Check for
Updates

Marlin: Enabling High-Throughput Congestion
Control Testing in Large-Scale Networks

Yanging Chen*, Li Wang*, Jingzhi Wang”, Songyue Liu*, Keqiang He'
Jian Wang”, Xiaoliang Wang*, Wanchun Dou*, Guihai Chen*, Chen Tian*
*State Key Laboratory for Novel Software Technology, Nanjing University, China
4School of Electronic Science and Engineering, Nanjing University, China
TShanghai Jiao Tong University, China

Abstract

Cloud providers require high-throughput traffic to test the
effectiveness of congestion control (CC) configurations (i.e.,
CC algorithm selection and their parameter settings) in net-
works. A network tester capable of evaluating CC config-
urations needs to fulfill the following requirements: (R1)
Capable of generating traffic with CC behaviors. (R2) Abil-
ity to customize CC algorithms. (R3) High throughput CC
traffic generation. However, existing network testers fail to
meet these requirements simultaneously. The paper presents
Marlin, a novel high-throughput network tester designed
for CC evaluation. Marlin leverages a high-throughput, low-
programmability device to amplify the traffic generated by
a low-throughput, high-programmability device. The low-
throughput device is responsible for complex computational
tasks, such as running CC and flow scheduling algorithms,
and communicates with the high-throughput device at a
high frequency using small packets to instruct it to generate
high-throughput traffic with CC behaviors. This hybrid ap-
proach allows for customizable, high-throughput CC testing.
Our experiments demonstrate that Marlin can accurately
emulate CC behaviors and replicate real-world scenarios.
Marlin can generate 1.2 Tbps of CC traffic using a single
programmable switch pipeline and one 100 Gbps port of an
FPGA NIC, supporting up to 65,536 concurrent flows.

CCS Concepts: « Networks — Protocol testing and veri-
fication; Network measurement; Programmable networks;
Data center networks.
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1 Introduction

Congestion control (CC) configuration is critical for cloud
providers. CC can regulate the quantity of packets injected
into a network, thus preventing a decline in network perfor-
mance. In recent years, many studies have proposed new CC
algorithms to improve application performance in various
networks, with some focusing on data center networks [22,
24, 27,33, 38, 44, 45, 49, 52-55, 59, 62, 67] and others on wide
area networks [28, 32, 35, 42, 43]. Additionally, many CC
algorithms require switches to provide additional network
information, such as explicit congestion notification (ECN),
and in-band network telemetry (INT) [21, 37, 51, 64].

Cloud providers face the challenge of selecting from a
multitude of CC algorithms and optimizing parameters for
both CC and switches. Several studies, along with network
interface card (NIC) manufacturers, have provided guidance
on selecting appropriate parameters [6]. Particularly in ma-
chine learning training scenarios, several studies have eval-
uated the CC algorithms mentioned above and custom CC
algorithms [46, 47, 56]. However, due to the varying traffic
patterns of different applications, the efficacy of these CC
algorithms remains inconclusive. In practical deployment,
cloud providers still need to validate the effectiveness of
the selected CC algorithms and parameters through high-
throughput traffic that resembles their production environ-
ment [66].

Simulation-based approaches can be used to obtain initial
estimates of the behavior but are insufficient for validating
the many performance issues that can emerge in complex
production environments. In production, issues such as code
implementation errors, chip design flaws, and parameter
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Table 1. Network tester implemented on various hardware platforms compared to our requirements.

Software & FPGA Commercial Programmable Switch Marlin

Requirements

(R1) Capability to generate traffic with CC v
(R2) Customizable CC in the network tester v
(R3) High throughput CC traffic generation X

4 X v
X X v
X v v/

misconfigurations can arise. These are problems that simula-
tions cannot detect, making network testers more suitable
for testing in such scenarios.

Ideally, cloud providers utilize network testers to generate
high-throughput traffic to replace real traffic sources. Oper-
ators can configure the test traffic generated by the tester,
including protocols, addresses, ports, rates, patterns, etc., and
send it to the tested network. The tester then measures the
test traffic, obtaining metrics of interest to the operators,
such as packet loss and flow throughput, to evaluate the
network performance. For cloud providers and network op-
erators, a network tester capable of testing the effectiveness
of CC configurations should meet three requirements:

¢ (R;) Capability to generate traffic with CC behaviors.
Network operators are concerned with how to configure
CC to improve network performance, so the traffic gener-
ated by the tester needs to comply with CC behaviors.

¢ (R;) Customizable CC in the network tester. To select
the most suitable CC algorithm for the network, the CC
algorithm emulated by the tester should be customizable.
Furthermore, for a given CC algorithm, network opera-
tors should be able to find the optimal configuration by
adjusting CC parameters.

¢ (R3) High throughput CC traffic generation. Cloud
providers and network operators deal with networks on a
large scale, necessitating that the traffic generated by the
tester reaches the Tbps level. High throughput per tester
also aids in conserving rack space and reducing testing
costs [36].

Numerous studies have focused on network testers [12,
14,17, 19, 25, 34, 36, 39-41, 50, 57, 58, 65], yet these have not
concentrated on CC testing, thus failing to meet the previ-
ously mentioned three requirements (see Table 1). Software-
based [14, 19, 34, 40, 41, 57] and FPGA-based [25, 39, 58]
testers offer high programmability and flexibility, making it
easy to implement CC algorithms even though these works
did not initially concentrate on CC testing. But for through-
put, the former is limited by the CPU capability, while the
latter is limited by the number of interfaces (not satisfying
Rs). Additionally, some commercial testers support Layer 4-7
testing [12, 17]. Yet, these commercial testers do not focus
on CC, nor do they support customized CC, and they do
not provide Tbps-level throughput in a single device (not
satisfying R, and Rs). In recent years, some works have
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employed programmable switches to implement network
testers [36, 50, 65], which are white-box in nature and offer
high throughput. Nevertheless, these works have not im-
plemented CC testing nor provided a framework for it (not
satisfying Ry and Ry). Currently, there is no single hardware
suitable for implementing a network tester to test the effec-
tiveness of CC configurations (§2.1). Therefore, we decided
to develop a tester that can simultaneously fulfill these three
requirements.

Our approach: Marlin. This paper introduces Marlin, a
high-throughput network tester designed for CC testing.
The key idea of Marlin is to leverage a high-throughput,
restricted-programmability device (e.g., a programmable
switch) to amplify the traffic generated by a low-throughput,
high-programmability device (e.g., an FPGA NIC). The cus-
tomizable CC algorithm module and flow scheduling algo-
rithm are implemented on the FPGA NIC. The FPGA NIC
instructs the programmable switch to generate large packets
from 64-byte packets, thereby amplifying the traffic with CC
behavior generated by the FPGA NIC. The generated test
traffic passes through the tested network, and the CC feed-
back returns to the programmable switch. The programmable
switch compresses each CC feedback into a 64-byte packet
and returns it to the FPGA NIC to execute the relevant logic
of the CC algorithm (§3 & §4).

On this basis, we have designed and implemented the fol-
lowing three points to meet our requirements. Firstly, we
realized a flow scheduling module on the FPGA NIC and ex-
posed an interface for the CC algorithm module to generate
CC traffic (satisfying Ry). Secondly, we utilize high-level syn-
thesis (HLS) [10] to implement customizable CC algorithm
modules, allowing users to write the CC algorithm module
through high-level programming languages (satisfying Rz).
Finally, through the truncation, loopback, and multicast capa-
bilities provided by programmable switches, in conjunction
with FPGA NICs, Marlin achieved Tbps-level CC traffic gen-
eration (satisfying R3). In addition, we implemented essential
features such as fine-grained measurements required in the
network tester. Since our solution involves communication
and coordination between different devices, implementing
Marlin requires us to address several challenges:

Challenge 1: Frequency mismatch between programmable
switches and FPGA NICs. The FPGA NIC instructs the pro-
grammable switch to generate large packets using 64-byte
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scheduling packets. However, for a single port on the pro-
grammable switch, the frequency of generating large packets
is much lower than the processing frequency of the schedul-
ing packets. This frequency mismatch can lead to the pro-
grammable switch failing to process the scheduling packets
from the FPGA in time, resulting in erroneous operation of
the CC algorithm (solved in §5.3).

Challenge 2: Line-rate scheduling for tens of thousands of
flows in FPGA NICs. The simplest method to achieve fair
scheduling of each flow is to cyclically scan each flow to
determine if it meets the scheduling conditions. However, our
scheduling needs to reach the line rate, i.e., 149 Mpps (million
packets per second), while the internal clock frequency of the
FPGA NIC is 322 MHz [4]. We would waste multiple clock
cycles searching for a schedulable flow, especially when
there are numerous flows but only a few are schedulable,
preventing us from reaching line-rate (solved in §5.2).

Challenge 3: Read-Write conflicts of CC parameters in FPGA
NICs. CC feedback triggers CC parameter updates in the CC
algorithm, executing read-modify-write (RMW) operations
in the FPGA. Because CC feedback may arrive in bursts, it
can lead to a higher arrival frequency of CC feedback for the
same flow than the frequency of RMW operations, resulting
in read-write conflicts of CC parameters (solved in §5.3).

We implemented Marlin on programmable switches with
Intel Tofino ASICs [8] and Xilinx Alevo U280 FPGA NICs [3]
(§6). We conducted comprehensive experiments to assess
the feasibility and correctness of CC testing on Marlin. The
experiments showed that throughput can reach the line rate
for a single flow. Our implementation accurately reflected
the expected CC behavior and maintained high fidelity in
replicating real-world scenarios. Marlin generated 1.2 Tbps
of CC traffic using a single programmable switch pipeline
and a 100 Gbps FPGA NIC port, supporting up to 65,536
concurrent flows (§7).

Ethics. This work does not raise any ethical issues.

2 Background

In this section, we discuss the observations that inspire Mar-
lin’s architecture. Then, we provide a list of works that are
similar to or relevant to Marlin.

2.1 Observations

In scenarios testing the effectiveness of CC, it is necessary to
measure various data such as the highest throughput achiev-
able by the device or network under a given CC algorithm
and parameters, the amount of packet loss, the rate of each
flow, and fairness. These tests are not sensitive to the packet
payload or the protocol logic. Given this, the traffic generated
by Marlin can carry empty payloads and strip away protocol
logic, focusing solely on the CC algorithm. Devices such
as hosts, programmable switches, and FPGAs can be used
to implement network testers. However, under our relaxed
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Table 2. The three characteristics required for implementing
CC testing on various devices.

Devices Programmability Freq. Throughput
Host v X X
Switch X v v
FPGA v v X
Marlin v v v

Switch=Programmable switch
Freq.=Packet processing frequency

conditions, these devices still cannot individually meet the
three requirements listed in Table 1. The reasons for this are
further explained in combination with Table 2.
Programmability. System programmability can be catego-
rized into three tiers. High programmability systems such
as CPUs and FPGAs provide full flexibility for implementing
custom logic. Programmable switches fall under restricted
programmability, offering limited capabilities for expressing
logic. Dumb switches exhibit low programmability due to
fixed ASIC-based data planes with minimal configurability.
Programmable switches lack sufficient programmability to
implement CC algorithms. The switch pipeline is divided
into several match-action unit (MAU) stages, where pack-
ets match table entries within the MAU and execute certain
instructions. However, programmable switches have limi-
tations in terms of pipeline length, supported instruction
operations, and register read-write capabilities, making it
impossible to implement CC algorithms. For example, the
Intel Tofino ASIC provides only 12 stages, restricting the
number of instructions that can be executed in the pipeline.
For instructions, conditional branching, jumping, and mul-
tiplication or division of any two numbers are not feasible
on Tofino ASICs, as these instructions consume an inde-
terminate number of clock cycles. Most CC algorithms in-
volve updating parameters (such as window size) and re-
quire read-modify-write (RWM) operations. However, for
programmable switches, registers are associated with MAUs
and cannot execute RWM operations, thus preventing up-
dates to CC parameters. In contrast, CPUs have rich instruc-
tions and flexible memory access capabilities, and common
network protocol stacks run on hosts. FPGAs, capable of
implementing algorithms, have had multiple works[26, 29]
implementing CC algorithms on FPGA NICs. Both CPUs and
FPGAs meet the programmability criteria.

Packet processing frequency. The CPU’s clock frequency
is insufficient to meet our testing requirements. Taking a
maximum transmission unit (MTU) of 1518 bytes as an ex-
ample, to achieve a throughput of 1 Tbps, the ideal device
should be able to process approximately 81 Mpps. Even when
using DPDK [5] to bypass the operating system, and employ-
ing high-frequency CPUs with a single-core computational
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frequency of 3 GHz, a highly optimized CC algorithm that
completes in 50 clock cycles still cannot meet the process-
ing requirement of 81 Mpps [7]. The 322 MHz clock pro-
vided by FPGAs like Xilinx Alevo U280 supports the 81 Mpps
packet processing requirement. Programmable switches have
a pipeline architecture, and the switching ASIC like Intel
Tofino can forward packets at 2,400 Mpps, fully meeting the
frequency requirements.

Throughput. The throughput bottleneck of a network tester
built using FPGA NICs lies in the number of interfaces. Typ-
ically, there are two 100 Gbps interfaces on an FPGA NIC.
A 2-rack unit server can accommodate four such NICs, pro-
viding a total throughput of 800 Gbps, which falls short of
achieving Tbps-level throughput. The throughput of the host
is limited by the CPU computing capacity. Only when the CC
algorithm is offloaded on the NIC hardware, such as NVIDIA
ConnectX NICs, is it possible to achieve high throughput.
However, such a design does not meet our requirement for
customizable CC. The design of programmable switches con-
siders multi-port and high throughput from the beginning,
thereby meeting the throughput criteria.

In summary, to simultaneously meet these three require-
ments, a device must possess high programmability, high
packet processing frequency, and high throughput. However,
hosts, FPGAs, and programmable switches are unable to meet
all three criteria simultaneously. Therefore, we consider us-
ing a combination of these devices to create a tester support-
ing CC. Given that only programmable switches can uniquely
meet the Tbps-level throughput criterion, our system must
include a programmable switch. Additionally, we need to
choose another type of hardware that can compensate for
the programmability limitations of the programmable switch,
and when combined, does not cause any criteria to be unmet.
We choose FPGA NIC instead of the host for three reasons:
(1) Only FPGA NIC can achieve line rate scheduling for a
single flow. (2) The latency and jitter introduced by the host
processing are much greater than FPGA, which is detrimen-
tal to delay-based congestion control and precise behaviour
tracing. (3) FPGA NIC is more suitable for communicating
with the programmable switch using high-frequency small
packets. The FPGA NIC is responsible for programmabil-
ity and computation, while programmable switches handle
high-throughput traffic. We will detail Marlin’s architecture
and workflow in §3.

2.2 Related Work

This section lists some work related to ours in recent years.
CC on hardware. Tonic [26] implemented a programmable
transport layer on FPGAs, offering a custom CC-capable data
delivery engine. F4T [29] provides a full hardware-based
TCP acceleration framework on FPGAs. The above efforts
are aimed at offloading the transport layer to FPGA NICs,
which is orthogonal to Marlin’s goal. ACC-Turbo [23] im-
plements an improved ACC algorithm on programmable
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switches which implements a specific CC and does not gen-
erate CC traffic.

Network testers. Software-based testers [11, 14, 16, 18, 19,
31, 40, 57] using standard Linux IO API or DPDK [5] are flex-
ible. These testers are constrained by CPU clock frequencies
and the number of network card ports, making it difficult to
achieve Tbps-level throughput. More network testers are pro-
vided by manufacturers like Spirent [17] and Keysight [12].
These testers offer comprehensive testing capabilities cov-
ering L2 to L7. However, as these testers are black boxes,
they cannot test custom CCs. Moreover, testers supporting
L4 and above do not reach Tbps-level throughput [36]. Fi-
nally, these devices are expensive, with a dual-port 100 Gbps
traffic generation module costing over $100,000 [65]. Some
works [25, 39, 58] employ FPGA NICs to implement testers.
These hardware-based testers are white-boxes, offering sig-
nificant flexibility and the ability to provide precise mea-
surements at the circuit level. However, FPGA NICs pro-
vide only two 100 Gbps ports and are relatively expensive
(costing $5,341 [2]), which limits the throughput of these
testers to Tbps levels. Programmable switches can be used
to implement hardware-based white-box testers. Works like
Norma [36], HyperTester [65], and IMap [50] are based on
programmable switches and programmed using the user-
friendly P4 language [30]. These works achieve high through-
put and configurable traffic generation but do not simulate
CC algorithms or generate traffic with CC behaviors.
Similar architecture. NeoBFT [60] accelerates Byzantine
fault-tolerant (BFT) protocols in data centers. In NeoBFT,
FPGAs serve as cryptographic coprocessors for computing
SHA-256, while programmable switches handle the BFT pro-
tocol. Its architecture is similar to ours, but we focus on cus-
tomizable CC, high throughput, and concurrency. uFAB [61]
provides a predictable virtual fabric. It utilizes SmartNICs
or NetFPGAs at the endpoints and collaborates with pro-
grammable switches to build the system. Tiara [63] achieves
high-performance stateful L4 load balancing, capable of high
throughput and concurrency. Its system architecture com-
prises three layers: programmable switches, FPGAs with
HBM, and CPUs, each processing different complexity levels
of logic to achieve high performance. ExoPlane [48] follows
a similar concept to Tiara, providing a system for offloading
functions from switches to SmartNICs, thereby achieving
higher scalability. These works employ similar hardware
choices but do not follow the same architecture.

3 Overview

Marlin is a high-throughput network tester that supports
CC testing. Based on our observations in §2.1, we adopted
an architecture that combines programmable switches and
FPGA NICs, as shown in Figure 1. In this architecture, the
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Figure 1. The system architecture and workflow of Marlin.

programmable switch is responsible for processing and gen-
erating high-volume traffic, while the FPGA NIC handles CC
algorithm execution and traffic scheduling.

In this section, we will first introduce various types of
packets in Marlin (§3.1). Then, we will describe the workflow
of Marlin and illustrate the lifecycle of each packet (§3.2). Fi-
nally, we will discuss how the FPGA NIC and programmable
switch work together to amplify throughput (§3.3).

3.1 Packet Type

The programmable switch and FPGA NIC are connected via
a 100 Gbps cable, communicating by sending packets to each
other. As shown in Figure 1, the types of packets in Marlin
include:

e Template packets, denoted as TEMP. TEMP packets
are sent from the control plane to the data plane of the
programmable switch. These TEMP packets continuously
cycle at the line rate on the data plane. When packet gen-
eration is needed, the programmable switch replicates
TEMP packets to other ports via multicasting.

e Data packets, denoted as DATA. DATA packets are
sent from the programmable switch to the tested network.
These packets are transformed from replicated TEMP pack-
ets. The control plane can control the length of the gener-
ated DATA packets by adjusting the length of the TEMP
packets. In addition to carrying data, DATA packets also
carry the packet sequence number (PSN) or other informa-
tion defined by the user’s custom CC, which comes from
the FPGA NIC.

e Acknowledgment packets, denoted as ACK. ACK pack-
ets are acknowledgment packets sent by the programmable
switch upon receiving DATA packets. ACK packets do not
carry data and have a length of 64 bytes. The information
they carry is specified by the CC algorithm. Typically, ACK
packets include the PSN of the next expected DATA packet
to be received. Moreover, in some CC algorithms, ACK
packets may contain other network-related information
such as RTT, ECN, etc.
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¢ Information packets, denoted as INFO. INFO packets
are used by the programmable switch to convey flow state
information to the FPGA NIC. INFO packets are triggered
by the reception of ACK packets by the programmable
switch and have a length of 64 bytes. The information they
carry comes from the ACK packets but only includes the
flow’s information and congestion information, such as
flow ID, PSN, ECN, and RTT specified by the CC algorithm.

e Scheduling packets, denoted as SCHE. SCHE packets
are sent by the FPGA NIC to the programmable switch
to pass on sending instructions, and they are 64 bytes
in length. Based on the CC algorithm and scheduler, the
FPGA NIC informs the programmable switch about the
next packet to be generated. Thus, SCHE packets carry
information about the next packet to be sent, such as flow
ID, PSN, etc.

3.2 Workflow

Marlin provides a control plane program. Operators can
use this program to configure the test, i.e., selecting the CC
algorithm, setting CC parameters, choosing the test ports,
and determining the number of flows per port. After that,
the program generates configurations for the programmable
switch and FPGA and then deploys these configurations to
them. If a different CC algorithm is chosen, the correspond-
ing firmware is written to the FPGA, and CC parameters are
sent to the FPGA’s BRAM via drivers. Finally, the control
plane notifies the FPGA NIC to start sending traffic.

Measurement functionalities are also implemented on
both the programmable switch and FPGA. The control plane
can retrieve data such as port rate, flow rate, and packet loss
by reading hardware registers in the programmable switch.
The control plane can also track CC parameter changes in
the FPGA using the fine-grained tracing and logging func-
tionality described in §5.1.

Next, we will detail how Marlin works from a packet per-
spective, with the step numbers in Figure 1.
Sending. After the control plane notifies the FPGA NIC to
start sending traffic, the FPGA begins scheduling flows. The
scheduler within the FPGA determines whether a flow can
be sent based on the CC algorithm. Information such as flow
ID and PSN is written into SCHE packets and sent to the
programmable switch @. Upon receiving SCHE packets, the
programmable switch writes the information from the SCHE
packets into a queue implemented using registers, and then
discards the SCHE packets.

TEMP packets continuously circulate at line rate within
the programmable switch and are multicast to other ports.
The TEMP packets after multicast are by default discarded
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by the deparser. However, TEMP packets that retrieve in-
formation from this queue will not be discarded. The pro-
grammable switch will modify the fields of these TEMP pack-
ets based on this information, transforming them into DATA
packets and sending them to the network under test @.
Receiving. As the receiver, Marlin needs to process DATA
packets ®. The method of handling DATA packets varies
depending on the specific CC algorithm employed. Taking
the traditional TCP as an example, the programmable switch
updates the receive window by reading the PSN of the DATA
packet. Additionally, the programmable switch can generate
ACK packets by truncating DATA packets to 64 bytes and
rewriting their header fields @. This process can be fully
implemented in the programmable switch.

Congestion signal processing. The ACK packets gener-
ated at the receiver are sent back to Marlin after passing
through the tested network ®. Since both ACK and INFO
packets are 64 bytes, the programmable switch can directly
extract congestion information from the ACK packets and
reassemble them into INFO packets, which are then sent to
the FPGA NIC ®. Additionally, other packets containing con-
gestion information, such as congestion notification packets
(CNP) in DCQCN [67], are also uniformly encapsulated as
INFO packets. Finally, the FPGA NIC updates the CC pa-
rameters based on the information conveyed in the INFO
packets.

3.3 Throughput Amplifying

To achieve maximum throughput, the FPGA NIC sends SCHE
packets to the programmable switch at the line rate, with
a sending frequency of about 148.8 Mpps. In the case of
an MTU of 1024 bytes (RoCE MTU under default Ether-
net MTU [13]), the maximum sending frequency of DATA
packets from a single 100 Gbps port of the switch is about
11.97 Mpps. Therefore, the FPGA NIC can schedule 100 Gbpsx
floor(148.8/11.97) = 1.2 Tbps of DATA packets, saturating
12x100 Gbps ports.

Furthermore, if the MTU is increased to 1518 bytes, the
maximum sending frequency of DATA packets from a single
port of the switch is about 8.127 Mpps. Therefore, the theoret-
ically achievable throughput of Marlin can reach 100 Gbps X
floor(148.8/8.127) = 1.8 Tbps, filling up 18x100 Gbps ports.
However, since a single pipeline of ASICs like Intel Tofino
supports at most 16 ports of 100 Gbps each, and Marlin re-
quires some ports for traffic amplification, a single pipeline
cannot achieve the ideal throughput of 1.8 Tbps. We will
discuss the port allocation within the programmable switch
and explain the maximum throughput supported by Marlin
in §4.3.

4 Programmable Switch Design

The fundamental function of Marlin is to generate traffic
with CC behaviors. However, as introduced in §3, the traffic
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Figure 2. Modules and data paths of the programmable
switch.

in Marlin is triggered by the FPGA NIC using SCHE packets.
This approach is different from that used in previous works,
where traffic is self-generated. Consequently, it seems that
the programmable switch has less work to do. However, in-
troducing the FPGA NIC did not simplify the programmable
switch design. Instead, it introduced many challenges in their
collaboration.

In this section, we first discuss the module organization
on the programmable switch (§4.1). Then, we detail how the
programmable switch receives SCHE packets and generates
traffic (§4.2). Finally, we describe the port allocation of the
programmable switch (§4.3).

4.1 Modules

In the programmable switch portion of Marlin, there are
three modules, as illustrated in Figure 2.

Module A is responsible for executing the receiver logic,
processing received DATA packets, and returning ACK pack-
ets. This corresponds to steps @ and @ in §3.2. It is important
to note that the receiver logic for some CC algorithms might
be too complex to be implemented in the programmable
switch. However, we can still utilize the architecture of Mar-
lin to address this issue, as illustrated by the dashed portion
in Figure 2. We can implement the receiver logic on the
FPGA NIC. It processes the truncated DATA packets and
then returns ACK packets. In addition, this solution requires
an additional port on both the programmable switch and the
FPGA NIC.
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Module B transforms ACK packets into INFO packets,
known as the INFO generator in Figure 2. This process aligns
with steps ® and ® in §3.2.

Module C responds to SCHE packets and generates DATA
packets. Passing information from SCHE packets to DATA

packets involves using queues implemented with programmable

switch registers and requires coordination with the FPGA
NIC. We will explain this in detail in §4.2.

4.2 Packet Generation

As shown in Figure 2, each egress port in the switch has a
dedicated queue that stores metadata for the DATA packets
to be generated, such as flow id and packet sequence num-
bers. Each flow is assigned to a specific egress port. When a
SCHE packet arrives at the egress, its metadata is enqueued
into the queue corresponding to the designated output port.
TEMP packets continuously circulate at line rate within a
loopback port and are multicast to all egress ports used for
sending. After being multicast, a TEMP packet attempts to
dequeue metadata from the queue associated with the port
it reaches. If it succeeds, the TEMP packet uses the metadata
to restore the DATA packet content and sends it out. If the
queue is empty, the TEMP packet is discarded. There are
several design considerations to ensure efficient and correct
packet generation.

The queues are implemented using a register array, with
three additional registers: header, tail, and length. Due to
the hardware limitations, each packet can only perform one
simple operation on a register. Consequently, once metadata
is dequeued, it cannot be re-enqueued. Additionally, TEMP
packets cannot be rerouted to other ports once they enter
the egress stage. If there were only one queue shared by
all egress ports, a TEMP packet might accidentally dequeue
metadata meant for a different port, leading to incorrect
packet transmission.

Placing the queues at the egress is essential. If the queues
were located at the ingress, the DATA packets generated
after dequeuing metadata would need to be forwarded to the
correct output port corresponding to each flow. To support
a throughput of 1.2 Tbps, an additional 12 ports would be
needed for TEMP packet loopback to generate the DATA
packets, which would significantly increase the cost.

Since each SCHE packet results in a corresponding DATA
packet, queue overflow would lead to lost packets that should
have been sent, which is unacceptable. At line rate, SCHE
packets arrive at a rate of 148.8 Mpps, while a single port can
only generate DATA packets at a rate of 8.127 Mpps. To avoid
queue overflow, the FPGA NIC needs to identify the port
associated with each flow and ensure that the scheduling
frequency for each port does not exceed 8.127 Mpps. We will
detail this design in §5.3.
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4.3 Port Allocation

We use the programmable switch with Intel Tofino ASIC as
an example to illustrate how to allocate ports. Since registers
are not shared across different pipelines, we allocate ports on
a per-pipeline basis. As analyzed in §3, with an MTU of 1024
bytes, each 100 Gbps SCHE packet can generate 1.2 Tbps of
DATA traffic. Therefore, the optimal allocation is shown in
Figure 3. Within one pipeline, there are a total of 16 ports,
with 12 ports used for sending or receiving test traffic to and
from the tested network. Additionally, one port is needed,
with the ingress direction for receiving SCHE packets from
the FPGA NIC, and the egress direction for sending INFO
packets to the FPGA NIC. The enqueue operation for SCHE
packets is performed on another port of the egress pipeline.
Finally, a loopback port is needed for cycling TEMP packets.

In summary, one pipeline with one 100 Gbps port of an
FPGA NIC can generate 1.2 Tbps of CC traffic. It is important
to note that we have not fully utilized all 16 ports of a pipeline.
The reserved one port can be used to forward truncated
DATA packets to the FPGA NIC for executing the receiver
logic. Moreover, when the MTU is greater than 1072 bytes,
100 Gbps SCHE packets can generate 1.3 Tbps of DATA
traffic, thereby fully utilizing all ports of a pipeline.

5 FPGA Design

The functionality of FPGA NICs is more complex compared
to programmable switches. It is responsible for handling the
sender logic, which involves executing the CC algorithm
based on received INFO packets and scheduling traffic by
sending SCHE packets. We will explain this implementation
in four steps.

First is the basic transport functionalities of FPGA NICs
(§5.1). Based on this, we consider how to enable the FPGA
NIC to schedule traffic at line rate (§5.2). Then, we discuss
the solution for the FPGA NIC to resolve read-write conflicts
caused by processing burst INFO packets (§5.3). Finally, we
illustrate the structure of the CC algorithm module to achieve
high scalability (§5.4).

5.1 Basic Process

We will use the reception of an INFO packet as an example to
describe the basic workflow of the FPGA NIC and introduce
several related modules, as shown in Figure 4 Step A.
When the FPGA NIC receives an INFO packet, it first
parses it, extracting the flow ID, PSN, and other information
related to the CC algorithm (such as NACK and ECN), and
generates a reception event, which is then placed into the RX
FIFO. After the CC algorithm module retrieves the reception
event from the RX FIFO or a timeout event from the event
generator, it obtains the CC parameters of the flow from the
BRAM based on the flow ID. Next, the CC algorithm mod-
ule executes the CC algorithm implemented through HLS
(§5.4), updates CC parameters, and determines whether new
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Figure 3. Port allocation on pro-
grammable switches.

scheduling events need to be generated. These scheduling
events could be for the normal transmissions or for retrans-
missions. These events pass all the scheduling information
to the deparser for generating SCHE packets.
Fine-grained logging module. We allow the logged infor-
mation to be uploaded to the host via Queue-based Direct
Memory Access (QDMA). The logging logic is implemented
within the CC algorithm module, with each computation
capable of logging 16B of data and a timestamp derived from
a 322 MHz hardware clock. For ease of use, we chose to ag-
gregate the logged content and upload it to the host in the
form of 1024B packets, with logging performance matching
the host’s DPDK performance.

CC parameters. The CC parameters in Figure 4 are com-
posed of multiple BRAMs due to differing read and write
requirements for these parameters by three components, the
CC algorithm module, slow path (§5.4), and scheduler (§5.2).
These BRAMs all use the flow ID for addressing and will
be read and written by one of the three components, while
the other two will perform read-only operations. Therefore,
Simple Dual-Port RAM is used for implementation.

5.2 Line-Rate Scheduling

In the basic process, the CC algorithm module may not al-
ways generate a scheduling event, for example, when it en-
counters window or rate limitations. Moreover, even if it
can generate one, a single flow can only trigger one packet
in transit on the link. In order to transmit as many eligible
packets as possible, we need to circulate scheduling events,
as shown in Figure 4 Step B.

Rescheduling events. After the CC algorithm module gen-
erates a scheduling event, we first enqueue it into the sched-
uling FIFO. The scheduler will fetch the scheduling event
from the scheduling FIFO and reevaluate whether to sched-
ule the transmission based on the congestion window or rate.
If so, besides triggering the transmission of SCHE packets,
this scheduling event will be reinserted into the scheduling
FIFO without passing through the CC algorithm module
again. Although there is no difference between the recycled
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Figure 4. Modules and data paths of the FPGA NIC.

scheduling events and the original ones, we will refer to such
events as rescheduling events to distinguish them from the
latter.

It is noteworthy that rescheduling events actually rep-
resent currently active flows. If a flow lacks rescheduling
events, it indicates that the flow is inactive. Otherwise, the
INFO packet of that flow will trigger scheduling by the CC
algorithm module, adding its scheduling event back to the
scheduling FIFO. This implies that there is no need for du-
plicate scheduling events for the same flow in the sched-
uling FIFO. This approach also helps prevent scheduling
FIFO overflow, ensuring that it can record all active flows
and guarantee fair scheduling. Additionally, this entire loop
only takes six clock cycles, much less than the time required
for scheduling a single flow at line rate, ensuring that the
rescheduling events have entered the scheduling FIFO before
the next scheduling. For high-priority events such as retrans-
mission and timeouts, another FIFO is utilized to prioritize
scheduling.

Finally, we discuss the principles of this mechanism un-

der two scenarios. Firstly, if the link bandwidth is not fully
utilized, the scheduling FIFO may not necessarily receive
scheduling events from the CC algorithm module within
each scheduling period. In this case, the scheduling FIFO
acquires rescheduling events from the scheduler, gradually
occupying link bandwidth. Secondly, if the link bandwidth
is fully utilized, the scheduling FIFO will invariably receive
scheduling events from the CC algorithm module within
each scheduling period. At this point, the uniqueness of
events in the scheduling FIFO can ensure fair scheduling of
flows.
Scheduler. In addition to facilitating the circulation of sched-
uling events, another function of the scheduler is to ensure
the correctness of rescheduling. Without the scheduler, the
rescheduling events would continuously trigger the trans-
mission of SCHE packets. Furthermore, the PSN of these
SCHE packets triggered by rescheduling events also needs
to be obtained through the scheduler.
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Another approach would be to return rescheduling events
to the CC algorithm module. We do not adopt this method
because the CC algorithm module needs to process INFO
packets at line rate, and parallel processing of reschedul-
ing events would increase the complexity of CC algorithm
module. The separated design allows the scheduler to only
update the sending window or target rate. The CC algorithm
module can then focus on processing INFO packets.

5.3 Packet Frequency Control

Packet frequency control is used to prevent packet loss within
Marlin and to facilitate the cooperation between the pro-
grammable switch and the FPGA NIC. This involves control-
ling the ingress direction and egress direction separately, as
shown in Figure 4 Step C.

Ingress Direction. There are some read-modify-write (RMW)
operations in the CC algorithm module. These RMW oper-
ations typically take several clock cycles to complete. For
the FPGA NIC with an internal clock of 322 MHz, the INFO
packets to be processed may arrive at a rate of 148 Mpps.
If some RMW operations take more than two clock cycles,
their execution frequency will be less than 107 MHz, which
is lower than the packet arrival rate, leading to two choices.
First, if we ensure throughput, RMW operations triggered
by packets will cause read-write conflicts in CC parameters,
leading to incorrect execution of the CC algorithm. Second,
if we ensure the atomicity of RMW operations, packets will
have to wait for the RMW operation to complete, causing a
drop in throughput.

We note that for a single flow, the average arrival rate of
INFO packets is much lower than the execution frequency
of RMW operations. Taking an MTU of 1518 bytes as an
example, the average arrival rate of INFO packets for a single
flow is 8.127 Mpps. In this case, RMW operations are allowed
to take a maximum of 40 clock cycles. Therefore, we can
let INFO packets entering the FPGA join different RX FIFOs
according to the port they arrive at the programmable switch.
At this point, the average rate of INFO packets in each RX
FIFO is 8.127 Mpps. However, when INFO packets from the
same flow arrive at line rate, such as when DPDK sends ACKs
in bursts, the peak packet rate can spike to 148 Mpps. To
handle this, we also need an RX timer to control the rate at
which these INFO packets are submitted to the CC algorithm
module. When the RX timer is set to 8.127 Mpps, the CC
algorithm module can allow RMW operations to consume
40 clock cycles without causing read-write conflicts.
Egress Direction. As mentioned in §4.2, the SCHE packets
sent to the programmable switch cannot exceed 8.127 Mpps
per port. Otherwise, it would lead to queue overflow in the
programmable switch, resulting in false packet losses. The
solution is similar to the ingress direction frequency control.
We allocate one scheduling FIFO and one scheduler for each
port. Each scheduling FIFO stores scheduling events for flows
on a single port, and each scheduler retrieves scheduling
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events from the FIFO based on the TX timer we have config-
ured. These events are then passed to the multiplexer (MUX).
The MUX collects scheduling events from the schedulers and
sends them to the deparser to generate SCHE packets.

It is important to note that the duration set by the RX
timer must be less than or equal to the duration set by the
TX timer. Otherwise, it will cause the RX FIFO to overflow
and lead to incorrect execution of the CC algorithm.

5.4 Scalable CC Algorithm Module

The CC algorithm module, implemented through Vivado
HLS [10], functions to run the CC algorithm. HLS enables
users to implement the CC algorithm in C++, which is more
convenient than traditional approaches like Verilog [20].
Programming Interface. When writing an HLS program,
we can write linear processing logic, and the compiler will
automatically pipeline it. The parameters of the HLS en-
try function are shown in Table 3, with read-only input
parameters and write-only output parameters, both being
struct pointer variables. The intrinsic variable is immutable
and contains information such as the triggered event type,
window-related or rate-related data. The customized vari-
able, with a total length of 64B, is customized by the user
and stores the parameters of CC.

Slow Path. As mentioned in §5.3, RMW operations are al-
lowed to take a maximum of 40 clock cycles. RMW operations
are limited to 40 clock cycles, enabling 16-bit division and
several 32-bit multiplications but still lack programmability.
We observed that in CC algorithms like DCTCP [24] and
Timely [54], time-consuming logic only runs once per RTT
or every few packets, so we introduced a Slow Path. The CC
algorithm module triggers events for the Slow Path to update
specific parameters (Table 3). With microsecond-level RTTs
in data centers, the Slow Path has hundreds of clock cycles,
improving performance. For example, using the Slow Path
to update alpha in DCTCP allows increasing division and
alpha precision from 16-bit to 32-bit.

6 Implementation

The hardware used by Marlin includes a 32x100 Gbps ports
P4 programmable ethernet switch with 2 pipelines [9], as
well as a Xilinx Alveo U280 data center accelerator card [3].
The programmable switch and FPGA NIC are connected via
a single 100 Gbps link.

Programmable switch. The implementation of the pro-
grammable switch includes the control plane and data plane.
The control plane is written in Python and interacts with the
data plane tables through gRPC. Additionally, the control
plane sends TEMP packets to the data plane via PCle. The
control plane consists of 1,103 lines of code. The data plane
implementation is written in P4 [30], consisting of 1,581 lines
of code. It utilizes 58/960 of SRAM resources, 3/288 of TCAM
resources, spanning across 4 stages.
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Table 3. CC Algorithm Module Programming Interface.

Variable Description
intr-var struct for intrinsic variable
- psn packet sequence number
- cwnd/rate | congestion window size or rate
- una psn of the next unacknowledged packet

E | - nxt psn of the next packet to be sent

= o :

& | - flags flag bits, including ack, ecn, etc

= evt-typ including packet reception and timeout
- prb-rtt probed round-trip time
- tstamp timestamp of receiving this event
cust-var user-defined variables for CC modules
slwpth-var | variables modified in Slow Path
int-var struct for intrinsic variable

el rtx-psn the psn of the retransmitted packet

D | - cwnd/rate | congestion window size or rate

& - rst-timer | reset specific timer

8 cust-var consistent with the input parameters
slwpth-evt | events that trigger the Slow Path
log-content | upload logged content to the host

Table 4. Summary of lines of code and clock cycles required
for implementing different CC algorithms, along with the
resource usage (as a percentage) for both the CC module and
the entire project.

LoC | clk CC Module Total
LUT FF |LUT FF BRAM
Reno 156 2 1.1 0.7 10 11 59
DCTCP 175 | 24 3.5 2.1 13 12 63
DCQCN | 98 6 14 0.9 12 10 46

FPGA NIC. The FPGA NIC is implemented based on the Xil-
inx OpenNIC shell [4] and synthesized using Vivado 2021.2,
with all modules operating at 322 MHz. We have imple-
mented window-based Reno and DCTCP, as well as rate-
based DCQCN. Table 4 presents the number of lines of code
written for each algorithm’s CC module, excluding fixed
formats, the number of clock cycles required for algorithm
execution, the LUT and FF resources consumed by the CC
module and the entire project, as well as the total BRAM
resources consumed. All resource consumption is given as a
percentage of the total resources on the FPGA card. Through
an analysis similar to that in §5.3, when the template packet
size is 1024B, the CC module has 27 clock cycles for pro-
cessing. The implemented DCTCP here performs one 16-bit
division, two 32-bit multiplications, and several additions,
subtractions, and shifts on the critical path, all while meeting
the clock constraints.
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Figure 5. Comparison of CWND and Alpha changes between
Marlin and ns3 in CC Module Correctness Test

7 Evaluation

We evaluate Marlin from three perspectives: First, we ver-
ify the correctness of the implementation. In §7.1, we val-
idate basic TCP state transitions, window and parameter
updates, and demonstrate the fine-grained tracing capabil-
ities. In §7.2, we assess the correctness of the scheduling
mechanism designed in §5.2. In §7.3, we evaluate flow fair-
ness under congestion, further confirming the correctness
of the implemented CC algorithms. Next, we verify that
Marlin’s implementation of the DCQCN algorithm shows
high fidelity when compared to commercial NICs (§7.4). Fi-
nally, we activate the maximum number of concurrent flows
supported by Marlin and subject them to competition over
a bottleneck link, demonstrating that Marlin can reliably
handle and correctly test up to 65,536 flows (§7.5).

7.1 CC Module Correctness Test

In the correctness testing of the CC module, we used Marlin
to generate a single TCP DCTCP flow and tested the con-
sistency of its parameter changes with ns3 [1] simulation
results. The sender and receiver are connected with a pro-
grammable switch via twelve 100Gbps links each, and this
topology was used in all experiments except §7.4. For the
sake of determinism and interpretability, we deliberately in-
troduced packet loss events and modified ECN markings at
specific points in the switch’s transmission to the receiver.
Using Marlin’s data tracing capabilities, we monitored every
change in the flow’s congestion window (cwnd) and alpha
parameter. In this experiment, the initial ssthreshold was
set to 64, and the initial cwnd was set to 1, with other param-
eters matching ns3 defaults.

The changes in window size and alpha for both Marlin
and the ns3 simulation are shown in Figure 5. The flow ini-
tially undergoes a slow start phase, where the window grows
exponentially. After reaching the initial ssthreshold of 64,
it enters congestion avoidance, with the window growing lin-
early. At points A and C in the figure, we introduced packet
loss, while at point B, we marked some packets with ECN.
After detecting these events, the algorithm enters Fast Recov-
ery and Congestion Window Reduced phases, then updates
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the parameters and returns to congestion avoidance. The
alpha parameter, which reflects the degree of network con-
gestion, decreases gradually throughout the process, except
at point B where ECN was marked.

This experiment validated the correctness of the CC mod-
ule implementation and demonstrated its fine-grained trac-
ing capabilities.

7.2 Flow Scheduling Test

Since we are only testing the flow scheduling mechanism,
the congestion control algorithm used in these experiments
does not affect the results. For consistency, we employed the
DCTCP algorithm in this part.

Single port multi-flow scheduling,. First, we had the tester
initiate multiple flows on a single port and send them con-
currently to the receiver. The intermediate switch directly
forwards this traffic, equivalent to a pass-through link. In
this setup, the tester acts as a single host, sending multiple
flows to another host via a single port. Since these flows do
not encounter congestion, according to Marlin’s scheduling
mechanism, we expected these flows to evenly share the
port bandwidth. As shown in Figure 6, the rates of each flow
remain consistent, and the total throughput reaches near
100 Gbps. This indicates that the scheduling mechanism of
the scheduling FIFO and scheduler is fair.

Multi-port scheduling. Next, we had the tester initiate one
flow on each port, and these flows are forwarded one-to-
one to different ports on the receiver via the intermediate
switch. In this setup, the tester acts as multiple hosts, each
port sending traffic to other different hosts. This experiment
can be used to verify that the scheduling on each port does
not interfere with each other, and we expected these flows to
individually occupy the bandwidth of each port. As shown in
Figure 7, the rate of each flow can reach 100 Gbps, aligning
with our expectations.

7.3 Congestion Test

In this experiment, we had the tester sequentially initiate
one flow on each port and then sequentially terminate one
flow on each port. These flows are forwarded through the
intermediate switch to the same destination port, thereby
creating congestion. We tested the performance of DCTCP
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Figure 9. CDF of FCT in n-cast-1 scenario, Marlin vs
ConnectX-5. Each of n ports runs 5 flows.

and DCQCN in this scenario. For DCTCP, the parameter
ssthreshold was set to a value that allows the single-flow
throughput to quickly reach the port bandwidth. The param-
eters for DCQCN were configured according to the docu-
mentation provided by NVIDIA [6].

According to the design of DCTCP and DCQCN, these
flows will relinquish bandwidth after experiencing conges-
tion and eventually evenly share the bandwidth at the bottle-
neck. Moreover, after terminating some flows, the remaining
active flows will gradually occupy the available bandwidth.
The results, as shown in Figure 8, indicate that both DCTCP
and DCQCN are capable of evenly sharing the bandwidth
of 100 Gbps across these flows and evenly sharing the avail-
able bandwidth once some of them release their bandwidth.
DCTCP exhibits more obvious throughput oscillations com-
pared to DCQCN. This experiment demonstrates the correct-
ness of both the CC algorithm module and the scheduling
mechanism.

7.4 Flow Fidelity Test

In the flow fidelity experiments, we set up an n-cast-1 sce-
nario to compare the flow completion time (FCT) perfor-
mance of our implemented DCQCN algorithm with the al-
gorithm implemented in commercial RDMA NICs.

Three hosts equipped with Mellanox ConnectX-5 are con-
figured with recommended parameters as mentioned above.
Each NIC has two ports, with port 0 connected to Switch
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Figure 10. WebSearch FCT for a maximum of 65,536 con-
current flows.

A and port 1 connected to Switch B. Switch A and B are
connected with one link. All links are 100Gbps.

We developed a FCT testing tool using the verbs API [15],
with data transmitted through RDMA Write operations. Five
Queue Pairs are created on each host, and use WebSearch [24]
traffic model to generate flows. A new flow is initiated im-
mediately after the completion of the previous one. After
testing the 2-cast-1 and 3-cast-1 scenarios, we replaced the
hosts with our tester, with each port corresponding to the
original port, and ran the same tests with identical parame-
ters. After each flow completes, the FPGA NIC will calculate
the completion time of that flow and send it to the control
plane program for statistics.

As depicted in Figure 9, our implementation demonstrated
consistent performance with commercial NICs in terms of
flow completion time. Due to the proprietary nature of the
DCQCN implementation in commercial NICs, it was not
possible to achieve complete equivalence. In summary, this
experiment validated the fidelity of our tester’s multi-flow
scheduling within a single port and multi-flow competition
compared to commercial NICs.

7.5 Comprehensive Test

Finally, we evaluated the performance of the tester in real-
world scenarios. The tester run both DCTCP and DCQCN
algorithms with maximum number of concurrent flows and
then measured the flow completion time (FCT). The param-
eters for these two CC algorithms are consistent with the
previous experiment.

The tester uses WebSearch traffic model to generate flows.
To maintain the number of concurrent flows and maximize
the throughput of the tester, a new flow will be created
based on the chosen traffic model after each flow completes.
Therefore the arrival time of the flow is determined by the
completion time of the previous flow, rather than following
aPoisson distribution. As a reference, we calculated the ideal
FCT under this scheduling, where each flow evenly shares
the bandwidth at all times, and reflected it in Figure 10 to
validate the correctness of our flow generation.
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The tester is designed to support a maximum of 65,536
concurrent flows and achieve a throughput of 1.2 Tbps. The
cumulative distribution of FCT for each CC algorithm and
traffic model measured by the tester is shown in Figure 10.
Both the DCTCP and DCQCN algorithms perform worse
than the ideal algorithm, and DCQCN shows a significant
improvement in performance compared to DCTCP when
sending short flows, as expected. We measured that each port
can send traffic at close to line rate, with a total throughput
close to 1.2 Tbps.

8 Discussion

The complexity of implementing CC algorithms on
FPGA NIC. The implementation of CC algorithms on FPGA
NIC is primarily constrained by the target single-flow through-
put. For CC algorithms like DCQCN used in data center net-
works, the tester needs to provide line-rate throughput for
a single flow on a single port. Taking a single flow with an
MTU of 1518 bytes as an example, achieving a throughput
of 100 Gbps requires the FPGA NIC to process at a rate of
8.127 Mpps. At an internal FPGA clock frequency of 332 MHz,
RMW operations must be completed in fewer than 40 clock
cycles. Simple operations consisting of multiple additions
and subtractions can be completed within a single clock cy-
cle, and multiplication typically requires several clock cycles.
The clock cycle is primarily consumed by division operations.
For example, after optimizing the cubic root calculation using
lookup tables, Cubic still requires around 100 clock cycles to
process a single packet. However, these types of algorithms
can still operate properly by reducing the packets-per-second
(PPS) per flow and leveraging multiple flows to achieve line
rate. Fortunately, most CCAs in data center networks do not
require such complex operations.

Scalability. The number of flows supported by Marlin de-
pends on the size of the on-chip memory resources and how
much data the CCA needs to store for each flow. In this pa-
per, we utilized 72 Mb of BRAM to support 65,536 flows, and
there remains an additional 276 Mb of URAM available for
scaling to even more flows.

Alternatives to FPGA NIC. The primary reason for using
FPGA NIC in Marlin is its ability to provide extremely high
packet processing rates. If some performance goals of the
tester can be relaxed, other alternatives with lower cost and
lower entry barriers can be considered. For scenarios where
traffic characteristics involve high concurrency rather than
high throughput for individual flows, devices based on many-
core architectures can be used to achieve high throughput for
the entire tester through concurrent processing of multiple
flows. Additionally, for scenarios where higher packet pro-
cessing latency is acceptable, it may be possible to use GPUs
to execute CC algorithms by merging multiple congestion
information to increase concurrency in processing.
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Feasibility of implementing receiver-driven CC algo-
rithms. The design goal of Marlin is to validate that the
combination of programmable switches and FPGA NICs can
generate CC traffic at the Tbps level. The FPGA NIC per-
forms the sender-side algorithm, controlling the single-flow
rate through a congestion window or sending rate (such as
Reno and DCQCN). Receiver-driven CC algorithms can also
be implemented using programmable switches and FPGA
NICs, as indicated by the dashed lines in Figure 2. Common
receiver-driven algorithms control the sending rate at the re-
ceiver end, which can still be achieved with the FPGA design
shown in Figure 4.

9 Conclusion

We present Marlin, the first network tester capable of sup-
porting CC deployment effectiveness testing. Marlin lever-
ages a hardware architecture that combines programmable
switches and FPGA NICs to generate Tbps-level CC traffic.
Using a single programmable switch pipeline and one 100
Gbps port of an FPGA NIC, our tester achieved concurrency
of 65,536 flows and a throughput of 1.2 Tbps, while main-
taining high fidelity in replicating real-world scenarios and
enabling fine-grained tracing.
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