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ABSTRACT

Network monitoring is essential for network management and op-
timization. In modern data centers, fluctuations in flow rates and
network congestion events (e.g., microbursts) typically manifest
on a microsecond timescale. However, the time granularity of net-
work monitoring systems has not been refined correspondingly
to efficiently capture these behaviors. Attaining the monitoring
granularity at the microsecond scale can greatly facilitate network
performance analysis and management, but poses considerable
challenges regarding memory, bandwidth, and deployment costs.
We propose µMon, a novel microsecond-level network monitoring
system for data centers. The key of µMon is WaveSketch, an inno-
vative algorithm that measures and compresses flow rate curves
using in-dataplane wavelet transform. WaveSketch allows for more
accurate characterization of application traffic patterns and aids in
profiling transport algorithms. Furthermore, by combining the fine-
grained flow rate measurements with network-collected congestion
information, µMon can ‘replay’ congestion events to analyze their
cause and impact. We evaluate µMon through testbed deployment
and simulations at a granularity of 8.192 µs. The evaluation results
demonstrate that µMon can achieve a 90% accuracy in microsecond-
level rate measurements with an average of 5 Mbps bandwidth over-
head per host. Additionally, it can capture 99% heavy congestion
events with 31-82 Mbps bandwidth overhead per switch.
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1 INTRODUCTION

Network monitoring is essential for network management and
optimization. In general, a network monitoring system serves two
primary purposes. For one thing, it measures application traffic,
providing insights into flow size distribution and flow behaviors
such as average rate and rate variations. For another, it monitors
network events, including the detection and analysis of congestions
caused by microbursts [68], load imbalances [7], incast [34], among
others.

In modern data centers, fluctuations in flow rates and network
congestion events (e.g., microbursts) typically manifest on a mi-
crosecond timescale. This is attributed to the deployment of ultra-
low latency forwarding devices and network stacks that utilize
technologies like kernel bypass (e.g., user-space TCP [28, 36, 74])
and hardware offloading (e.g., TOE [50], RDMA [21]). Regarding
the flow behaviors, low latency in data centers enables congestion
signals (e.g., congestion notification packets (CNP)) to reach senders
more quickly and significantly adjusts flow rates at the microsec-
ond scale. Capturing these fine-grained rate variations is valuable
for understanding network performance and debugging transport
algorithms. As for the network events, flows can be generated at
the microsecond scale with a high initial rate [75], converging on
specific links and increasing the likelihood of microbursts. Detect-
ing and analyzing these transient congestions is essential because
they can significantly increase network latency and cause jitters in
application performance [29].

However, the time granularity of network monitoring systems
has not been refined correspondingly to efficiently capture the fine-
grained network behaviors. Traditional monitoring systems (e.g.,
Netflow [14], SNMP [16]) operate at the granularity of seconds to
minutes. They can only obtain the average flow rate and struggle to
capture the microsecond-level flow rate variations. Moreover, the
coarse-grained monitoring is prone to missing transient congestion
events in the network. Existing schemes [24, 26, 39, 53, 63, 71] on
flow-level measurement achieve millisecond granularity, which is
still three orders ofmagnitude coarser than the timescale of data cen-
ter dynamics. Recently, some monitoring tools with microsecond-
level precision have emerged. However, these tools generally con-
centrate on interface-level statistics [20] or detailed analysis of host
stack performance [49, 66]. At present, few systems attempt to
efficiently monitor fine-grained flow behaviors at scale.

Attaining microsecond-level monitoring in data centers poses
significant challenges regarding memory, bandwidth, and deploy-
ment costs. As for microsecond-level flow rate measurements, a
straw-man solution is to assign existing measurement schemes to
each finer-grained time window directly. Specifically, if we refine
the time granularity from 10 ms to 10 µs, the solution requires 1,000
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times more counters in the worst case, resulting in an unacceptable
bandwidth overhead. Regarding microsecond-level congestion de-
tection, recent efforts [29, 54, 73] rely on programmable switches to
obtain queue information directly in the data plane. Nevertheless,
capturing congestion events on commodity switches also deserves
investigation, as many data centers still use fixed-function switches.

We propose µMon, a novel microsecond-level network monitor-
ing system for data centers. Our key idea is to develop a memory-
efficient scheme for measuring microsecond-level flow rates. In this
way, we can observe the microscopic characteristics of application
flows. Furthermore, by combining the fine-grained flow rate mea-
surements with network-collected congestion information, µMon
can ‘replay’ congestion events to analyze their cause and impact.
Our contributions can be summarized as follows:

First, we introduce WaveSketch, a novel measurement algorithm
designed to accurately measure flow rates at the microsecond level.
WaveSketch abstracts flow rate curves as waveforms and then com-
presses them using wavelet transform theory [67]. By leveraging
the capability of wavelet transform for multi-resolution analysis,
WaveSketch captures the most significant features of flow rate
curves while discarding minor components, thus achieving a good
balance between compression ratio and measurement accuracy. To
integrate the wavelet transform into network measurement, we
make targeted designs in the mother wavelet, coefficient selection,
and streaming updates. We demonstrate that WaveSketch has a
computational complexity of 𝑂 (1) and provide a prototype for
hardware implementation.

Second, we propose a lightweight congestion event capture
mechanism on commodity switches. We leverage the fact that pack-
ets are ECN-marked when congestion events occur [8, 75]. Inspired
by Everflow [76], we obtain information about the flows involved
in congestion events by matching and mirroring the congestion
experienced (CE-marked) packets to an analyzer. Additionally, we
mitigate the bandwidth overhead caused by duplicating packets
of elephant flows by packet sampling. We realize the matching,
packet sampling, and mirroring operations with common functions
available in commodity switches [1, 2, 4, 13].

Third, we present how to perform network-wide synchronized
analysis on an analyzer and give several use cases. Themicrosecond-
level rate measurements can be utilized to perform fine-grained
traffic analysis, such as in-depth analysis of transport process and
debugging underutilization. The detected congestion events can be
used to analyze the micro-scale load situation of the network and
provide the distribution of congestion duration. More importantly,
by pushing the rate curves and events together, network operators
can replay congestion events by plotting the rate variation of the
associated flows near the event occurrence.

We evaluate µMon through testbed deployment and simulations
at a granularity of 8.192 µs. In a network under 15% load running
the Hadoop workload [48], WaveSketch can achieve 3.5-57x higher
accuracy (across four metrics) than baseline solutions in measuring
microsecond-level flow rates, with an average bandwidth require-
ment of 5 Mbps per host. Besides, µMon can achieve a 99% recall
for congestions exceeding ECN KMax threshold with 31-82 Mbps
bandwidth per switch, with main flows captured. Operators can
further decrease the overhead at the expense of reduced accuracy.

This work does not raise any ethical issues.
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Figure 1: Changes in flow rate at different timescales. The

flow is experiencing contention with background traffic and

exhibits oscillatory behavior.

2 MICROSECOND-LEVEL NETWORK

MONITORING

In this section, we begin by highlighting the importance of en-
abling microsecond-level network monitoring in data center net-
works (DCNs). Next, we outline our main objectives, the associated
benefits, and practical challenges.

2.1 Background

Data center networks now boast ultra-low end-to-end latency mea-
sured in tens of microseconds [23, 37]. On the one hand, current
switching hardware can complete packet forwarding within a range
of hundreds of nanoseconds to a few microseconds [43]. On the
other hand, advanced transport protocols like RDMA minimize la-
tency on the host side by utilizing techniques such as kernel bypass
and hardware offloading. As a result, the performance enhance-
ments in data centers lead to flow behaviors and network congestion
events occurring at the microsecond timescale.

As for microsecond-level flow behaviors, application traffic can be
rapidly initiated at the microsecond scale, converging on specific
network links and leading to congestion. Congestion signals such
as congestion notification packets (CNP) are returned within tens
of microseconds following the network’s Round-Trip Time (RTT),
leading to noticeable adjustments in flow rates. Figure 1 showcases a
flow rate curve gathered from our RDMA testbed, where we execute
the WebSearch workload [8] and induce traffic contention within a
single bottleneck topology. In the 10-µs observing granularity, the
flow rates reveal intricate patterns characterized by peaks, deep
troughs, and recoveries. These patterns reflect the initial throughput
of the flows, adjustments made in response to congestion, recovery
of flow rate, and potential oscillations that may raise concerns.
However, most of the existing flow measurement methods work at
tens of millisecond granularity [26, 39, 53]. As shown in Figure 1,
the 10-ms observing window yields only an average perspective,
masking the subtle complexities and transient behaviors evident at
the microsecond timescale.

As for microsecond-level congestion events, network congestion
such as microbursts, packet loss, load imbalance, and PFC pauses
frequently occur in data centers [75]. These network events increase
the network latency and cause performance jitters [29]. With the
rise in link bandwidth, the accumulated packets in the queue will
be quickly emptied, making the capture timing of these congestion
events fleeting. However, existing Simple Network Management
Protocol (SNMP) systems and vendor-specific interfaces typically
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Figure 2: Taxonomy of microsecond-level network monitor-

ing systems.

work at the millisecond to the minute level [47], making it impossi-
ble to accurately capture transient congestion events, analyze the
root cause and take targeted solutions.

2.2 Objectives and Benefits

To capture fine-grained flow behaviors and congestion events, we
urgently need to enhance the monitoring time granularity of the
data center networks to the microsecond timescale. Recently, a
group of works has achieved microsecond-level precision monitor-
ing from various aspects. As shown in Figure 2, these efforts can be
broadly classified into two twomain categories: trafficmeasurement
and network event detection.

For traffic measurement, Millisampler [20] is a data-center-scale
monitoring system that measures microbursts at interface granular-
ity (e.g., the total received and transmitted bytes of a port or queue
in a short time window). However, the per-flow measurements are
not within their design scope. Valinor [49] and Lumina [66] focus
on in-depth analysis of host/NIC stacks by tracking every packet or
sk_buff arriving event. Nevertheless, reducing resource overhead
to facilitate network-scale deployments is not their primary objec-
tive. For network event detection, state-of-the-art systems such as
ConQuest [12] and BurstRadar [29] need to leverage emerging pro-
grammable switches. Moreover, ConQuest’s support for flow granu-
larity measurements focuses on immediate in-data-plane queries. It
recycles expired data and thus cannot obtain complete rate curves.
In this paper, we aim to achieve the following two new objectives:
• Microsecond-level flow rate measurements at scale.We
aim to track rate variations for each flow throughout its lifecycle
at the microsecond level, capturing both burst rate fluctuations
and long-term trends in flow rate changes. The solution should
be lightweight to facilitate network-wide deployments.
• Congestion detection/analysis on commodity switches.

We aim to detect transient congestion events entirely using
commodity switches, as many data centers still use legacy de-
vices. More importantly, we must enable event context replay
to analyze the causes and subsequent effects of the event.

Enabling the two objectives will bring significant benefits (B#) in
following aspects:
B1. Analyzing performance issues of applications and trans-

port algorithms: Fine-grained flow rate information can accu-
rately reflect the network behavior of applications. For instance,
we can access the working state of the transport-layer algorithms
by observing the flow rates at the round-trip time (RTT) scale. This
analysis helps determine whether the congestion control protocol
operates correctly (e.g., convergence, fairness) and whether the
related parameters are appropriately set. Besides, the information
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Figure 3: The amplification factor of measurement data vol-

ume introduced by 10-us window measurement.

can also help us infer the reasons for the low throughput. For exam-
ple, multiple gaps in a flow rate curve indicate that the insufficient
throughput results from inadequate application data.
B2. Understanding themicro-scale load status of the network:

Capturing congestion events can provide a fine-grained understand-
ing of the load conditions of links in the network. By combining
it with microsecond-level flow rate information, we can replay
the causes and consequences of the events. For example, when a
microburst occurs, we can query the relevant flow rate near the
corresponding time to distinguish the root cause and the event’s
subsequent impact on victim flows. As a result, we can identify
the links most prone to congestion and the main contributors and
victims of the bottlenecks, which enables us to develop targeted
strategies to prevent future congestion.
B3. Modeling microscopic traffic behavior and guiding net-

work specifications: Existing traffic models are idealized as they
do not consider the operational mode of the upper-layer application
or the interference caused by the hardware and software operating
environment. With the microsecond-level measurements, operators
can model microscopic traffic behavior that better fits real network
workloads. Additionally, information about peak rates and duration
has significant implications for optimizing chip parameters, such
as buffer size, ECN marking, and meters.

2.3 Challenges

Enablingmicrosecond-level networkmonitoringwill greatly benefit
network management, analysis, and optimization. However, there
is no such thing as a free lunch. There are three major challenges
(C#) to achieving the two objectives:
C1. How to reduce significant memory and bandwidth over-

head? In flow rate measurements at a time granularity 𝛿 , the num-
ber of required counters for a flow 𝑓 is 𝑛(𝑓 , 𝛿) = 𝑡𝑓

𝛿
, where 𝑡𝑓

denotes the flow’s active time. The total expected number of coun-
ters in time granularity 𝛿 for a specific traffic workload is 𝑁 (𝛿) =∑

𝑓 𝑛(𝑓 , 𝛿). We evaluate the counter increase factor 𝑁 (10𝜇𝑠 )
𝑁 (10𝑚𝑠 ) (i.e.,

refining the time granularity from 10ms to 10 µs) under two popular
workloads. As shown in Figure 3, the counters increased by 34.4x in
Facebook Hadoop [48] and 387x in DCTCPWebSearch [8] when the
link load is over 35%. Suppose each measurement window uploads
20 KB of measurement data every 10 ms. Recklessly expanding to a
10 µs granularity will result in a bandwidth consumption of up to
6.34 Gbps in the WebSearch workload when the link load is over
35%, and the situation worsens when the link load becomes heavier.
The data volume mentioned refers to that of a single device. When
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multiplied by tens of thousands of network devices, the resulting
data volume becomes overwhelming.

State-of-the-artmeasurement systems [24, 26, 39, 53, 63, 71] work
at tens of milliseconds of granularity. Directly refining their mea-
surement window to the microsecond level results in unacceptable
bandwidth overhead. Using traditional compression methods (e.g.,
Huffman coding [38], LZW [42]) in the data plane is impractical
due to their complex computational requirements, such as handling
variable bit widths, executing floating-point operations, and dy-
namic memory allocation. If we deploy them using CPUs, we first
need to transfer the extensive counters from the data plane to the
control plane, which will significantly strain device PCIe interfaces
and computation resources. Persistent sketches [60] are a class of
multi-version data structures from database communities. They
use the piecewise-linear approximations (PLA) method [45], which
requires complex calculations involving the half-plane intersection
of two polygons.
C2. How to capture transient congestion events in the net-

work? The current network observation methods in data centers
typically include polling hardware counters through control plane
interfaces, which operate at the millisecond to the minute level.
However, they may fail to capture congestion events that occur
between two polling intervals. Additionally, the counters can only
provide information about the queue length without further analy-
sis of event details. For instance, they cannot differentiate which
applications contribute to congestion and how it impacts the net-
work. To address these limitations, recent efforts [29, 54, 73] have
leveraged programmable switches to achieve microsecond-level
event monitoring by directly accessing the queue length in the
data plane. Nevertheless, we must take commodity switches into
account in our design, as many data centers still use fixed-function
switches.
C3. How to distribute measurement functions among net-

work devices? To achieve microsecond-level traffic measurement
and congestion event detection, deploying dedicated measurement
modules in network devices is imperative. However, simultaneously
deploying the two functionalities across all network devices would
be overkill since it will result in additional bandwidth overhead (e.g.,
redundant traffic statistics) and necessitate the programmability of
all devices. Designing a reasonable microsecond-level monitoring
architecture and coordinating analysis from distributed measure-
ments remains an unexplored area of research.

3 µMON OVERVIEW

This section gives a high-level introduction of µMon. As shown
in Figure 4, µMon has three functional components deployed at
different data center locations.
µFlow measurement at hosts. We perform microsecond-level
flow (µFlow) measurements at end hosts. To address C1, we design
WaveSketch, which leverages wavelet transform theory to compress
flow rate counters efficiently. The wavelet transform is a powerful
mathematical tool used for signal analysis. It can capture the most
significant features of a signal at multiple scales, guiding subsequent
compression. In §4, we introduce the fundamental principles of
the wavelet transform and present how WaveSketch applies this
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Figure 4: µMon system overview

technology to network measurement, including basic structure,
update and query procedures, and hardware implementation.
µEvent detection at switches. We detect transient congestion
events (µEvent) in network switches. To address C.2, we imple-
ment an event capture solution based on Access Control Layer
(ACL) tables and remote mirroring, which are common functions in
commercial switches. In particular, we mirror the packets involved
in congestion events to the analyzer and reduce the bandwidth
overhead through sampling. In §5, we introduce how to capture
transient congestion events in the network efficiently.
Network-wide analysis at µMon analyzer. The µFlow measure-
ments and detected µEvents are sent to a unified analysis platform
for network-wide analysis. Operators can utilize µMon analyzer to
address numerous pain points that were previously unsolvable by
monitoring systems with coarse time granularity. In §6, we intro-
duce how to conduct the network-wide synchronized analysis and
introduce several typical use cases of µMon, such as fine-grained
application performance analysis and congestion event replay.

The above architecture solves C.3 by considering the character-
istics of different network locations. Specifically, we only perform
microsecond-level flow measurements at end hosts, where we can
cover all application traffic without introducing repeated statis-
tics. Moreover, using technologies such as eBPF [57] and smart-
NICs [17, 32, 56], we can easily deploy customized measurement
algorithms at hosts with a relatively acceptable cost. As for con-
gestion events, since they can only be captured on the network
side, we use common functions available in commodity switches,
making it feasible to implement in existing data centers.

4 µFLOWMEASURING AT HOSTS

This section provides a detailed description of µFlow measurements
at end hosts. We first introduce the wavelet transform and explain
why we adopt wavelet methods to compress flow rates and the
challenges of applying them to network measurements (§4.1). Next,
we delve into the design ofWaveSketch and elucidate how it utilizes
the wavelet approach for network measurements (§4.2). Finally, we
give the hardware implementation of WaveSketch (§4.3).

4.1 Preliminary on Wavelets Transform

The wavelet transform [67] is a powerful mathematical tool for
analyzing time series signals. In flow rate measurement, the concept
of ‘signal’ can be regarded as the variation of a flow’s packet or

277



µMon: Empowering Microsecond-level Network Monitoring with Wavelets ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Appro 𝑎11 =16 𝑎12 =9 𝑎13=6 𝑎14=10

L1
Detail d11=−2 𝑑12 =3 𝑑13 =−2𝑑14 =−2

Appro 𝑎21=16+9=25 𝑎22=6+10=16

Detail 𝑑21 =16−9=7 𝑑22 =6−10=−4

Appro 𝑎31=𝑎21+𝑎22 =25+16=41

Detail 𝑑31 =𝑎21−𝑎22=25−16=9

L2

L3

41 9 7 −4 −2 3 −2 −2
𝑎31 𝑑31

7
9 6

3 2
4 4

6

Transformation

Reconstruction

Compression

coefficient selection

41 9 7 −4 0 3 0 0

25 16 7 −4 0 3 0 0

16 9 6 10 0 3 0 0

8 8 6 3 3 3 5 5

Original

Reconstuct

𝑑14𝑑21 𝑑22 𝑑11 𝑑12 𝑑13

(a±d)/2

...

(a±d)/2

Figure 5: An example of wavelet-based counter series com-

pression in µMon.

byte counters within consecutive time windows. In the subsequent
paper, we will interchange ‘signal’ and ‘sequence of count values’
for ease of expression.

Discrete Wavelet Transform (DWT [51]) is the discrete version
of the wavelet transform. As shown in Figure 5, a DWT-based signal
compression involves three stages: transformation, compression,
and reconstruction. Given a signal 𝑓 of length 𝑛, the transforma-
tion stage hierarchically decomposes it into a set of basis functions
known as wavelets. The decomposition process, performed over 𝐿
levels, yields two categories of coefficients: approximation coeffi-
cients and detail coefficients. The coefficients can be understood as
the weight of a particular wavelet on the original signal. At each
level, a low-pass filter generates the approximation coefficients,
representing the signal’s coarse or average characteristics, while
a high-pass filter produces the detail coefficients, encapsulating
the signal’s fine or rapidly changing details. The wavelets in the
high-pass filter are generated from a single mother wavelet 𝜓 (𝑥)
through scaling and translation, and their coefficients𝑊𝑓 on the
signal are given by:

𝑊𝑓 [𝑠, 𝑡] =
1
√
𝑠

∞∑︁
𝑖=0

𝑓 [𝑖]𝜓
(
𝑖 − 𝑡
𝑠

)
(1)

where 𝑠 is the scale parameter and 𝑡 is the translation parameter. Fi-
nally, the last-level approximation wavelets and the detail wavelets
at all 𝐿 levels form a set of orthogonal bases with the dimension
𝑛. Provided that no coefficients are discarded, the reconstruction
phase of the DWT can accurately restore the original signal from
these coefficients.

The compression process occurs between the transformation
process and the reconstruction process. It removes some insignifi-
cant coefficients by treating them as zeros. If some coefficients are
already zero, lossless compression can be directly applied. Remov-
ing non-zero coefficients can achieve further compression while
producing some reconstruction errors. In the example shown in
Figure 5, we remove three smallest detail coefficients 𝑑11, 𝑑13, 𝑑14.
The reconstructed signal still preserves the fundamental waveform.
Note that the operations in Figure 5 is a customized version of
wavelet transform, which will be described in detail in § 4.2.

The most advantageous point of the wavelet transform lies in
its ability to analyze signal characteristics at different scales, also
called multi-resolution analysis. It can automatically capture the
strength of the signal changes at various time points and time scales.
Putting this feature in the flow measurement scenario, it can an-
alyze varying degrees of rate change, including short-term jitters
(i.e., shallow-level detail coefficients) and long-term ups and downs
(i.e., deep-level detail coefficients). Therefore, when performing
compression, it can capture the components that best characterize
the signal from different scales and discard those minor compo-
nents, thus achieving a good balance between compression ratio
and measurement accuracy.

Although the wavelet transform is quite suitable for flow rate
measurement, applying the wavelet transform in network measure-
ment still requires addressing three problems. First, we need to
simplify the calculation of coefficients in the wavelet transform,
which involves complex multiplication and floating-point opera-
tions, as shown in Equation (1). Second, an effective strategy for
coefficient selection is required to balance the compression andmea-
surement accuracy. Last, the wavelet transform described above is
performed offline in a complete sequence. However, to accommo-
date the limitations of memory and enable compression without
waiting for all windows to finish, we need to adapt the wavelet
transform to an online process.

4.2 WaveSketch DESIGN

We introduce WaveSketch, which applies the wavelet-based com-
pression to network measurement and solves the above three prob-
lems. We present the two versions of WaveSketch in turn: a basic
version and a full version.
Structure of the basic WaveSketch. As shown in Figure 6, the
basic WaveSketch is built upon a Count-Min sketch [15] consisting
of 𝑑 ·𝑤 buckets. In WaveSketch, we incorporate an internal time
dimension to refine each bucket to a microsecond-level window
sequence with length 𝑛. Specifically, we introduce several variables
in each bucket, including an initial window id𝑤0, current window
offset 𝑖 , current window count 𝑐 , approximation coefficients set A
and detail coefficients set D. The first packet accessing a bucket
will initialize𝑤0, marking the beginning of the window sequence.
𝑖 denotes the current window offsets to 𝑤0 while 𝑐 denotes the
current window’s packet/byte count value. During a measurement
period 𝑇 (e.g., 10 ms), each bucket generates a sequence of window
counters with a maximum length of 𝑛, denoted as 𝑐1, 𝑐2, . . . , 𝑐𝑛 .
Whenever a window counter 𝑐𝑖 finishes counting, we immediately
perform wavelet transformation for this counter. For the generated
wavelet coefficients, we perform a compression process, which
filters out unimportant coefficients and saves important coefficients
in sets A and D, where |A| + |D| ≪ 𝑛.
Update of the basic WaveSketch. The update of WaveSketch
is similar to that of the Count-Min Sketch. In both cases, a set
of counter buckets are selected based on 𝑑 pairwise independent
hash values applied to flow identifiers, such as 5-tuple. However,
WaveSketch introduces three internal stages for each bucket update:

• Counting.When a new packet arrives at𝑤 𝑗 with value 𝑣 , if the
packet still belongs to the current counting window𝑤𝑖 (i.e., 𝑖 ==
𝑗 ), 𝑐 is incremented by 𝑣 , and the update is terminated. Otherwise,
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Figure 6: WaveSketch basic version

𝑖 and 𝑐 are passed to the transformation and compression stages.
After that, 𝑖 and 𝑐 are set to 𝑤 𝑗 − 𝑤0 and 𝑣 , respectively, for
counting the packets in the next microsecond-level window.
• Transformation. In this stage, wavelet coefficients are calcu-
lated in an online manner every time a window counter 𝑐𝑖 is
finished. We adopt a variant of the Haar wavelet [52] as the
mother wavelet, which is defined as:

𝜓 (𝑖) =


1 if 0 ≤ 𝑖 < 0.5,
−1 if 0.5 ≤ 𝑖 < 1,
0 otherwise.

(2)

As a step function, the Haar wavelet is adept at encapsulating
significant local variations within a signal. This feature helps us
capture rapid flow rate changes. More importantly, it is highly
suitable for data-plane implementation because it can convert
the multiplication operations into addition and subtraction op-
erations when calculating the coefficients. For instance, for a
wavelet with scale 𝑠 = 2 and translation 𝑡 = 0, its coefficient can
be simplified to 1√

2
(𝑓 [1] − 𝑓 [0]), according to Equation (1). The

multiply 1√
2
operation is used to maintain energy conservation.

We eliminate it in WaveSketch while the entire transformation
maintains its reversibility. As shown in Figure 5, during the
transformation, an important observation is that each window
counter operates on a specific last-level approximation coef-
ficient and the latest detail coefficient within each level. We
use this feature to directly calculate the last-level approximate
coefficients and implement the online transformation of the de-
tail coefficients at each level. As shown in Algorithm 1, we use
window offset 𝑖 to determine the position of the last-level approx-
imation coefficient (lines 14-15) and how the counter contributes
to each-layer latest detail coefficients (lines 22-27).
• Compression. The transformation incrementally produces a
small set of last-level approximation coefficients with size 𝑛

2𝐿 . We
retain all of them to accurately reconstruct the total size of a flow.
For each layer, one detail coefficient is generated for every 2𝑙+1
counter. When a detail coefficient is generated, the compression
stage selectively retains the top-k most significant coefficients
with a weight 1/

√
2𝑙 . This approach minimizes the Euclidean

Distance between the reconstructed and original counter series
(please see the proof in Appendix A). Unfortunately, the ideal
algorithm is feasible for CPUs but needs to be simplified to
implement on an ASIC data plane. We approximate the weighted
and top-k operations for a practical hardware implementation,
which will be introduced in § 4.3.

Computational complexity analysis. The pseudo-code of the
WaveSketch update is shown in Algorithm 1. For most packets, the

Algorithm 1 WaveSketch Counter Update
1: Initialize𝑤0, 𝑖, 𝑐 ← 0
2: Initialize A ← array(𝑠𝑖𝑧𝑒 = 𝑛/2𝐿)
3: Initialize D ← priority_queue(𝑠𝑖𝑧𝑒 = 𝐾)
4: Initialize _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 ← array(𝑠𝑖𝑧𝑒 = 𝐿)
5: procedure Counting(𝑤 𝑗 , 𝑣)
6: if 𝑤0 == 0 then
7: 𝑤0 ← 𝑤 𝑗

8: end if

9: if 𝑤 𝑗 == 𝑤0 + 𝑖 then
10: 𝑐 ← 𝑐 + 𝑣
11: else

12: 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑖, 𝑐)
13: 𝑐 ← 𝑣, 𝑖 ← 𝑤 𝑗 −𝑤0
14: end if

15: end procedure

16: procedure Transformation(𝑖, 𝑐)
17: 𝑝𝑜𝑠_𝑎 ← 𝑖 >> 𝐿
18: A[𝑝𝑜𝑠_𝑎] ← A[𝑝𝑜𝑠_𝑎] + 𝑐
19: for 𝑙 ← 0, . . . , 𝐿 − 1 do
20: 𝑝𝑜𝑠_𝑑 ← 𝑖 >> (𝑙 + 1)
21: if 𝑝𝑜𝑠_𝑑 > _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙] .𝑖𝑑𝑥 then

22: 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑙, _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙])
23: _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙] = {𝑝𝑜𝑠_𝑑, 0}
24: end if

25: 𝑠𝑖𝑔𝑛_𝑑 ← (𝑖 >> 𝑙)&1
26: if 𝑠𝑖𝑔𝑛_𝑑 == 0 then
27: _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙] .𝑣𝑎𝑙 ← _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙] .𝑣𝑎𝑙 + 𝑐
28: else

29: _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙] .𝑣𝑎𝑙 ← _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙] .𝑣𝑎𝑙 − 𝑐
30: end if

31: end for

32: end procedure

33: procedure Compression(𝑙, 𝑑𝑒𝑡𝑎𝑖𝑙)
34: Retain the top-K 𝑑𝑒𝑡𝑎𝑖𝑙 coefficients in D by comparing

1√
2𝑙
|𝑑𝑒𝑡𝑎𝑖𝑙 .𝑣𝑎𝑙 |

35: end procedure

update process only requires a counter accumulation with a time
complexity of𝑂 (1). When a packet triggers a new countingwindow,
the old counter must be transformed and compressed (lines 18-21),
introducing additional computational overhead. Assume that there
are 𝑚 packets within the measurement period 𝑇 , divided into 𝑛
microsecond level windows. Using amortized analysis, we demon-
strate that the average update cost per packet is𝑂 (1+𝜖 (𝐿 + 𝑙𝑜𝑔𝐾)),
where 𝜖 = 𝑛

𝑚 ≤ 1 (please see Appendix B for details). When the
network load is heavy, 𝜖 = 𝑛

𝑚 → 0, and 𝐿 + 𝑙𝑜𝑔𝐾 is a small constant
based on the desired compression ratio. Therefore, the average
update cost per packet is still 𝑂 (1). Although a higher complex-
ity is required for the worst-case transformation and compression,
one key feature is that WaveSketch can operate independently on
each level’s coefficient, as shown in Algorithm 1 (lines 16-28). The
feature enables an efficient hardware implementation (see § 4.3).
Compression ratio analysis. Assuming the number of window
counters is denoted as 𝑛. For each bucket, the algorithm requires
storing 𝑛

2𝐿 approximation coefficients in A, 𝐾 detail coefficients
in D, and 𝐿 temporary detail coefficients (referred to as variable
_𝑑𝑒𝑡𝑎𝑖𝑙𝑠 in Algorithm 1). When transmitting data to the analyzer,
it only needs to send 𝑤0, A and D, resulting in bandwidth us-
age of 𝑂 ( 𝑛2𝐿 + 𝐾). Therefore, the compression ratio is given by
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( 𝑛2𝐿 + 𝛼 · 𝐾)/𝑛, where 𝛼 > 1 represents the additional metadata of
reserved detail coefficients, such as the detail coefficients’ level and
index. For instance, if we set 𝐿 to 8 and 𝐾 to 32, assuming 𝛼 is 1.5,
and considering a window sequence with a length of 𝑛 = 2000, the
expected compression rate is 0.028. This implies that when mea-
suring a flow of 20 ms at a granularity of 10 us, WaveSketch can
achieve the 0.028 compression rate. Increasing 𝐿 or decreasing 𝐾
can improve the compression rate, and the compression effect will
be more obvious for a longer measurement period 𝑇 with larger
𝑛. As a trade-off, the increase of 𝐿 will consume more computing
resources while reducing 𝐾 would lose details of flow rate changes.
We discuss the parameter settings in detail in § 7.1.
Query of the basic WaveSketch. The query of WaveSketch is
similar to Count-Min Sketch, which selects 𝑑 buckets by 𝑑 hash
functions and returns the one with the smallest query value among
the 𝑑 buckets. The difference is that a reconstruction process is re-
quired for each bucket. The reconstruction is to recover the original
signal from the detail and approximation coefficients, which should
be performed in the µMon analyzer. As shown in Figure 5, the
reconstruction begins at the deepest level. The approximation coef-
ficients are upsampled with the corresponding detail coefficients to
reconstruct the approximation coefficients at the shallower level.
In particular, for the approximation coefficient 𝑎𝑙,𝑖 and detail coeffi-
cient 𝑑𝑙,𝑖 of layer 𝑙 , we can obtain two approximation coefficients
of layer 𝑙 − 1, which are 𝑎𝑙−1,2𝑖−1 =

𝑎𝑙,𝑖+𝑑𝑙,𝑖
2 and 𝑎𝑙−1,2𝑖 =

𝑎𝑙,𝑖−𝑑𝑙,𝑖
2

respectively, where 𝑖 = 1, . . . , 𝑛2𝑙 . For the detail coefficients that are
not preserved, we treat them as 0. This process is repeated, pro-
gressively using shallower-level detail coefficients until the original
signal is fully reconstructed. Due to space constraints, the detailed
reconstruction algorithm is presented in Appendix C.
The full version of WaveSketch. To realize the objectives of ap-
plication traffic analysis, it is necessary to have explicit knowledge
of the fine-grained rate information of heavy flows. The full WaveS-
ketch consists of a heavy part and a light part, serving heavy flows
and mice flow, respectively. The heavy part is a hash table with a
flow key, a counter bucket, and a vote in each row. It elects heavy
flows and directly applies wavelet-based compression for each flow.
The light part is a basic version WaveSketch used to measure all
mice flows but introduce hash collisions. Due to the existence of
the temporal dimension, hash collisions do not necessarily result in
counting errors, as they can act in different time windows. There-
fore, the width𝑤 of WaveSketch is usually smaller than traditional
sketches, as it is set according to the number of concurrent flows
in a microsecond-level window rather than the total number of
flows during the entire measurement period. Moreover, the hash
process can effectively aggregate those mice flows into a small
set of elongated flows, which can be considered background flows
outside the heavy flows. It has a positive effect on wavelet-based
compression since it is easier to achieve a better compression rate
on a long sequence.

We use majority vote [33] to elect heavy flows from mice flows,
an algorithm widely applied to existing sketches [55, 63] for heavy-
hitter detection. When a heavy candidate flow is evicted, a new
challenge is that the 𝑛

2𝐿 + 𝐾 wavelet coefficients in the heavy part
are not easily evicted to the light part in WaveSketch. To address
this, we update the heavy and light parts simultaneously when

𝑤0

𝑖

𝑐
approx

judge if new 
window

detail-l1

detail−l2

detail−l3

..
.

compute multi-level 
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counterInit 𝑤0
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Figure 7: WaveSketch implementation in PISA architectures.

Blue boxes denote buckets in registers.

heavy flow packets arrive. In this way, when a heavy candidate
is evicted, we only need to cancel the heavy part directly since it
has been completely counted in the light part. When querying, the
value of the light part may be overestimated due to the existence
of heavy flows, so we need to subtract the value of the heavy part
flows when reconstructing the light part.

4.3 WaveSketch Implementation

There are two main challenges in implementing a WaveSketch. The
first is the long logic of computing the multi-level wavelet coeffi-
cients. The second is the selection of weighted top-k coefficients
during the compression stage.
CPU Implementation. The first challenge does not affect CPUs
since they do not impose a limit on the logical length. As for se-
lecting the top-k coefficients, we can efficiently accomplish this
task using min-heaps. In addition, the multi-row sketch updating
and the multi-level wavelet coefficient calculations can be further
accelerated by using Single Instruction Multiple Data (SIMD) in-
structions [55, 69].
Hardware Implementation. While the two challenges can be
easily addressed on CPU-based platforms, they pose difficulties for
hardware implementation based on ASIC chips with a pipelined
architecture, such as Protocol-Independent Switch Architecture
(PISA [10]). Specifically, the resource utilization of a pipelined ar-
chitecture is always determined by the longest logic of an algorithm.
Although the transformation and compression stages occur only on
a small number of packets (i.e., the last packet of amicrosecond-level
window), we must pre-allocate sufficient computational resources
for the worst-case logic in the hardware pipeline. In addition, the
weight calculation with 1√

2
(i.e., in the weight 1√

2𝑙
) and the top-k

election are also unrealistic in PISA hardware chips.
We first leverage the property that the computation of the detail

coefficients at different levels in WaveSketch is mutually indepen-
dent. As shown in Figure 7, we can compute these coefficients in
parallel (Stage 3, 4). This dramatically reduces the logic length of
the algorithm. For the weighted top-k election, we approximate the
process using a branching and thresholding method. Specifically,
we observe that as the level increases, the weights are as follows: 1√

2
,

1
2 ,

1
2
√
2
, 14 , . . .We perform the weighted comparisons based on odd

and even levels separately using two priority queues. This way, the
weight calculation between coefficients with the same parity will

280



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Zheng et al.

Match (ECN) Match (PSN) Action

(0b) 11 (0b) *000 Mirror
... ... ...

CE
PSN=15

CE
PSN=16

CE
PSN=17

mirror

No CE
PSN=8

...
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become exponential powers of 2, which can be achieved through
right shifting. After the coefficient weighting, we use a threshold
method to approximate the top-k selection. However, selecting the
threshold is a challenge. We sample flow traces from actual scenar-
ios in advance and measure them using an ideal WaveSketch based
on the CPU. We treat the median value of minimum values in pri-
ority queues as a threshold reference, which is then applied to the
hardware version. Our experimental results in § 7.1 demonstrate
that the accuracy of the hardware approximate implementation is
close to the accuracy of an ideal WaveSketch.

5 µEVENT DETECTION AT SWITCHES

Beyondmicrosecond-level trafficmeasurements, network operators
are also concerned about microsecond-level network events. This
section focuses on solving transient congestion events caused by
network traffic, which is widespread and challenging to observe di-
rectly. We name these events as µEvent, including microbursts, PFC
storms, load imbalances, and packet loss. To detect these events on
commodity switches, our approach is to match and mirror packets
that exhibit event-specific characteristics while reducing bandwidth
overhead through packet sampling:
Event-specific characteristics in packets. All the µEvents men-
tioned above are queue-related events. Currently, both the DC-
QCN [75] algorithm and the DCTCP [8] rely on network devices to
mark ECN (Explicit Congestion Notification) to sense congestion
in the network. Hence, a common characteristic of these events
is that packets exceeding the ECN marking threshold are marked
with the CE (Congestion Experienced) field. In µMon, we identify
packets with the CE field marked as event packets and mirror them
accordingly. For packet loss, CE packets are generated prior to
the tail drop, and some advanced switches support features like
deflect-on-drop [73] to handle the loss packets directly.
Match and mirror the event packets. Nowadays, commodity
switches commonly support packet mirroring triggered by access
control list (ACL) tables [2]. For example, Everflow [76] matches
flags such as TCP SYN, FIN, and RST and mirror related packets to
track TCP connections. Similarly, we can achieve the desired logic
by adding an ACL rule that matches the location and length of the
CE field and associating it with themirroring action. When defining
the mirroring action, we utilize the remote mirroring function to
transmit the event packets to µMon analyzer. µEvents on different
ports are distinguished by attaching different VLAN tags.
Reduce bandwidth overhead by sampling. The above approach
mirrors all packets marked with CE. However, it will result in
significant bandwidth overhead when an elephant flow is mirrored.
In µMon, we introduce an indirect packet deduplication method
using sampling. Specifically, we leverage the characteristic that

adjacent packets in a flow have different sequence numbers (SN) 1,
such as sequence number in TCP and packet sequence number (PSN)
in RoCEv2 [58]. As shown in Figure 8, we can match the lowest𝑤
bits of the SN with ACL rules, achieving a sampling probability of
1
2𝑤 . When analyzing events, our focus is usually on understanding
the behavior of heavy flows, while for mice flows, we only need to
know their quantity and overall distribution [62]. Therefore, the
sampling does not lead to significant information loss because it is
highly probable that the sampler will capture at least one packet
for each heavy flow.

Moreover, introducing programmable switches would signif-
icantly enhance the µEvent detection capabilities. Namely, pro-
grammable switches are capable of customized observation of data-
plane events. ConQuest [12], BurstRadar [29], and Snappy [11] have
all leveraged them for advanced event detection and measurement
directly in the data plane. When programmable switches are avail-
able, µMon can adopt these designs for higher accuracy and recall
rate, and the solutions can also be cooperatively used with WaveS-
ketch for event replay. Besides, we can directly achieve effective
de-duplication of event packets and enable batch reporting [73],
promoting efficiency considerably.

6 µMON ANALYZER AND USE CASES

This section first introduces how µMon analyzer performs network-
wide synchronized analysis (§6.1). We then present several use cases
for using the microsecond-level statistics on the analyzer (§6.2).

6.1 Network-wide Synchronized Analysis

The microsecond-level flow rate measurements and captured net-
work events are sent to the µMon analyzer for comprehensive
analysis. However, when we need to perform network-wide traffic
analysis and replay congestion events, the time of different nodes
must be aligned. For example, to enable the congestion events replay,
we need to ensure that the time of the captured event corresponds
to a specific time window at the end hosts, allowing for precise
querying of the associated flow rate when the event occurs.

When collectingWaveSketchs and µEvent packets, measurement
data also carry the corresponding time information to the µMon an-
alyzer. In particular, WaveSketch carries time information (i.e.,𝑤0)
in each counter bucket, and switches can configure the mirroring
port to add a local timestamp to each mirrored packet [13]. More
importantly, time synchronization is essential among the hosts and
switches. To achieve the microsecond-level network monitoring,
data centers must deploy time synchronization technology oper-
ating at the nanosecond level. The conventional synchronization
protocol Network Time Protocol (NTP [6]) cannot achieve satisfac-
tory accuracy as it introduces millisecond-level errors. Fortunately,
Precision Time Protocol (PTP [59]) is widely deployed, along with
some advanced time synchronization methods [18, 30], which can
achieve stable nanosecond-level time synchronization. The errors
of these nanosecond-level synchronization methods do not extend
beyond two microsecond-level windows, which are considered suf-
ficient for µMon. When querying the flow rate, the rate of several
1Some scenarios also contain non-negligible traffic that is not TCP or RDMA protocols.
The key idea of the sampling is to construct a uniform probability filter based on
specific protocol fields. Therefore, a more general method is to match timestamps, a
random number, or checksum that varies per packet.
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Figure 9: Different flow behaviors evident at µs level.

windows before and after the event can be queried rather than fo-
cusing solely on the specific window in which the event occurred.

6.2 Use Cases

As a foundational capability, the microsecond-level measurements
can be used in many practical analysis and optimization tasks. We
list several typical applications here:
Analyzing application performance and transport algorithms.

The fine-grained rate measurements provided by WaveSketchs can
assist users in analyzing the patterns of their applications at the mi-
crosecond timescale. For example, the microsecond-level rate curve
aids users in analyzing the underlying causes of link underutiliza-
tion. Figure 9a presents a low-throughput TCP flow captured in our
testbed usingWaveSketch. Through the microsecond-level analysis,
we find the rate curve is intermittent, which indicates that the host
cannot provide sufficient data to send over the network continu-
ously. That is, the under-throughput is caused by the host (e.g., the
high latency of the TCP stack), which leads to gaps when transmit-
ting data. In another case, we can observe whether the congestion
control protocol is working correctly with the microsecond-level
flow rates. We generate RDMA flows with an on-off background
flow to compete with the RDMA flows. Figure 9b shows the rate
reaction of an RDMA flow when receiving disturbance. We can
evaluate the performance of the congestion control algorithm in
terms of key metrics such as convergence and fairness. In the past,
the above microsecond-level analysis could only be observed in a
simulation environment or a small-scale testbed. With µMon, users
can observe the fine-grained behavior of network-wide flows in
real-time with an acceptable bandwidth overhead.
Monitoring microscope network loads and replay congestion

events. By capturing ECN-marked packets, we can perceive the
location and timing of congestion in the network. As shown in
Figure 10a and Figure 10b, µMon can present a time-location map
of congestion events and the distribution of congestion duration.
Furthermore, suppose network operators are interested in a long-
lasting congestion event, indicated by an arrow in in Figure 10a.
As shown in Figure 10c, they can replay the congestion by plotting
the rate variation of the associated flows near the event occurrence
by querying WaveSketchs. Through the event replay, we learn that
the leading cause of the congestion is the contention of a bursty
(pink) flow with an existing (green) flow. Moreover, we can assess
the event’s impact on these flows, that the two flows converge to
a lower rate after around 100 µs, and a new burst flow causes a
further rate reduction. The detailed experimental settings of the
above case are introduced in §7.
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Figure 10: Congestion event detection and replay

Guide fine-grained traffic scheduling and simulations. Exist-
ing technologies support microsecond-level traffic scheduling [46,
61]. With the fine-grained flow rates and congestion information,
µMon can guide the scheduling process, improving system resource
utilization efficiency. Besides, the microsecond-level measurements
provide a more accurate understanding of traffic patterns, allow-
ing us to create simulation models that closely mirror real-world
scenarios.

7 EVALUATION

We evaluate µMon in a testbed and simulation environment and
conduct extensive experiments to assess its performance and re-
source overhead. We summarize the experimental results based on
the two main functions of µMon:
• µFlow measurements at hosts: In a typical scenario, WaveS-
ketch can achieve 3.5-57x better accuracy than baseline solu-
tions across fourmetrics under a window granularity of 8.192 µs.
Even with 1/8 of the memory usage, WaveSketch still maintains
higher accuracy. Each host requires around 5 Mbps bandwidth
to achieve less than 10% ARE and more than 90% energy sim-
ilarity in flow rate measurements. The hardware version of
WaveSketch achieves close accuracy and can be implemented
on PISA architecture chips with moderate overhead.
• µEvent detection at switches: For congestion events exceed-
ing the ECN KMax threshold, using a sampling rate of 1/64,
µMon can achieve a 99% recall ratio with 31-82 Mbps band-
width per switch, with main flows captured. Increasing the
sampling rate can further reduce bandwidth overhead but at
the expense of decreasing the recall of congestion below the
ECN KMax threshold. The ACL-based mirroring and sampling
methods can be implemented on commodity switches.

Setup. In the testbed, we evaluate µMon on an Arista DCS-7060CX
switch, a Tofino2 switch, and two Intel Xeon E5-2650 servers. They
are connected with 40 Gbps links. We implement WaveSketch on
CPUs and ASICs platforms using C++ and P4 language, respectively.
We also prototype µMon in a fat-tree topology (k=4) in NS-3, with a
100 Gbps link bandwidth and 1 µs per-hop latency. In the simulation,
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Figure 11: Accuracy evaluation on the 15%-load Hadoop workload. The window size is 8.192 µs.
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Figure 12: Accuracy evaluation on the 25%-load WebSearch workload. The window size is 8.192 µs.

we can obtain the ground truth for all traffic characteristics and
network events, which are utilized to evaluate the performance of
µMon under network-wide deployments.
Workloads. We use two types of workloads. The first workload is
real RDMA flows collected from our testbed. We utilize the perftest
tool [5] to generate RDMA flows configured with a default DCQCN
algorithm. The second type workload is collected in the simulation
running 20-msWebSearch [8] and FacebookHadoop [48] workloads
under 15%, 25%, and 35% link load, containing 356-11773 flows.
Detailed workload information (e.g., level of burstiness, flow arrival
times) is introduced in Appendix D.

7.1 Evaluation on µFlow Measurements

Baseline. We compare WaveSketch against algorithms that incor-
porate compression techniques on flow counter sequences, includ-
ing Persist-CMS [60], OmniWindow [53], and Fourier transform
scheme [44]. For OmniWindow, we allocate𝑚 sub-windows based
on a givenmemory size and the bit-width of counters. Due to limited
memory space, each sub-window is coarser than the microsecond-
level window. We consider the rate of each sub-window to be the
rate of all microsecond-level windows within the sub-window and
named the solution OmniWindow-Avg. Note that only WaveSketch
and OmniWindow-Avg are suitable for data-plane implementation.
Parameter Setting. In the accuracy evaluation, we use an 8.192
µs observation window. The reason is that it can easily get the
window ID from the nanosecond-level hardware timestamp by
right-shifting 13 bits. For a general workload, 𝐷 is usually set to 3-5
for sketching algorithms [55, 70], and𝑊 depends on the number
of concurrent flows in a window. The wavelet parameters 𝐿 and
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Figure 13: Reconstruction with the same memory.

𝐾 are set according to the flow sequence length and the desired
compression rate. In this paper, we set WaveSketch with 𝐷 = 3,
𝑊 = 256. Since most traffic is finished in the tens of milliseconds
range, this results in a counter sequencewith amaximum length𝑛 of
around 500-10000. We set 𝐿 = 8 as a trade-off between compression
rate and resource cost, and set, while 𝐾 is set based on the given
memory size (e.g., 32-256). Longer flows are handled in multiple
reporting periods of WaveSketch.
Metrics: We adopt multiple metrics, including Euclidean Distance,
Cosine Similarity, Energy Similarity, and Average Relative Error
(ARE), to evaluate the similarity between original and estimated
flow rate curves. The formulas of the metrics are introduced in
Appendix E. For a workload containing many flows, we use the
above metrics for each flow and calculate the average value as the
metric of the workload.
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Table 1: Resource usage of a full version WaveSketch with a

heavy part (h=256, L=8, K=64) and a light part (w=256, L=8,

K=64, D=1).

Resource Usage Percentage

Exact Match Input xbar 248 12.11%
Hash Bit 752 11.3%
Gateway 29 11.33%
SRAM 134 10.31%
Map RAM 98 12.5%
VLIW Instr 75 14.65%
Stateful ALU 49 76.56%

Accuracy on the network-wide simulation workloads. As
shown in Figure 11 and Figure 12, WaveSketch performs better
on all four metrics. The advantage is more evident with a smaller
memory. In the 15%-load Hadoop workload, using 200 KB memory,
WaveSketch improves accuracy on ARE by 7.69-8.07x, energy simi-
larity by 4.17-57.02x, and cosine similarity by 3.5-7.73x, compared
to the baseline solutions. Besides, the accuracy of hardware-version
WaveSketch (WaveSketch-HW) is close to the ideal version. More
accuracy results can be found in Appendix F.
Measurement fidelity on testbed flow behaviors. As shown in
Figure 13, we compare the reconstruction performance of WaveS-
ketch and OmniWindow-Avg on a single RDMA flow. We set 𝐾
to 32 for WaveSketch and allocated the same amount of memory
for OmniWindow-Avg. We find WaveSketch can focus on the most
dramatic part of rate changes, while OmniWindow-Avg easily loses
some key information, such as peaks and sharp drops.
Bandwidth usage. The bandwidth overhead is around 80 Mbps in
our simulation environment with 16 hosts when uploading 200-KB
WaveSketch every 20 ms. On average, it is about 5 Mbps per host. If
the topology scale does not significantly affect a single host’s traffic
scale, this result applies to larger-scale topologies. Using the same
workload, we compare the bandwidth cost of WaveSketch with
Valinor [49] and Lumina [66]. With head-only mirroring of 64B
per packet, their average bandwidth is around 1.98 Gbps per host.
As for the task on measuring microsecond-level flow rate curves,
WaveSketch achieves less than 10% average relative error and more
than 99% cosine similarity while utilizing 0.253% of the bandwidth
required by the solutions above.
Hardware resource occupancy. We implement WaveSketch-HW
on a Tofino2 chip, which verifies the WaveSketch-HW can measure
traffic at line rate on a programmable NIC with a similar architec-
ture. Table 1 presents the hardware resource usage of a full version
WaveSketch. Overall, the WaveSketch hardware version utilizes a
moderate amount of resources. Notably, the Stateful ALU (SALU) is
the most consumed component, accounting for 76.56% of the usage.
This is because each variable in a bucket requires a separate SALU.
Fortunately, increasing the number of buckets (𝑊 ) and retained
coefficients (𝐾 ) does not result in an increased SALU usage.

7.2 Evaluation on µEvent Detection

Settings. We run RoCEv2 traffic with the DCQCN congestion con-
trol algorithm enabled. The parameters of the DCQCN algorithm
remain consistent with the original paper [75]. We enable ECN
marking on switches with the KMin threshold set to 20 KiB, the

KMax threshold set to 200 KiB, and the maximum marking proba-
bility set to 0.01.
Recall of transient congestion events. We evaluated event cap-
ture with different sampling rates. As shown in Figure 14a-14c, the
more severe the congestion (i.e., larger maximum queue lengths),
the higher the probability of the event being captured. When queue
congestion exceeds the KMax threshold, even with a sampling
probability of 1/64, the recall rate can still reach 99.2%.
Coverage of event participants.As shown in Figure 14d-Figure 14f,
we can collect more flows as congestion increases. In 35%-load
WebSearch workload, for congestions exceeding the ECN KMax
threshold, we collect an average of 11.1 flows under 1/64 sampling
rate, which covers 73% of flows compared to no sampling, sufficient
for events replay as presented in § 6.2. Reducing the sampling rate
does not significantly reduce the number of captured heavy flows
because they usually have more packets. However, the increase in
the proportion of small flows will reduce the recall rate of flows.
As shown in Figure 14e and Figure 14f, for a Hadoop workload
with a relatively large number of small flows, the number of flows
captured at a 1/64 sampling rate is less than 50% of the actual total
number of flows.
Bandwidth overhead. As shown in Figure 15, we find the band-
width gradually decreases to 31-82 Mbps per switch when using
a 1/64 sampling rate. The Hadoop workload occupies more band-
width because its average flow length is small. Under the same
load, this workload generates more flows, thereby increasing the
probability of congestion.

8 DISCUSSION

Can WaveSketch be implemented on other platforms? Cur-
rently, we implementWaveSketch on CPUs and P4. Implementation
for other platforms is in progress. For instance, the CPU version can
be adapted to ARM-based programmable NICs [3] with some opti-
mization efforts. Moreover, the hardware version of WaveSketch
can be applied to programmable platforms like FPGA [31].
Limitations on flow rate compression.WaveSketch can achieve
an effective compression ratio under the microsecond-level time
granularity between 1 to 100 µs for a 100 Gbps level network. How-
ever, a time granularity that is either too coarse or too fine can
diminish the effectiveness of the compression. For a too-coarse
granularity (e.g., 100’s ms), there is not a sufficient sequence length
of flow rate for compression. For a nanosecond-level granularity
less than the packet sending interval, the flow rate curve will appear
as discrete points, causing no waveform regularity to be captured
by the wavelet transform.
Limitations on network congestion detection. µMon’s con-
gestion event capture and replay rely on collecting CE-marked
packets. This method focuses more on the behavior of heavy flows
during severe congestion. Due to its threshold-based and sampling
strategy, µMon may omit some information regarding minor con-
gestions and small flows. Besides, µMon replays congestion events
by conducting offline collaborative analysis with the fine-grained
flow rate curves measured in end hosts. It cannot precisely query
the contribution of flows to queues in real-time and then take im-
mediate control actions like ConQuest [12]. In contrast, µMon’s
strengths lie in performing cause/effect analysis of events over an
extended time range, as presented in Figure 10c.
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(a) Congestion Recall (35%-load WebSearch)
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(c) Congestion Recall (35%-load Hadoop)
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(d) Captured Flow (35%-load WebSearch)
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(e) Captured Flow (15%-load Hadoop)
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(f) Captured Flow (35%-load Hadoop)

Figure 14: Recall Rate of Congestion Events and the Number of Captured Flows
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Future work.We try to further reduce the resource footprint of the
WaveSketch hardware versionwith technologies like SketchLib [40]
and accelerate the CPU version with techniques like Agg-Evict [72]
and SIMD instructions. Besides, we will apply µMon to capture
microsecond-level characteristics in production environments.

9 RELATEDWORK

Application traffic measurement. State-of-the-art measurement
systems, such as Trumpet [39], OmniWindow [53], UnivMon [35],
and sketching algorithms [24, 26, 27, 39, 53, 63, 71] focus on im-
proving the measurement system’s versatility, accuracy, or perfor-
mance. LightGuardian [70] adopts network-wide sketch deploy-
ments and collects sketchlets in an in-band fashion to achieve the
full-visibility and lightweight criteria. However, due to the lack of a
time-compressing mechanism, refining their measurement window
to the microsecond level results in a proportional increase in mem-
ory and bandwidth overhead. NZE sketches [25] cleverly regard
sketching measurement as a compressive sensing [9] process to im-
prove sketch accuracy in a single measurement window. However,
they do not delve into multi-window temporal information and
perform an actual compressing process. Persistent sketches [60]
introduces the piecewise-linear approximations (PLA) method in-
volving the half-plane intersection of two polygons, which also
poses challenges for its implementation in the data plane. Vali-
nor [49] and Lumina [66] analyze host-stack burstness by tracing
all packets or sk_buff arriving events. Millisampler [20] captures
aggregate information such as total transmitted and received bytes
on a port or queue instead of tracking per-flow rate variations

within µMon. The wavelet-based compression has the potential
to reduce its memory usage. [64] is an orthogonal work that ad-
justs the sampling frequency of measurement epochs based on the
Nyquist-Shannon theorem to reduce data waste. In case continuous
monitoring is non-compulsory, µMon can use the sampling method
to activate microsecond-level monitoring with a specific frequency.
Network event detection.Commodity switches like Cisco’s Nexus
5600 and Arista’s 7150S support congestion monitoring. [68] mea-
sures fine-grained network congestion through poll switch statis-
tics on the control plane. However, they lack detailed information
about the event’s cause. The advent of programmable switches has
enabled the monitoring of network events by directly observing
queues and deploying algorithms in the data plane. INT [54]) can get
per-packet queue information but introduces significant bandwidth
overhead. SIMON [19] accurately senses network status at hosts.
BurstRadar [29], ConQuest [12], Snappy [11] can effectively capture
information about flows when congestion occurs. Mantis [65] is a
framework for implementing fine-grained reactive behavior on to-
day’s programmable switches. Marple [41] and Sonata [22] compile
data flow operators into programmable switches to perform teleme-
try tasks. However, they struggle to provide the microsecond-level
rate changes, making it challenging to analyze these events’ causes
and effects in depth.

10 CONCLUSION

We propose µMon, a novel microsecond-level network monitoring
system for data centers. µMon accurately measures microsecond-
level flow rates with WaveSketch and captures transient congestion
events on commodity hardware switches. The experimental results
show that the proposed approaches allow us to analyze the micro-
characteristics of network traffic, providing micro-scale insights
into network management, both with acceptable overhead.
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APPENDIX

Appendices are supporting material that has not been peer reviewed

A PROOF OF COEFFICIENT SELECTION

METHOD

The discrete Haar wavelet transform has the following properties:

Lemma A.1. Under one level of the inverse transform, the L2 dis-
tance from the results to the actual values equals the L2 distance from
the coefficients to the actual coefficients.

Proof. For each pair of approximation coefficient and detail
coefficient, let the actual values be (𝛼∗, 𝛿∗) respectively. Therefore,
the actual values after the inverse transform should be

√
2
2

(
𝛼∗ ± 𝛿∗

)
Assume the process received (𝛼, 𝛿) instead of the actual coefficients.
The squared L2 distance between the coefficients is(

𝛼∗ − 𝛼
)2 + (

𝛿∗ − 𝛿
)2

Since the results after the inverse transform are
√
2
2
(𝛼 ± 𝛿)

The squared L2 distance will be(√
2
2
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𝛼∗ + 𝛿∗

)
−
√
2
2
(𝛼 + 𝛿)

)2
+
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2
2
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𝛼∗ − 𝛿∗

)
−
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2
2
(𝛼 − 𝛿)

)2
after the inverse transform. Obviously the latter can be reduced
to the former, so the equality holds for all coefficients and the
results. □

Corollary A.2. In inverse transform, the L2 distance from the
final results to the actual values equals the L2 distance from the
coefficients to the actual coefficients.

Proof. By Lemma A.1, the L2 distance remains the same in
one level. Apply Lemma A.1 to all levels in order can prove this
corollary. □

TheoremA.3. In wavelet compression, if𝑘 coefficients are recorded
while the rest are set to 0, retaining coefficients with the largest abso-
lute value yields the smallest L2 distance between the result and the
ground truth.

Proof. For any coefficient 𝑐 , there are 2 cases:
(1) 𝑐 is retained. The squared L2 distance is 0 in this case.
(2) 𝑐 is set to 0. The squared L2 distance is 𝑐2 in this case.

By Corollary A.2, Minimizing the L2 distance of the result requires
minimizing the L2 distance of the coefficients. For any coefficients
𝑐 and 𝑐′ satisfying |𝑐 | > |𝑐′ |, if 𝑐 is set to 0 instead of 𝑐′, the squared
L2 distance should increase by 𝑐2 − 𝑐′2. Therefore, retaining the
coefficients with the largest absolute value yields optimal results.

□

B PROOF OF COMPUTATIONAL COMPLEXITY

Here, we give an amortized analysis proof of computational over-
head. We are given a total of𝑚 packets, divided into 𝑛 windows,
each containing an average of𝑚/𝑛 packets. In each window, the
update cost for𝑚/𝑛 − 1 packets is 𝑂 (1), while the update cost of
the last packet is 𝑂 (𝐿) detail coefficient computation and overhead
on coefficient compression. The compression overhead depends on
the number of generated detail coefficients in this window. For the
𝑙-th layer, one wavelet coefficient is generated every 2𝑙 window.
Therefore, the total number of detail coefficients 𝑑 is

𝑑 =
𝑛

21
+ 𝑛

22
+ · · · + 𝑛

2𝐿
= 𝑛(1 − 1

2𝐿
) < 𝑛

Since each coefficient needs to go through a 𝑙𝑜𝑔(𝐾) coefficient com-
pression process, the total cost of transformation and compression
is 𝐿 · 𝑛 + 𝑛 · 𝑙𝑜𝑔(𝐾). For 𝑚 packets, the total update overhead is
𝑂 (𝑚 − 𝑛 + 𝐿 · 𝑛 + 𝑛 · 𝑙𝑜𝑔(𝐾)). On average, the cost of each packet
update is up to:

𝑂 (𝑚 − 𝑛
𝑚
+ 𝑛(𝐿 + 𝑙𝑜𝑔(𝐾))

𝑚
)

Since 𝑛 < 𝑚, we can get the computational complexity as:

𝑂 (1 + 𝑛(𝐿 + 𝑙𝑜𝑔(𝐾))
𝑚

) = 𝑂 (1 + 𝜖 (𝐿 + 𝑙𝑜𝑔(𝐾)))

where 𝜖 = 𝑛
𝑚 . When the network load is heavy, this means that

𝑛 ≪𝑚, the update overhead of the algorithm is:

𝑂 (1 + 𝑛(𝐿 + 𝑙𝑜𝑔(𝐾))
𝑚

) ≈ 𝑂 (1)

This completes our amortized analysis.

C RECONSTRUCTION ALGORITHM

Here, we give the pseudocode of our reconstruction stage in Algo-
rithm 2. We first process the remaining un-transformed counters,
then align the entire sequence to the exponential times of 2 by
padding 0 and completing the corresponding number of compres-
sions. The reconstruction process initiates at the deepest level. The
corresponding detail coefficients are upsampled to reconstruct the
approximation coefficients at shallower levels. Specifically, for the
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Table 2: Simulation Workloads

Workload Websearch Facebook Hadoop
15% Load 25% Load 35% Load 15% Load 25% Load 35% Load

Packets 994480 1661240 2067850 943419 1544687 2132097
Flows 367 625 815 4966 8366 11773

approximation coefficient 𝑎𝑙,𝑖 and detail coefficient 𝑑𝑙,𝑖 of layer
𝑙 , we can derive two approximation coefficients of layer 𝑙 − 1:
𝑎𝑙−1,2𝑖−1 =

𝑎𝑙,𝑖+𝑑𝑙,𝑖
2 and 𝑎𝑙−1,2𝑖 =

𝑎𝑙,𝑖−𝑑𝑙,𝑖
2 , where 𝑖 = 1, . . . , 𝑛2𝑙 . Any

detail coefficients that are not preserved are considered as 0. This it-
erative process continues, utilizing progressively shallower-level de-
tail coefficients until the original signal is completely reconstructed.

Algorithm 2 WaveSketch Bucket Reconstruction

1: procedure Reconstruction(𝑤0,A,D)
2: if 𝑤0 == 0 then
3: return [0, 0, · · · , 0] ⊲ no packets
4: end if

5: 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑖, 𝑐) ⊲ transform the last counter
6: 𝑙𝑒𝑛𝑔𝑡ℎ ← 𝑖 + 1
7: 𝑚𝑎𝑥_𝑙𝑒𝑣𝑒𝑙 ← ⌊log2 (𝑙𝑒𝑛𝑔𝑡ℎ − 1)⌋
8: for 𝑗 ← 𝑖 + 1, . . . , 2𝑚𝑎𝑥_𝑙𝑒𝑣𝑒𝑙+1

do

9: 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚( 𝑗, 0) ⊲ padding the sequence to 2𝑚
10: end for

11: for 𝑙 ← 0, . . . , 𝐿 − 1 do
12: 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝑙, _𝑑𝑒𝑡𝑎𝑖𝑙 [𝑙]) ⊲ compress rest coeffs
13: end for

14: 𝑖𝑡𝑒𝑟𝑎𝑡𝑒_𝑛𝑢𝑚 ←𝑚𝑖𝑛(𝑚𝑎𝑥_𝑙𝑒𝑣𝑒𝑙, 𝐿 − 1)
15: for 𝑙 ← 0, . . . , 𝑖𝑡𝑒𝑟𝑎𝑡𝑒_𝑛𝑢𝑚 do

16: _𝑎𝑝𝑝𝑟𝑜𝑥𝑠 ← []
17: 𝑛 = ⌈𝑛/2𝑙+1⌉
18: for 𝑘 ← 0, · · · , 𝑛 − 1 do
19: 𝑎 = A .𝑝𝑜𝑝 (0)
20: for each detail 𝑑 in D with level 𝑙 do
21: _𝑎𝑝𝑝𝑟𝑜𝑥𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ( 𝑎+𝑑2 )
22: _𝑎𝑝𝑝𝑟𝑜𝑥𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ( 𝑎−𝑑2 )
23: end for

24: if no detail is retained in this level then
25: _𝑎𝑝𝑝𝑟𝑜𝑥𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ( 𝑎2 )
26: _𝑎𝑝𝑝𝑟𝑜𝑥𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ( 𝑎2 ) ⊲ consider detail as zero
27: end if

28: end for

29: 𝐴← _𝑎𝑝𝑝𝑟𝑜𝑥𝑠
30: end for

31: return A
32: end procedure

D WORKLOAD COLLECTION METHOD

For testbed workloads, we use a method similar to Lumina to ob-
serve the flows by time-stamping and mirroring all packets with
a Tofino switch. Additionally, we generate an on-off background
flow to compete with the RDMA flows to induce flow rate changes.

In the simulation workloads, we deploy applications conforming
to the WebSearch and Facebook Hadoop flow size distribution in
a 100 Gbpps fat-tree topology (k=4) deployed on an NS-3 simula-
tor. The flow size distribution of the above workloads is shown in
Figure 16a. We set the link load caused by the workload to 15%,

25%, and 35%, with each running for 20 ms, and define the num-
ber of flows accordingly. We then randomly distribute the flows
to the hosts in the network. Then, we collect 20-ms traces of the
simulation, including application packets, packets marked with
ECN, and all timestamp information. Table 2 shows the number
of packets and flows of each workload. In simulations, flows can
lead to congestion on network links, depending on the inter-arrival
time of the flows and the duration of each flow. To better under-
stand the workloads, we collect the statistics at the interface (or
port) level. Figure 16b shows the distribution of flows’ inter-arrival
time in a TOR switch port. The overall arrival interval of Hadoop
flows is relatively short, with 20% of the flows taking less than 20
microseconds to arrive. In contrast, the overall flow arrival inter-
vals in the WebSearch workload are longer. This is due to the fact
that, at the same link load, the average flow size of the WebSearch
workload is greater. In Figure 16c, these workloads result in sig-
nificant congestion. Despite Hadoop flows having longer arrival
intervals, their extended duration increases the likelihood of con-
gestion. Among these workloads, 35%-load Hadoop experiences the
most congestion, with the queue length exceeding 200KB 6.6% of
the time.

E ACCURACY METRICS

Let 𝑓 (𝑡) and 𝑓 (𝑡) be the true and estimated flow rate curves for a
given flow, where 𝑡 ranges from 1 to 𝑛.

• Euclidean Distance:
√︃
Σ𝑛
𝑡=1 (𝑓 (𝑡) − 𝑓 (𝑡))2. Euclidean distance is

used to measure the straight-line distance between the true and
estimated flow rate curves. The smaller the value of this metric,
the better.
• Cosine Similarity: Σ𝑛

𝑡=1 𝑓 (𝑡 ) ·𝑓 (𝑡 )√
Σ𝑛
𝑡=1 𝑓 (𝑡 )2 ·

√︃
Σ𝑛
𝑡=1 𝑓 (𝑡 )2

. Cosine similarity is a

measure of similarity between the true and estimated flow rate
curves, which treats them as vectors and measures the cosine
of the angle between them. The closer the value of this metric
is to 1, the better.
• Energy Similarity:

𝐶 (𝑓 , 𝑓 ) =


√
Σ𝑛
𝑡=1 𝑓 (𝑡 )2√︃

Σ𝑛
𝑡=1 𝑓 (𝑡 )2

if Σ𝑛
𝑡=1 𝑓 (𝑡)

2 ≤ Σ𝑛
𝑡=1 𝑓 (𝑡)

2

√︃
Σ𝑛
𝑡=1 𝑓 (𝑡 )2√

Σ𝑛
𝑡=1 𝑓 (𝑡 )2

if Σ𝑛
𝑡=1 𝑓 (𝑡)

2 > Σ𝑛
𝑡=1 𝑓 (𝑡)

2

Energy similarity is used to measure the energy difference
between the estimated and true flow rate curves over. The
closer the value of this metric is to 1, the better.
• ARE (Average Relative Error): 1

𝑛 Σ
𝑛
𝑡=1
| 𝑓 (𝑡 )−𝑓 (𝑡 ) |

𝑓 (𝑡 ) . The closer the
value of this metric is to 0, the better.
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Figure 16: Workloads information.
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Figure 17: Accuracy evaluation on different flow size (WebSearch 25% load, Window Size 8.192 µs).
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Figure 18: Accuracy evaluation on different flow size (Hadoop 15% load, Window Size 8.192 µs).

F ACCURACY RESULTS

Figure 17 and Figure 18 shows the accuracy of WaveSketch for
flows of different sizes.

Chen Tian, Wanchun Dou, Guihai Chen„
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