (𝑣). The GPU implementation
of Grappolo [39] and several variants [8, 22] use a hashtable
to maintain the states but suffer from high global memory
access overhead. Efforts in [8, 39] to use shared memory for
smaller workloads fall short of a thorough optimization strat-
egy. In contrast, the Louvain implementation in the graph
algorithm library cuGraph [1] and several variants [15] rely
on complex state transformation (e.g. sorting) to identify
the best community, which introduces high complexity and
memory access overhead. In addition, [38] leverages both
CPU and GPU to execute the algorithm, and [16] proposes a
batched implementation, scaling it up to multi-GPUs.

2.5 Opportunities for Optimization
Upon examining the existing implementations, we identify
two principal opportunities:
• A notable fraction of vertices (𝑣) consistently remains
unmoved across the execution of DecideAndMove, as
evidenced by 𝑛𝑒𝑥𝑡C [𝑣] = 𝑐𝑢𝑟𝑟C [𝑣]. The BSP model
provides consistent states in an iteration, which can
be leveraged to predict and prune these computations.
• The intermediate states within DecideAndMove func-
tion require a careful memory management strategy
to achieve high performance. The memory and paral-
lelism hierarchy in multi-GPUs can be better exploited.

Accordingly, in Section 3, we explored the pruning of compu-
tations for vertices that remain unmoved. Subsequently, in
Section 4, we focus on optimizing the memory management
within the DecideAndMove function.

3 Computation Pruning
As illustrated in Figure 1, a significant proportion of ver-
tices remain unmoved in the later iterations of the Louvain
algorithm, as the community partition stabilizes. We first
establish the prediction problem of unmoved vertex and as-
sess the impact of incorrect predictions (Section 3.1). We
then review existing heuristic pruning strategies relying
solely on movement information, which either suffer from
insufficient pruning or degrade the modularity (Section 3.2).
Fortunately, the Bulk Synchronous Parallel (BSP) model, inte-
gral to the parallel Louvain algorithm, offers additional states
conducive to more effective pruning. Capitalizing on this,
we propose the modularity gain-based strategy (Section 3.3).
Furthermore, recognizing the naive implementation to calcu-
late the community weight of a vertex is as expensive as the
DecideAndMove function, we propose an updating operation
(Section 3.5).

3.1 Prediction of the Unmoved Vertices
Formally, we define:

𝑣 ∈
{
unmoved set, if 𝑐𝑢𝑟𝑟_C[𝑣] .𝑖𝑑 = 𝑛𝑒𝑥𝑡_C[𝑣] .𝑖𝑑,
moved set, otherwise,

(3)
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where C.𝑖𝑑 indicates the community id of C. Notice this
definition hinges on community id consistency, rather than
identical community sets. In certain scenarios, a community
represented as 𝑐𝑢𝑟𝑟_C1 may evolve into 𝑛𝑒𝑥𝑡_C1 by gain-
ing or losing several vertices, yet it retains a stable id of
1 throughout this transition. Thus, vertices remaining un-
moved do not necessitate further processing.
Prediction Problem: Exact identifying unmoved vertices is
infeasible as it is as expensive as the DecideAndMove func-
tion. Thus, we aim to predict unmoved vertices before the
iteration begins. The active set includes vertices that are pre-
dicted to be moved and will be processed in the next iteration,
and vice versa for the inactive set. With the prediction re-
sult, we integrate the filter operation in popular GPU graph
processing framework [34, 59] to prune inactive vertices.
There are two types of mispredictions: 1) false positive

(FP) instance indicating a vertex remaining unmoved is in-
correctly classified into the active set and 2) false negative
(FN) instance indicating a vertex being moved is incorrectly
classified into the inactive set. According to the definition,
we have the following theorems:
Lemma 1. The presence of false negative instances may miss
opportunities for modularity gain resulting in modularity loss.

Lemma 2. The presence of false positive instances will not de-
crease the modularity but introduce unnecessary computation
of mispredicted unmoved vertices.

3.2 Existing Strategies and Their Weakness
Next, we review two existing heuristic strategies based solely
on historical movement information from previous iterations.
These strategies, however, come with inherent trade-offs.
One strict strategy tends to generate a high number of false
positive instances, which compromise pruning efficiency,
while the other relaxed strategy incurs false negative in-
stances, potentially leading to suboptimal community struc-
tures.
Strict Movement-based Strategy (SM) [50]: This strategy
places a vertex 𝑣 in the inactive set only if all neighboring
communities containing the vertex itself and its neighbors
remain unchanged. Notice, this strategy requires the entire
set of the community to remain constant. Obviously,
Lemma 3. The strict movement-based strategy can eliminate
all false negative instances and guarantee modularity.

However, this restriction is overly stringent as in most
iterations, numerous communities are likely to be updated.
As a result, this strategy leads to a significant number of
false positives and suffers from insufficient computational
pruning.
Relaxed Movement-based Strategy (RM) [50, 54]: Unlike
the strict strategy which requires the unchanged commu-
nity set, the Leiden algorithm [54] and its parallel adapta-
tion [50] relax this condition to the unchanged community id.

Specifically, the algorithm only activates the vertices whose
neighbors have experienced community changes. Hence, it
achieves a larger inactive set, thereby reducing computation
effectively. However, the trade-off for this efficiency gain is
the decreasing of modularity [50].

Lemma 4. The relaxed movement-based strategy can intro-
duce false negative instances and decrease the modularity.

Proof. Revisiting the modularity gain defined in Equation 2,
we observe the total weights of a community, 𝐷𝑉 (C), may
have changed for an inactive vertex in relaxed strategy. Ac-
cordingly, we can construct the counterexample. Imagine
two symmetrical communities C1 and C2 around a vertex 𝑣
from the previous iteration, with 𝑣 remaining in C1. If an-
other unrelated vertex (not neighbor of 𝑣) departs from C2,
reducing 𝐷𝑉 (C2), 𝑣 should move to C2 in the current itera-
tion to increase the modularity, illustrating a false negative
instance. □

Similarly, Vite [24] introduces a probabilistic movement-
based pruning strategy (PM) relying on the movement of
the vertex itself, again, suffers from false negative instances.
PM adjusts the probability 𝛼 of a vertex being pruned by
checking whether the community id of the vertex remain
consistent across two consecutive iterations. With a proba-
bility of 𝛼 , the vertex is classified into the inactive set. In the
experiments of our paper, the parameter 𝛼 is set to 0.25 by
default.

3.3 Modularity Gain-based Pruning Strategy
The existing heuristic strategies are limited by their reliance
on solely historical movement information, while we ob-
serve:

The synchronization nature of the BSP model ensures
more consistent states within an iteration.
Accordingly, we propose a novelmodularity gain-based

strategy (MG), grounded in solid theoretical principles and
enhanced by incorporating additional states, such as the
community weight between a vertex and its community.
Rather than construct a strategy by intuition, we start with
the definition of modularity gain (refer to Equation 2).

Lemma 5. A vertex 𝑣 will be in the unmoved set (refer to
Equation 3), if, for every neighbor 𝑢 of 𝑣 , moving 𝑣 to the com-
munity C[𝑢] yields no more modularity gain than remaining
in its current community C[𝑣], i.e., satisfying the following
inequality:

∀𝑢 ∈ 𝑁 (𝑣),Δ𝑄𝑣→C[𝑣 ] ≥ Δ𝑄𝑣→C[𝑢 ] . (4)

In addition, this condition can be expanded by substituting
Equation 2 as follows:

𝑑C[𝑣 ] (𝑣) − 𝑑C[𝑢 ] (𝑣) + (𝐷𝑉 (C[𝑢]) − 𝐷𝑉 (C[𝑣]))
𝑑 (𝑣)
2|𝐸 | ≥ 0.

(5)
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Figure 2. Three pruning strategies in two scenarios.
After reviewing the information required in Equation 5,

we observe that the variables C[𝑣], 𝑑C[𝑣 ] (𝑣), and 𝐷𝑉 (C[𝑣])
are all directly related to vertex 𝑣 , which is already available
before the iteration. However, the variables 𝑑C[𝑢 ] (𝑣) and
𝐷𝑉 (C[𝑢]) involve community states of neighbor𝑢, and their
exact values are unknown unless we scan all the neighbors,
which is exactly what the DecideAndMove function does.
Instead, we try to identify as many unmoved vertices as
possible by tightening the constraint with an upper bound
on the community states required by neighbor 𝑢 (details
refer to the proof of Lemma 5), and obtain the following
loose constraint:

2𝑑C[𝑣 ] (𝑣) − 𝑑 (𝑣) + (min
C∈C
(𝐷𝑉 (C)) − 𝐷𝑉 (C[𝑣]))

𝑑 (𝑣)
2|𝐸 | ≥ 0.

(6)

This leads to our modularity gain-based strategy:

𝑣 ∈
{
inactive set, if Equation 6 holds,
active set, otherwise.

(7)

Theorem 6. The modularity gain-based strategy can elimi-
nate all false negative instances and guarantee modularity.

Proof. We first prove that by ensuring Equation 6 is satis-
fied, Equation 5 will also hold. It is clear that 𝑑C[𝑢 ] (𝑣) ≤
𝑑 (𝑣) − 𝑑C[𝑣 ] (𝑣). The left-hand side achieves its maximum
when all remaining neighbors not in the current community
C[𝑣] belong to the community C[𝑢]. Furthermore, total edge
weight of a community C[𝑢], denoted as 𝐷𝑉 (C[𝑢]), satis-
fies the inequality 𝐷𝑉 (C[𝑢]) ≥ min

C∈C
(𝐷𝑉 (C)). Therefore, we

have:

𝑑C[𝑣 ] (𝑣) − 𝑑C[𝑢 ] (𝑣) + (𝐷𝑉 (C[𝑢]) − 𝐷𝑉 (C[𝑣]))
𝑑 (𝑣)
2|𝐸 |

≥2𝑑C[𝑣 ] (𝑣) − 𝑑 (𝑣) + (min
C∈C
(𝐷𝑉 (C)) − 𝐷𝑉 (C[𝑣]))

𝑑 (𝑣)
2|𝐸 |

According to Lemma 5, a vertex in the inactive set will not
be moved in the next iteration. Therefore, the modularity
gain-based strategy can eliminate all false negative instances
and guarantee modularity. □

As outlined in lines 6-10 of Algorithm 1, all the required
data or computing modularity in Equation 6 is readily avail-
able, enabling efficient classification.

Graph FNR FPR
SM RM PM MG SM RM PM MG

FR 0.00% 0.60% 6.20% 0.00% 96.80% 12.69% 12.92% 22.38%
LJ 0.00% 0.71% 2.91% 0.00% 86.59% 21.35% 25.55% 31.47%
OR 0.00% 0.61% 17.59% 0.00% 99.75% 44.59% 39.16% 35.32%
TW 0.00% 0.10% 0.06% 0.00% 98.63% 84.48% 87.64% 60.27%
UK 0.00% 0.37% 0.01% 0.00% 75.12% 56.14% 99.99% 26.14%
EW 0.00% 0.08% 1.41% 0.00% 99.95% 45.37% 41.06% 32.15%
HW 0.00% 0.15% 16.26% 0.00% 85.26% 12.83% 24.98% 17.93%
Avg. 0.00% 0.37% 6.35% 0.00% 91.73% 39.64% 47.33% 32.24%

Table 1. FNR and FPR of three strategies. The abbreviations
in column “Graph" are explained in Table 2. The best results
are highlighted in yellow.

3.4 Comparison of Pruning Strategies
Example 1. Figure 2 demonstrates pruning strategies in
two scenarios. In the first scenario, the neighbors of vertex 𝑣
remain unmoved, where the RM strategy will misclassify 𝑣
as inactive. However, the sizes of neighboring communities
are evolving, resulting in movement opportunities for 𝑣 . In
the second scenario, one neighbor of 𝑣 belonging to a differ-
ent community is moved. Obviously, staying in the current
community is the optimal choice for 𝑣 , while the SM and RM
strategies will misclassify 𝑣 as active.

Empirical Comparison: Table 1 further illustrates the av-
erage FNR (false negative rate indicating the proportion of
misclassified vertices that will be moved) and FPR (false pos-
itive rate indicating the proportion of misclassified vertices
that will remain unmoved) of different strategies over all
iterations. We observe that the SM strategy achieves perfect
0.00% FNR, but at the cost of a high 91.73% FPR. In con-
trast, the RM and PM strategies achieves a lower 39.64% and
47.33% FPR, but at the cost of a non-zero FNR of 0.37% and
6.35%, respectively. In contrast, the MG avoids false neg-
ative instances and achieves a lower 32.24% FPR. We also
notice that all strategies perform poorly on the Twitter (TW)
graph which lacks a well-defined community structure and
is also reflected in its low modularity (Table 3). The blurred
boundaries of the communities make it challenging to pre-
dict unmoved vertices, since a vertex in the TW graph may
have several potential communities to which it could belong.

3.5 Efficient Community Weight Updating
A naive implementation of calculating community weight
𝑑C[𝑣 ] (𝑣) (lines 6-7 of Algorithm 1), which scans all neighbors
of vertex 𝑣 , results in the same computational complexity as
the DecideAndMove function. Therefore, in this subsection,
we introduce an efficient strategy by updating the states in
the previous iteration instead of recomputing the community
weight from scratch.

As discussed earlier, a significant portion of vertices re-
main unmoved in the later iterations of the Louvain algo-
rithm, and we can take advantage of their previous commu-
nity weight 𝑝𝑟𝑒𝑣_𝑑C[𝑣 ] (𝑣) and update it through tracking
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Algorithm 2: Shuffle-based kernel
1 Function DecideAndMove(𝑣 ,𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑):
2 𝑢 ← 𝑁 (𝑣) [𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑] // get 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑-th neighbor
3 𝑚𝑦_C ← C[𝑢] //𝑚𝑦_C stores the community id
4 𝑚𝑦_𝑤 ← 𝑤 (𝑢, 𝑣)
5 𝑚𝑎𝑠𝑘 ← __match_any_sync(𝑓 𝑢𝑙𝑙_𝑚𝑎𝑠𝑘,𝑚𝑦_C)
6 𝑑𝑚𝑦_C (𝑣) ← __reduce_add_sync(𝑚𝑎𝑠𝑘,𝑚𝑦_𝑤)
7 Calculate Δ𝑄𝑣→𝑚𝑦_C ,𝑚𝑦_Δ𝑄 ← Δ𝑄𝑣→𝑚𝑦_C
8 𝑚𝑎𝑥_Δ𝑄 ← __reduce_max_sync(𝑓 𝑢𝑙𝑙_𝑚𝑎𝑠𝑘,𝑚𝑦_Δ𝑄)
9 if 𝑚𝑎𝑥_Δ𝑄 =𝑚𝑦_Δ𝑄 then
10 Move 𝑣 to community𝑚𝑦_C

the movement of their neighbors, in other words, using delta
update. Specifically, we propose a mechanism where each
moved vertex informs its neighbors of its new community.
When an unmoved vertex receives these messages, it updates
its previous community weight to obtain the current value.
For each moved vertex, we still recompute its own commu-
nity weight. Consequently, the computation complexity is
related to the moved vertices, whose number is typically less
than that of inactive vertices, thereby alleviating the com-
putational burden of the updating process. As the updating
process is no longer the bottleneck, we will concentrate on
optimizing the DecideAndMove function.

4 Memory Management on GPUs
To further boost the performance and scalability of the Lou-
vain algorithm, we turn our attention to leveraging the mas-
sive parallelism and memory hierarchy of GPUs. Accord-
ing to the workload, we adopt resource assignment strate-
gies [13, 35, 37, 45] and design two distinct kernels for the
DecideAndMove. Specifically, for the small-degree vertex, we
employ a shuffle-based kernel, utilizing a warp and its asso-
ciated registers. On the other hand, large-degree vertices are
processed using a hash-based kernel, which allocates a block
and primarily utilizes shared memory for computation, with
global memory managing any overflowed data.
4.1 Warp-level Shuffle-based Kernel
To simplify our discussion, we assume that thread 𝑖 is respon-
sible for managing the input of 𝑢𝑖 , where 𝑢𝑖 represents 𝑖-th
neighbor of 𝑣 . Note that extending this concept to a thread
handling multiple neighbors can be seamlessly achieved
through loop. Algorithm 2 presents the shuffle-based ker-
nel. The input neighbors of 𝑣 are distributed in the warp
(line 2), where each thread maintains C[𝑢𝑖 ] and (𝑣,𝑢𝑖 ) in
variables named𝑚𝑦_C and𝑚𝑦_𝑤 in its register (lines 3-4),
respectively. To identify threads with the same community
C[𝑢𝑖 ], we utilize a built-in CUDA warp-level function called
__match_any_sync(𝑓 𝑢𝑙𝑙_𝑚𝑎𝑠𝑘,𝑚𝑦_C), which generates a
𝑚𝑎𝑠𝑘 for each thread (line 5). The 𝑗-th bit in the𝑚𝑎𝑠𝑘 ob-
tained by thread 𝑖 indicates whether the value of𝑚𝑦_C of
thread 𝑗 is the same as that of thread 𝑖 , i.e., C[𝑢𝑖 ] = C[𝑢 𝑗 ]. Us-
ing the generated𝑚𝑎𝑠𝑘 , __reduce_add_sync(𝑚𝑎𝑠𝑘,𝑚𝑦_𝑤)

Algorithm 3: Hash-based kernel
1 Function DecideAndMove(𝑣 ,𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑):
2 Initialize𝑚𝑦_𝑚𝑎𝑥_Δ𝑄 ← 0,𝑚𝑦_𝑏𝑒𝑠𝑡_C
3 Initialize hashtable 𝐻 : C → (𝑑C (𝑣), 𝐷𝑉 (C))
4 for 𝑖 ← 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑 ; 𝑖 < 𝑙𝑒𝑛(𝑁 (𝑣)); 𝑖+ = 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 do
5 𝑢 ← 𝑁 (𝑣) [𝑖] // get 𝑖-th neighbor
6 if C[𝑢] ∉ 𝐻 then
7 Insert C[𝑢] into 𝐻
8 Initialize 𝑡𝑒𝑚𝑝_𝑑C[𝑢 ] (𝑣) ← 0 in 𝐻

9 Load 𝐷𝑉 (C[𝑢]) into 𝐻
10 update 𝑡𝑒𝑚𝑝_𝑑C[𝑢 ] (𝑣) in 𝐻 by adding𝑤 (𝑢, 𝑣)
11 Calculate Δ𝑄𝑣→C[𝑢 ]
12 if Δ𝑄𝑣→C[𝑢 ] > 𝑚𝑦_𝑚𝑎𝑥_Δ𝑄 then
13 𝑚𝑦_𝑚𝑎𝑥_Δ𝑄 ← Δ𝑄𝑣→C[𝑢 ]
14 𝑚𝑦_𝑏𝑒𝑠𝑡_C ← 𝐶 [𝑢]

15 Obtain 𝑏𝑒𝑠𝑡_C of all threads from𝑚𝑦_𝑏𝑒𝑠𝑡_C
16 Move 𝑣 to community 𝑏𝑒𝑠𝑡_C

is performed to compute the sum of𝑚𝑦_𝑤 for all threads
whose corresponding bits in𝑚𝑎𝑠𝑘 are set to 1, i.e., 𝑑𝑚𝑦_C (𝑣)
(line 6). The result of the reduce operation provides the nec-
essary information to compute the maximal modularity gain,
which can be obtained by invoking the __reduce_max_sync()
function after calculating𝑚𝑦_Δ𝑄 for each thread (lines 7-8).
4.2 Block-level Hash-based Kernel
As the number of neighbors and communities increases, the
limited capacity of registers may not be sufficient to store
all community states of neighbors. To address this, we adopt
a concurrent hashtable 𝐻 : C → (𝑑C (𝑣), 𝐷𝑉 (C)) shared
among the threads to maintain the states. We notice there
also exists conflict-free reduction-based solutions [32] that
replicate the hash table to each thread, which is not suitable
for GPUs with massive cores. Given that the workload is
large enough and the shared memory is attached to a block,
we employ a block to handle these tasks.

Algorithm 3 describes the hash-based kernel. Upon load-
ing a neighbor (line 5), each thread checks whether its cor-
responding community exists in the hashtable (line 6). If
the community does not exist, the thread inserts it into an
empty bucket of the hashtable (lines 7-9). Subsequently, the
weight between the community and the vertex, represented
by 𝑡𝑒𝑚𝑝_𝑑C[𝑢 ] (𝑣), is updated. To ensure thread safety and
avoid concurrency issues, we utilize the atomic operations
in CUDA. Specifically, we employ atomicCAS to find the po-
sition of the key, i.e., C[𝑢], and utilize atomicAdd to update
the value, i.e., 𝑡𝑒𝑚𝑝_𝑑C[𝑢 ] (𝑣). Next, we calculate the modu-
larity gain and record the community with the maximal gain
(lines 11-14).2

2As 𝑡𝑒𝑚𝑝_𝑑C[𝑢 ] (𝑣) is gradually updated, we may initially obtain a partial
result leading to the lower modularity gain. However, since there always ex-
ists a thread that eventually obtains the final result of 𝑑C[𝑢 ] (𝑣) , correctness
is ensured.
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Figure 3. Insert the hierarchical hashtable.
The kernel design reveals the importance of efficiently

managing the hashtable. Subsequently, we delve into the
design of the hashtable, focusing on the shared memory
utilization.
Global-only: A naive solution exclusively relies on global
memory for maintaining hashtable [8, 15, 39], which over-
looks the importance of shared memory and suffers from
slow global memory access.

The advanced solutions should leverage both shared mem-
ory and global memory. Accordingly, we break the hashtable
𝐻 and its buckets into two parts, i.e., 𝐻0 with 𝑠 buckets and
𝐻1 with 𝑔 buckets, which are maintained in shared memory
and global memory, respectively.
Unified: The unified solution employs a single hash function
ℎ to unify the address of buckets in shared memory 𝐻0 and
global memory 𝐻1. The element 𝑥 with ℎ(𝑥) ∈ [0, 𝑠) will be
maintained in shared memory and with ℎ(𝑥) ∈ [𝑠, 𝑠 + 𝑔) in
global memory. Obviously, when employing a truly random
hash function [25], an element has only a probability of 𝑠/(𝑠+
𝑔) falling into the shared memory. Actually, the approach
implicitly assigns equal importance to both shared memory
and global memory, resulting in poor efficiency.
Hierarchical: This solution prioritizes shared memory dur-
ing hashtable accessing. Specifically, we employ two hash
functions ℎ0 and ℎ1 to index the buckets in shared memory
and global memory, respectively. Considering inserting (or
accessing) an element 𝑥 , we first look into the buckets in
shared memory hashtable 𝐻0 using the hash function ℎ0. If
the bucket in shared memory is empty, the thread can di-
rectly place its community. Only when the bucket in shared
memory is already occupied (i.e., a collision occurs), do we
turn to the bucket in global memory 𝐻1 using a new hash
function ℎ1 for indexing. In case the bucket in global mem-
ory is also occupied, we employ a linear probing strategy to
search for the next available bucket.
Example 2. Figure 3 demonstrates the design of our hierar-
chical hashtable, where each block indicates a hash bucket.
The white block indicates the bucket is empty, and the gray
indicates occupied. When thread 0 accesses the ℎ0 (𝑥0)-th
bucket in shared memory and finds it empty, it can directly
place its community. Another example of thread 1 demon-
strates the insertionwhen a collision occurs. Thread 1 first ac-
cesses the bucket ℎ0 (𝑥1) in shared memory, which is already

Unified access rate
Unified maintenance rate

Hierarchical access rate
Hierarchical maintenance rate
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Figure 4. The maintenance rate and access rate in the shared
memory of two kinds of hashtable on the LiveJournal graph.
occupied. Then it uses the new index ℎ1 (𝑥1) and accesses
the corresponding bucket in global memory. Unfortunately,
the ℎ1 (𝑥1)-th bucket in global memory is still occupied, so
the thread linearly probes the next bucket, which is empty.

Empirical Comparison: We evaluate the rate of a commu-
nity maintained (accessed) in the shared memory, namely
maintenance (access) rate, for two strategies. As shown in Fig-
ure 4, the hierarchical hashtable significantly outperforms
the unified hashtable, increasing the access rate by 4.7×.
Moreover, the rates of the hierarchical hashtable show an
increasing trend as the iteration proceeds, in contrast to the
unified approach. This difference stems from the rate of hi-
erarchy hashtable is related to the number of communities,
which decreases as the iteration proceeds, while the rate of
unified hashtable is determined by the fixed neighbor num-
ber. We further note that the access rate is higher than the
maintenance rate since a frequently updated community is
more likely to appear early and remain in shared memory.

4.3 Scale up with multiple GPUs
Natually, the Louvain algorithm follows the vertex-centric
computation approach, which can be easily parallelized by
partitioning the vertices and their corresponding neighbors
across multiple GPUs. Therefore, the intermediate states of
each vertex are handled by the corresponding GPU owning
the vertex, which significantly reduces the communication
overhead. After each iteration, the states of the vertices must
be synchronized across GPUs, including the community ID
for a vertex, movement indicators for both itself and its
neighbors, and the weight associated with its community.
Dense vs. Sparse representation [18]. The pruning con-
cept illustrated in Figure 1 is also applicable to the synchro-
nization. During the initial iterations, most vertices undergo
frequent community changes, leading to a dense synchro-
nization pattern—where we synchronize the states of each
vertex directly via the ncclAllReduce interface provided by
the NCCL library [2]. In contrast, in later iterations, only
a small fraction of vertices move to new communities, re-
sulting in a sparse synchronization pattern, thus we em-
ploy a delta synchronization strategy, focusing solely on
the vertices that have changed. Therefore, we employ the
ncclAllGather interface, which reduces communication
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time at the cost of introducing a slight data rearrangement
overhead. As the number of moved vertices shows a decreas-
ing trend over iterations, we establish a threshold according
to communication size to determine when to switch from
dense to sparse synchronization.

5 Evaluation

Graph Abbr. #Vertices #Edges
com-Friendster [60] FR 65.6M 1.8B
com-LiveJournal [60] LJ 4.0M 34.6M
com-Orkut [60] OR 3.1M 117.2M
twitter-2010 [28] TW 41.7M 1.2B
uk-2002 [10] UK 18.5M 298.1M
enwiki-2022 [11, 12] EW 6.5M 144.6M
hollywood-2011 [11, 12] HW 2.0M 114.5M

Table 2. Statistics of the graphs used in our experiments.

GALA 3 is implemented in C++ and CUDA, and the ex-
periments are conducted on a server with two 28-core Intel
Xeon Gold 6330 CPUs and NVIDIA A100 GPUs with 40 GB of
memory and NVLink. The GPU code is compiled with nvcc
compiler (version 11.6) with the ’-arch=sm_80’ option. The
graph datasets used in the experiments are shown in Table 2.
The column Abbreviation provides the abbreviations of the
data graphs. Since the concept of modularity is proposed for
undirected graphs [40], we convert directed graphs (e.g., TW,
EW) into undirected graphs for evaluation. The experiments,
except for 5.1 and 5.3, only focus on phase 1 of the first round
of Louvain which dominates the runtime. The threshold 𝜃 in
our experiment is set to 10−6. Unless otherwise stated, the
evaluation is conducted on a single GPU and the graphs are
already loaded into the GPU memory.

5.1 Comparison with State of the Art

FR LJ OR TW UK EW HW
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Grappolo (GPU)*

Gunrock
Grappolo (CPU)
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Figure 5. Comparison with state of the art.

We conduct a comparative evaluation of GALA against
state-of-the-art GPU implementations of the Louvain algo-
rithm: 1) cuGraph [1], a GPU-accelerated graph analytics
library developed by NVIDIA. 2) Gunrock [42, 59], a high-
performance graph processing framework. 3) nido [16], a
GPU-accelerated Louvain algorithm implementation. 4) GPU
implementation of Grappolo [39]. 5) as the GPU version of
3Available at https://github.com/LinXi-lx/GALA

Grappolo not being updated for some time, we have made
some modifications to make it compatible with the latest
CUDA version, herein referred to as Grappolo (GPU)*. 6) CPU
implementation of Grappolo [36]. As demonstrated in Fig-
ure 5, our proposed GALA outperforms cuGraph, Gunrock,
nido, Grappolo (GPU), Grappolo (GPU)* and Grappolo (CPU)
by an average of 17×, 53×, 21×, 22×, 6× and 222×, respec-
tively. The superior performance of GALA can be attributed
not only to the novel computational and memory optimiza-
tions but also to our well-optimized implementation that
fully leverages the underlying GPU hardware architecture.
Moreover, GALA is capable of processing two large graphs
(FR and TW) in approximately one minute, while other im-
plementations faced runtime failures (#FAILED). Specifically,
cuGraph and Gunrock fail due to out-of-memory (OOM) er-
rors, while grappolo (GPU) fails because the code does not
support large graphs. Additionally, the running times of nido
and grappolo (CPU) exceed 30 minutes.

Since GALA and these state-of-the-art methods follow the
convergence strategy proposed by Grappolo, the modularity
values are identical.

5.2 Impact of Optimizations

FR LJ OR TW UK EW HW0
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Figure 6. Impact of optimizations. MG and MM refer to the
modularity gain-based pruning optimization and memory
management optimization on GPUs, respectively.
Figure 6 illustrates the comparison between the baseline

(without any pruning techniques and the utilized hash table
is stored in global memory), modularity gain-based prun-
ing optimization, and the combination of both pruning and
GPU-specific memory management optimizations. The mod-
ularity gain-based pruning optimization (MG) provides a
performance improvement of 2.4× on average. Interestingly,
we observe the trend that pruning optimization performs bet-
ter on larger graphs, such as FR (3.7×). The behind reason is
that larger graphs require more iterations to converge, while
only a few vertices are moved in later iterations. Adopting
GPU-specific memory management optimizations (MM) fur-
ther offers 1.4× speedup, and gives an overall 3.4× speedup.
Next, we will investigate the factors contributing to the two
optimizations.

5.3 Comparison of Pruning Strategies

Efficiency: Figure 7 compares our modularity gain-based
pruning strategy (MG) with two other heuristic pruning
strategies mentioned in Section 3.1 iteration by iteration.
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Figure 7. Comparison of the pruned proportion (inactive
rate) on four representative graphs. SM, RM, PM and MG in-
dicate pruning strategies based on strict movement, relaxed
movement, probability movement and modularity gain, re-
spectively.
To focus on the most computationally intensive part of the
process, we have limited our exposition to the first round.
Consistent with the previous analysis, theworst performance
is with the strict movement-based pruning strategy (SM),
where less than 4% of vertices are pruned on average. In con-
trast, the relaxed movement-based pruning strategy (RM)
and the probability movement-based pruning strategy (PM)
demonstrate competitive performance compared with our
strategy (MG). It is worth noting that PM terminates earlier
than the other strategies, which is due to the fact that PM is
more aggressive in pruning vertices, leading to suboptimal
community detection results. In addition, as mentioned in
Figure 1, the pruning performance shows a trend of increas-
ing as the iteration proceeds.
Furthermore, the integration of both MG and RM strate-

gies (denoted as MG+RM in Figure 7) is also evaluated. If a
user can tolerate the modularity loss associated with RM, in-
corporating MG can further reduce 37% vertices in the active
set produced by RM and results in an impressive overall up
to 91.9% pruning efficiency. This indicates that MG and RM
are not competitive but complementary since they prune
from different angles.
Modularity: Table 3 compares the modularity values of
the baseline (unpruned), MG, SM, PM and RM strategies. In
accordance with the analysis in Section 3, the MG and SM
strategies maintain modularity without loss, while the RM
and PM strategies introduce an average modularity loss of
0.00119 and 0.00413, respectively.
NMI (Normalized Mutual Information) [52]:We further
employ graphs generated by the LFR benchmark [31] with

Graph Baseline/MG/SM RM/MG+RM PM

FR 0.63022 0.63018 (0.00004) 0.62251 (0.00771)
LJ 0.75153 0.75139 (0.00014) 0.74952 (0.00201)
OR 0.66487 0.66476 (0.00011) 0.65758 (0.00729)
TW 0.47257 0.46594 (0.00663) 0.46488 (0.00769)
UK 0.99056 0.99052 (0.00004) 0.99055 (0.00001)
EW 0.66297 0.66159 (0.00138) 0.65882 (0.00415)
HW 0.75323 0.75315 (0.00008) 0.75319 (0.00004)

Table 3.Modularity comparisons. The values in parentheses
represent the difference from the baseline.

#Vertices #Edges Baseline/MG/SM RM/MG+RM PM

Graph1 100,000 651,183 0.35041 0.34900 0.34782
Graph2 100,000 1,440,079 0.92358 0.92325 0.92326
Graph3 100,000 1,442,400 0.43440 0.43371 0.43431

Table 4. NMI comparisons. The values in yellow represent
the best results.

ground truth communities to evaluate the quality of the
community detection results, where the NMI value ranges
from 0 to 1, with 1 indicating the perfect match with the
ground truth communities. Table 4 shows the NMI values
of the baseline, MG, SM, PM and RM strategies. We find
that RM and PM reduce the NMI value by 0.2% and 0.3% on
average, respectively.

5.4 Two-Stage Pruning Profiling
As discussed in Section 3.5, our pruning optimization has two
stages: 1) pruning the inactive vertices in DecideAndMove,
and 2) pruning the unnecessary weight recalculation through
efficient weight updating. Figure 8 provides a performance
breakdown for this two-stage pruning optimization. Initially,
in the baseline scenario with no pruning optimization (B),
DecideAndMove dominates the runtime (65.5%). After ap-
plying the first stage of pruning (P1), the weight updating
impedes the performance, takes up 45.7% of runtime. Sub-
sequently, the second stage of pruning (P2) significantly
accelerates the weight updating by a factor of 7.3×, shifting
the performance bottleneck back to DecideAndMove.

5.5 Memory Management Optimization on Varying
Workload

Our memory management optimization strategy includes
two types of GPU kernels, i.e., shuffle-based kernel and hash-
based kernel, which are dispatched for different workloads.
To evaluate the benefits of each optimization strategy, we
conduct experiments on two representative scenarios, one
is regarding small degree vertices with degrees less than 32,

450



Swift Unfolding of Communities: GPU-Accelerated Louvain Algorithm PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

Remaining DecideAndMove Weight Updating

0

1

Ti
m
e(
m
s)

×105

B P1 P2

(a) FR

0

5
Ti
m
e(
m
s)

×102

B P1 P2

(b) LJ

0

1

Ti
m
e(
m
s)

×103

B P1 P2

(c) OR

0

1

Ti
m
e(
m
s)

×103

B P1 P2

(d) EW

Figure 8. The performance breakdown, where B, P1, P2 rep-
resent the baseline, pruning DecideAndMove, and pruning
both DecideAndMove and weight updating, respectively.
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Figure 9. Impact of Memory Management optimizations.
where the states can be fit into registers of a warp, and an-
other is considering large degree vertices with degree larger
than 2,000, where the states overflow the shared memory.
Small Degree: Figure 9(a) compares shuffle-based kernel
and hash-based kernel when using warp to handle a ver-
tex with a small degree. Shuffle-based kernel optimization
achieves an average speedup of 1.9× when compared with
hash-based kernel with global memory. Meanwhile, it also
outperforms hash-based kernel with shared memory by 1.2×
on average. Obviously, the high efficiency of the shuffle-
based kernel is based on leveraging the fastest memory, i.e.
register. Moreover, we observe that the shuffle-based kernel
exhibits a modest improvement on large graphs. This can
be attributed to the fact that larger graphs typically con-
tain numerous communities, leading to an increased number
of reduced operations, as each community of neighboring
vertices necessitates a reduction step.
Large Degree: Figure 9(b) compares three hashtable strate-
gies described in Section 4.2. Our experimental results demon-
strate that incorporating a hierarchical hash-based kernel

optimization approach results in an average speedup of
1.5× and 1.2× compared to the scenario with global-only
hashtable and unified hashtable, respectively. In addition, we
observe that the unified hashtable performs worse on graphs
where the maximum vertex degree is large, e.g., TW, UK,
and EW. This can be attributed to the fact that in such cases,
most of the buckets are allocated in global memory, while the
unified hashtable assigns equal importance to both shared
memory and global memory. As a result, most communities
are maintained in the global memory.

5.6 Scalability
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Figure 10. Scalability.

Figure 10(a) shows that GALA scales with an average
speedup of 2.5× when moving from 1 to 8 GPUs. However,
the speedup is sub-linear due to communication overhead
between GPUs. Figure 10(b) provides the time breakdown for
the OR graph. Computation time decreases by 4.4× from 1 to
8 GPUs, while communication overhead remains nearly con-
stant. Specifically, on 8 GPUs, communication costs account
for 43% of the total runtime. In addition, we also run Phase 1
of the first round of the algorithm on the uk-2007-02 graph
with 3.4B edges, and the results show that it completed in
43 seconds.

6 Conclusion
In this paper, we introduce GALA, a novel approach that
significantly accelerates the Louvain algorithm on GPUs.
GALA incorporates two key innovations: 1) a modularity
gain-based pruning strategy that effectively reduces unneces-
sary computation while preserving optimality, and 2) a mem-
ory management strategy that employs two kinds of GPU
kernels to explore the potential of the memory hierarchy in
GPUs. Taken together, GALA outperforms state-of-the-art
solutions by 6× on average.
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A Artifact Appendix
The main repository can be accessed from the GitHub: https:
//github.com/LinXi-lx/GALA.git, and the artifact can be ob-
tained from the Zenodo link: https://zenodo.org/records/
14512723. For more details, please refer to the README in
the repository.

A.1 Requirements

A.1.1 Hardware Dependencies
• GPU: NVIDIA A100

A.1.2 Software Dependencies
• G++ 10.4.0
• CUDA Toolkit 11.6
• Make 4.3
• NCCL 2.12

• Openmpi 4.1.4

A.2 Datasets
All the graphs used in the experiments can be directly ob-
tained by running the scripts in the artifact:

1 cd data
2 bash prepare_graph.sh

A.3 Installation and Evaluation
Compile, process the data, and run the experiments using the
scripts below. The final results will be displayed in tabular
form on the terminal.

1 bash compile_all.sh
2 bash preprocess_graph.sh
3 bash runme.sh
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