
Unison: A Parallel-Efficient and User-Transparent
Network Simulation Kernel

Songyuan Bai★, Hao Zheng★, Chen Tian★, Xiaoliang Wang★, Chang Liu★,
Xin Jin†, Fu Xiao△, Qiao Xiang⋄, Wanchun Dou★, Guihai Chen★

★State Key Laboratory for Novel Software Technology, Nanjing University, China †Peking University, China
△Nanjing University of Posts and Telecommunications, China ⋄Xiamen University, China

Abstract
Discrete-event simulation (DES) is a prevalent tool for eval-
uating network designs. Although DES offers full fidelity
and generality, its slow performance limits its application.
To speed up DES, many network simulators employ parallel
discrete-event simulation (PDES). However, adapting exist-
ing network simulation models to PDES requires complex
reconfigurations and often yields limited performance im-
provement. In this paper, we address this gap by proposing
a parallel-efficient and user-transparent network simulation
kernel, Unison, that adopts fine-grained partition and load-
adaptive scheduling optimized for network scenarios. We
prototype Unison based on ns-3. Existing network simula-
tion models of ns-3 can be seamlessly transitioned to Unison.
Testbed experiments on commodity servers demonstrate that
Unison can achieve a 40× speedup over DES using 24 CPU
cores, and a 10× speedup compared with existing PDES al-
gorithms under the same CPU cores.

CCS Concepts: • Networks→ Network simulations; •
Computing methodologies→ Discrete-event simula-
tion; Massively parallel and high-performance simulations.

Keywords: Network simulation, Parallel discrete-event sim-
ulation, Data center networks

ACM Reference Format:
Songyuan Bai, Hao Zheng, Chen Tian, Xiaoliang Wang, Chang
Liu, Xin Jin, Fu Xiao, Qiao Xiang, Wanchun Dou, Guihai Chen.
2024. Unison: A Parallel-Efficient and User-Transparent Network
Simulation Kernel. In European Conference on Computer Systems

(EuroSys ’24), April 22–25, 2024, Athens, Greece. ACM, New York,
NY, USA, 17 pages. https://doi.org/10.1145/3627703.3629574

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3629574

1 Introduction
Discrete-event simulation (DES) is a prevalent tool for evalu-
ating network designs among various simulation approaches.
Popular network simulators including ns-3 [30], OMNeT++
[31] and ns.py [18] are all based on DES. Many influen-
tial studies on networks, such as DCTCP [4], DCQCN [44],
TIMELY [27], PowerTCP [2] and ABM [1] have used these
DES-based simulators to provide convincing evaluation re-
sults. The full-fidelity accuracy and packet-level details of
DES make it the de facto ground truth for network perfor-
mance estimation [9, 36, 40, 42, 43]. The extensive generality
of DES also enables researchers to understand network be-
haviors under buggy configurations (e.g., BGP route leak),
heavy workload (e.g., DDoS attacks) and other extreme sce-
narios (e.g., TCP incast), which are costly to produce and
analyze in the real world.
Although DES offers full fidelity and generality, its slow

performance limits its application. As the scale of current
networks evolves, such as expanding data center networks
(DCNs), the simulation time for these giant networks is unac-
ceptably long for DES. Based on our experience, simulating
a 1536-host fat-tree connected with 100Gbps links for only
0.1 seconds using the DES kernel of ns-3 on a modern server
CPU can take over a day to complete. Moreover, deploying
technologies into these giant networks will counter phenom-
ena that a small-scale simulation or testbed cannot reflect
[12]. For example, the performance of congestion control
algorithms suffers considerable downgrades in large-scale
DCNs with a large amount of bursty traffic [14]. Therefore,
a full-scale DES for these giant networks is necessary to
understand their performance.

To speed up the DES, many network simulators offer par-
allel discrete-event simulation (PDES). PDES requires the
simulated network topology to be spatially divided into mul-
tiple partitions before the simulation starts. Each partition
is called a logical process (LP). A synchronization mecha-
nism between LPs is required to ensure the correctness of
the whole simulation progress [10, 23]. As the simulated
network is divided into multiple LPs, PDES can improve the
simulation speed by processing these LPs in parallel.

However, adapting existing network simulation models to
PDES requires complex reconfigurations and often yields lim-
ited performance improvement. Therefore, many researchers
still prefer the slow DES instead of PDES [23]. In this paper,

115

https://doi.org/10.1145/3627703.3629574
https://doi.org/10.1145/3627703.3629574
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627703.3629574&domain=pdf&date_stamp=2024-04-22

EuroSys ’24, April 22–25, 2024, Athens, Greece S. Bai, et al.

we perform a deep profiling of existing PDES algorithms
based on ns-3. We argue that there are two major limitations
of the existing PDES algorithms for networks:

• Complex manual configurations. Existing algorithms re-
quire extensive modifications to model code, due to the
manual partition on the simulated network and the aggre-
gation of results collected by each LP. The configurations
are inflexible, rely on experience, and can directly compro-
mise the parallel performance.
• Slow speedup. The existing static partition scheme and
synchronization mechanisms of PDES are not well-suited
for emerging low-latency, high-bandwidth, and large-scale
networks, leading to significant synchronization overhead
and parallel inefficiency.

These two limitations make PDES inflexible and infeasible
to scale up [29, 32]. To avoid this problem, recent works clev-
erly borrow advances in machine learning (ML) to make the
simulation faster with GPU [9, 36, 40, 42]. Although these
ML-based data-driven methods can obtain satisfactory exe-
cution efficiency in well-trained scenarios, their generality
is still limited. For new scenarios and algorithms, it is diffi-
cult to perform the data-driven methods since there is no
sufficient data to train the ML models. Moreover, they still
suffer from 7 to 12 hours-long training time and can only
obtain approximated results [40, 42].

In this paper, we address this gap by proposing a parallel-
efficient and user-transparent network simulation kernel,
named Unison. The main idea of Unison is to perform au-
tomatic, fine-grained partition and dynamic, load-adaptive
scheduling optimized for network scenarios in PDES. For
fine-grained partition, Unison divides the simulated network
into fine-grained LPs automatically before the simulation
starts to improve cache efficiency and for further schedul-
ing. With this approach, Unison frees users from complex
manual configurations when setting up the simulated net-
work. For load-adaptive scheduling, Unison decouples the
relationship between LPs and processor cores, leaving the
load-balancing job among each core to its scheduler. The
scheduler of Unison dynamically balances the workload
with several heuristic methods based on network charac-
teristics. With this approach, all processor cores can finish
their events in unison, resulting in an efficient parallelization
under various topologies and traffic patterns.
We prototype Unison based on ns-3 and address several

practical challenges.We improve the performance and usabil-
ity of Unison by introducing a lock-free execution workflow
on a shared-memory architecture, which is fully transparent
to users. With this approach, Unison can support dynamic
topologies (e.g., reconfigurable DCN [8]) and obtain global
statistics (e.g., FCT). By introducing a tie-breaking rule for
simultaneous events, these collected statistics are also deter-
ministic and reproducible. To scale Unison on a cluster, we
also implemented a hybrid simulation kernel for distributed

48 72 96 120 144
0

0.2

0.4

0.6

0.8

1

1.2

1.4
·105

N
ot

fi
ni
sh

ed
in

2
da

ys

N
ot

fi
ni
sh

ed
in

2
da

ys

#cluster

Si
m
ul
at
io
n
ti
m
e
(s
)

Sequential DES
Null message
Barrier synchronization
Unison

Figure 1. Simulating fat-trees with 100Gbps links under
incast traffic for 0.1s using Unison, alongside sequential
DES and other PDES algorithms [7, 10]. All PDES algorithms
use the same number of processor cores which is set to the
number of clusters. Each cluster contains 16 hosts.

simulation. As a preview of our work, Figure 1 shows that
Unison can achieve over 10× speedup compared with the ex-
isting PDES algorithms, turning over two days long DES into
less than 2 hours. Moreover, all existing network simulation
models included with ns-3 can be seamlessly transitioned to
Unison to obtain performance improvements.

This paper contributes to the field of network simulation
and network performance estimation through the following:
• A deep profiling of existing PDES algorithms, highlight-
ing important observations about the root cause of their
complex configurations and unsatisfactory performance:
static manual partition on the simulated network (§3).
• A fine-grained partition scheme and a load-adaptive sched-
uling strategy for PDES, optimized with network scenarios,
achieving a 40× speedup over DES using 24 CPU cores,
and a 10× speedup over existing PDES algorithms (§4).
• A user-transparent and lock-free implementation of Uni-
son on ns-3, addressing several practical challenges to
further improve its performance and usability (§5).
• An extensive evaluation for Unison compared with exist-
ing PDES algorithms and data-driven approaches, demon-
strating its high performance, scalability and usability un-
der various topologies and traffic patterns (§6).
Our implementation of Unison is open-sourced1. This

work does not raise any ethical issues.

2 Background
In this section, we first provide a background on discrete-
event network simulation (§2.1). We then discuss two ac-
celeration methods: newly emerged data-driven approaches
(§2.2) and existing PDES algorithms (§2.3).

2.1 DES for Networks
In network simulation, a network topology is modeled as a
graph with nodes and links. Each node represents a host or
1https://github.com/NASA-NJU/UNISON-for-ns-3

116

https://github.com/NASA-NJU/UNISON-for-ns-3

Unison: A Parallel-Efficient and User-Transparent Network Simulation Kernel EuroSys ’24, April 22–25, 2024, Athens, Greece

A B

C

Initialize

Global @ 0ns

SendTo (B, pkt)

A @ 0ns

Forward (pkt)

C @ 3000ns

Recv (pkt)

B @ 6000ns

Schedule to C Schedule to B

Future event list (FEL)Packet

Switch Nodes

Figure 2. A toy example of DES. The topology is modeled
as three nodes A, B, and C. The packet sending from A to B
is modeled as a series of discrete events.

a switch. The sending, forwarding, and receiving of a packet
between nodes is modeled as a series of discrete events stored
in the future event list [34], as illustrated in Figure 2.

Discrete event. In network simulation, a discrete event
consists of a timestamp, a node ID, and a callback function,
indicating when, where, and what happens respectively. In
the callback function, state variables of the corresponding
node (e.g., queue length) may be modified, and new events
may be scheduled into the future event list [10]. The process-
ing time of a discrete event is determined by the complexity
of its callback function.

Future event list. To maintain a correct order of events,
the simulator uses a future event list (FEL) to store discrete
events. The FEL is a priority queue, with the event having
the smallest timestamp at the head of the queue [10].

Sequential simulation. As the simulator runs, it pops an
event from the head of the FEL and processes it. When the
event is processed, the simulator advances its clock to the
timestamp of the event [10]. The simulator terminates if it
encounters a stop event or if the FEL is empty (i.e., all events
have been processed). Since events in the FEL are ordered
by timestamps, causality and correctness are guaranteed.
However, the sequential approach is depressingly slow

when simulating large-scale networks. For example, there
are over 550 million events per simulated second for a 𝑘 = 8
fat-tree with 100Gbps links, which takes nearly 2 days to
simulate for only 1 second based on our observation.

2.2 Data-Driven Approaches
Different from the full-fidelity DES, data-driven simulators
such as MimicNet [42] and DeepQueueNet [40] use ML to
approximate behaviors of large networks. They replace a set
of nodes in the simulated network with a simplified black box
to be trained. In the black box, deep neural networks (DNN)
are used to approximate the protocol stack. The training data
is generated via a small-scale simulation or by collecting
traces from physical devices. However, the applicability and
performance of these approaches are still limited.

Limited usability. Due to the simplification of the black
box, these data-driven approaches have limited use cases

Switch Host

0 1 2 3

Logical Process

LP #0 LP #1 LP #2 LP #3

Figure 3. The static partition scheme of a 𝑘 = 4 fat-tree.

compared with DES. For MimicNet, it is only applicable
to fat-tree topologies [42]. For DeepQueueNet, it ignores
state variables of the protocol stack, making it unable to
simulate stateful behaviors such as TCP congestion control
[40]. Moreover, they are only applicable to networks at the
stable point. MimicNet cannot model skewed traffic between
fat-tree clusters [42] while DeepQueueNet cannot reflect
temporal dynamic behaviors of networks [40].

Long training time. In addition to their limited usability,
training the DNN in the black box also takes a long time. For
MimicNet, it takes about 7 hours to train a single fat-tree
cluster. When the workload or the structure of the clus-
ter changes, the model must be retrained [42]. For Deep-
QueueNet, training a single type of switch can take 12 hours,
yet all types of switches in the model must be trained before
simulation [40].

Still relying on DES. For machine learning, sufficient train-
ing data is required to achieve satisfactory accuracy, but it is
costly to obtain such data from real physical devices. Most
new scenarios, such as implementing a new switch or design-
ing a new protocol, do not have such previously known data.
As a result, these data-driven methods still rely on DES to
obtain labeled training and testing data. MimicNet uses DES
to simulate a cluster with full fidelity to train other mimics
[42], while DeepQueueNet uses ns.py to obtain training data
for its switches [40]. Therefore, DES is still an irreplaceable
tool in network study. Improving the performance of DES
can further facilitate these data-driven approaches.

2.3 PDES Algorithms
The sequential DES can be parallelized by dividing the net-
work topology spatially into logical processes (LPs). Figure 3
is an example of dividing a 𝑘 = 4 fat-tree into 4 LPs. Each LP
runs the sequential DES with its own FEL. A synchronization
mechanism is required to ensure that the causality (i.e., the
order of timestamps) of events is not violated [10, 23].

In network simulation, due to the inevitable propagation
delay of links, there is always a time window during which
packets are on the wire. For the receiving LP, processing
events in its FEL within the time window (i.e., before these
packets arrive) does not violate the causality of these events,
as illustrated in Figure 4. Based on this concept, a lookahead
value can be calculated for each LP, which is the shortest
delay of all links connected to other LPs [10, 23].

117

EuroSys ’24, April 22–25, 2024, Athens, Greece S. Bai, et al.

BarrierSimulation Start / Stop

LP #3

LP #0

3µs (LBTS1)

EventsTime window when sending a packet

...
Send @ 0µs

Recv @ 3µs

0µs End

Round

6µs (LBTS2)

Packet

Figure 4. The time window and the barrier synchronization
algorithm, assuming the link delay between core switches
and aggregation switches is 3µs.

The default PDES algorithm implemented in ns-3 is the
barrier synchronization algorithm [10, 34]. In this algorithm,
all LPs are executed in rounds separated by barriers. At the
start of each round, each LP calculates its timewindow, called
the lower bound on the time stamp (LBTS) as

𝐿𝐵𝑇𝑆 = min {𝑁𝑖 } + 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 (1)
where 𝑁𝑖 represents the timestamp of the next event of the
𝑖-th LP. LPs can safely execute events whose timestamps do
not exceed the LBTS. Then, all LPs have to perform a barrier
synchronization, waiting for other LPs to complete before
entering the next round [10], as shown in Figure 4.

In addition to this algorithm, OMNeT++ and ns-3 also im-
plement PDES with the null message algorithm [7]. In this
algorithm, LPs are synchronized locally via null messages
instead of global barriers. Similar to the barrier synchroniza-
tion algorithm, this algorithm uses the lookahead value to
ensure causality as well.
Another approach for PDES is to allow for the violation

of causality while providing a rollback mechanism [10, 20].
However, it requires a significant re-architecture of existing
simulators due to the implementation of state saving for
rollbacks or user-provided rollback methods [20], which is
also not user-transparent for the latter case. Most network
simulators including ns-3 and OMNeT++ do not implement
this approach. Therefore, we focus on the previous two algo-
rithms for optimization and comparison.

3 Why Don’t We Use PDES in Practice
Open-source artifacts of network designs rarely use PDES
for evaluation in recent 3 years except a few [11, 25, 40,
42]. Through the following analysis, we find that the main
obstacles to the application of PDES are complex manual
configurations (§3.1) and slow speedup (§3.2).

3.1 Complex Manual Configurations
When adapting a DES model of network to PDES, the fol-
lowing additional steps are required.

Dividing the network topology. As mentioned in §2.3,
PDES requires us to divide the network topology manually

Table 1. LOC change when adapting sequential DES models
to PDES in ns-3.

Model Fat-tree BCube Spine-leaf 2D-torus
LOC addition 36 44 40 33
LOC deletion 21 16 18 20

into a set of LPs. For efficient parallelization, it is necessary
to balance the workload of each LP. However, since the topol-
ogy and workload in different simulation models can vary,
there is no panacea for achieving optimal partition results in
every scenario [39, 41]. This means that the partition is inflex-
ible and heavily relies on experience. For example, in the case
of a 𝑘-ary fat-tree topology [3] with a balanced workload, we
can perform a symmetric partition where each pod is treated
as an LP, and the core layer is evenly distributed among the
clusters, as shown in Figure 3. In this case, the number of LPs
is fixed at 𝑘 , meaning that the maximum possible speedup
is also fixed at 𝑘 fold. If the current hardware resources do
not have enough slots to launch 𝑘 processes, or if we wish
to further increase the speedup of the model, we must per-
form another partition, which can cause parallel inefficiency
due to the spatial asymmetry of the new partition scheme.
Additionally, if the simulated traffic pattern is not balanced
among the LPs (e.g., an incast scenario), even a symmetric
partition scheme may not reduce the waiting time. In this
case, heuristic static partition methods that try to produce a
balanced partition require users to provide hints or pre-run
the whole simulation to acquire such hints [31, 38], which
leads to extra time cost and also complex configurations.

Collecting the result. PDES network simulators use ghost
nodes to obtain global topology knowledge [35]. However,
global data knowledge is still not achievable because the
application code and the tracing code are separated into dif-
ferent LPs, and each LP cannot see the ongoing traffic of
other LPs. As a result, it is difficult to track a flow when it
passes through different LPs. To alleviate this issue, we have
to either use inter-process communications to pass statistics
or temporarily save the results of each LP and manually ag-
gregate them after the simulation is finished. Both of these
solutions will require extra effort to create lengthy config-
uration scripts. More importantly, the simultaneous events
during the simulation can make the results indeterministic
[21], making it difficult to reproduce the previous results and
debug any issues.
Carrying out the aforementioned steps will result in sig-

nificant code changes, as shown in Table 1. The code modifi-
cation is complex and error-prone since it requires the user
to distinguish different LPs and carefully consider available
CPU cores, proper topology division and the specific data
collection strategy. Therefore, we conclude that the existing
PDES is not user-friendly on existing network simulators
because of the manual partition-and-collection process.

118

Unison: A Parallel-Efficient and User-Transparent Network Simulation Kernel EuroSys ’24, April 22–25, 2024, Athens, Greece

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8 ·103

Incast traffic ratio

𝑇
(s
)

𝑃𝐵 𝑆𝐵 𝑃𝑁 𝑆𝑁

(a) 𝑃 , 𝑆 ,𝑀 under skewed traffic

0 250 500 750 1,000
0

0.2
0.4
0.6
0.8
1

Round

𝑆
𝐵
/𝑇

(b) 𝑆/𝑇 under balanced traffic

0.3 3 30 300 3,000
0.1

0.2

0.3

0.4

Link delay (µs)

𝑆
/𝑇

𝑆𝐵 /𝑇
𝑆𝑁 /𝑇

(c) 𝑆/𝑇 of different delay

2 4 6 8 10

0.2

0.3

0.4

Link bandwidth (Gbps)

𝑆
/𝑇

𝑆𝐵 /𝑇
𝑆𝑁 /𝑇

(d) 𝑆/𝑇 of different bandwidth

Figure 5. Performance of existing PDES algorithms when simulating a 𝑘 = 8 fat-tree for 0.1 seconds. The subscript B stands
for the barrier synchronization algorithm, N stands for the null message algorithm.

3.2 Slow Speedup
Even if users successfully adapted their model to PDES, the
speedup is still unsatisfactory. To find out the performance
bottleneck of PDES, we divide the total running time 𝑇 of a
single LP into three parts: processing time 𝑃 , synchronization
time 𝑆 , and messaging time 𝑀 . So we have 𝑇 = 𝑃 + 𝑆 +𝑀 .
𝑃 counts when the LP is processing events from its FEL.
𝑆 counts when the LP is waiting for other LPs after event
processing is finished2.𝑀 counts when the LP is receiving
events from other LPs.
We insert the time profiling code into ns-3 implementa-

tions of the two PDES discussed in §2.3, and record the 𝑃 , 𝑆
and𝑀 of each LP. Through in-depth profiling, we conclude
the following three important observations.

Observation 1. The synchronization time gradually domi-

nates as the traffic inhomogeneity increases.

We run a 𝑘 = 8 fat-tree with 100Gbps link bandwidth
and 3µs link delay for 0.1 second. We divide the topology
symmetrically according to Figure 3, where each cluster is an
LP. Figure 5a shows the time composition in this experiment.
Note that we omit𝑀 in Figure 5a since it takes less than 5% of
𝑇 . We find as the traffic inhomogeneity increases, 𝑆 becomes
a bottleneck on both algorithms. Under an extremely skewed
traffic pattern, 𝑆 can take up over 70% of the total execution
time. This is because the LP of the victim host becomes the
slowest one in the incast scenario. Other LPs must wait for
it to finish before entering the next round.

Observation 2. The processing time of each LP is highly

unbalanced in a transient time window, even if the traffic

pattern is balanced in macro.

Even if the traffic pattern is load-balanced, 𝑆 still takes
about 20% of the total time. To figure out, this time we mea-
sure the 𝑃 and 𝑆 in each round of the barrier synchroniza-
tion algorithm under load-balanced traffic. Interestingly, we
found that the processing time in each round of each LP
is highly unbalanced, resulting in the long synchronization
2For the barrier synchronization algorithm, 𝑆 also includes the time cost of
MPI collective communications. However, the cost for such communications
is negligible since it is only used to calculate the LBTS.

time in a transient time window, as Figure 5b shows. This
implies that even heuristic static partition methods that try
to produce a balanced partition based on load estimation still
have considerable synchronization time.

Observation 3. The synchronization time is long for low-

latency, high-bandwidth and large-scale networks.

When simulating data center networks, due to the low
propagation delay of the links, the timewindow between two
synchronization barriers is smaller. Along with their high
bandwidth and traffic throughput, the synchronization time
(𝑆) caused by load variation during a transient time window
is huge. This is proven by Figure 5c where we simulate a
10Gbps fat-tree with different link delay and Figure 5d where
every host sends a total of 128Gbps traffic in fat-trees with
30µs link delay and different link bandwidth. In addition, the
large scale of such data center networks will produce more
LPs, further increasing the synchronization time. Based on
our experience, the 𝑆 ratio can reach over 50% for a 100Gbps,
𝑘 = 16 fat-tree with 1µs link delay under balanced traffic.

Through the above discussions, we find that the existing
synchronization mechanisms based on static partition do
not fit well with bursty, dynamically unbalanced traffic and
the current high-bandwidth, low-latency, and large-scale
networks. Alongside the manual partition discussed in §3.1,
we conclude that the static manual partition is the root cause
for both complex configurations and slow speedup.

4 Unison Design
In this section, we introduce a new network simulation ker-
nel, Unison, to address the limitations of existing PDES
algorithms in §3. The design objectives of Unison are:
• Parallel-efficient. The new kernel should reduce the syn-
chronization time efficiently and be applicable to different
traffic patterns and different topologies.
• User-transparent. The new kernel should be transparent
to users for topology partition and result aggregation. It
should also let users flexibly specify the number of proces-
sor cores to be used for speedup with zero configurations.
We first provide an overview of the workflow of Unison.

Then we discuss the fine-grained partition algorithm and the

119

EuroSys ’24, April 22–25, 2024, Athens, Greece S. Bai, et al.

Original
Topology

Fine-Grained
Partition

Spatial

Temporal

Load-Adaptive
Scheduling

Switch Host

Barrier Thread ReleaseSimulation Start / Stop

Public LP

SchedulerPartitionerModel

UNISON LP & Thread
Manager

Figure 6. The architecture and workflow of Unison.

load-adaptive scheduling algorithm that enables its parallel-
efficient performance and user-transparent characteristics.

4.1 System Overview
To achieve the design objectives, Unison decouples the rela-
tionship between LPs and processor cores. Unison then per-
forms fine-grained partition (§4.2) and load-adaptive sched-
uling (§4.3) workflow, which is illustrated in Figure 6.
In this workflow, Unison first performs a 2-dimensional

partition automatically for user transparency. This divides
the topology into a set of LPs, and divides the simulated
time into multiple rounds, within which LPs are parallelly
processable according to a modified barrier synchronization
algorithm. For parallel efficiency, Unison divides the topol-
ogy with fine granularity. Fine-grained partition is beneficial
to the scheduler by creating more LPs with smaller sizes,
making it more likely to produce a balanced result. Mean-
while, since LPs have to process their FEL in time order,
fine-grained partition can reorder spatially related but tem-
porally isolated simulated packets of a node by extracting
them from a larger LP and grouping them to be processed
together in a smaller LP to increase cache affinity. In network
simulation, a simulated flow will correspond to consecutive
simulated packets (i.e., events) within a time window. In-
spired by the cache boost of network stacks and applications
by reordering packets in real-world NIC [13], grouping these
simulated packets can also improve the performance of net-
work simulation. Since the node IDs of consecutive events
are not always the same for each LP, each LP will frequently
bounce between different nodes. As the number of LPs in-
creases, each LP will have a smaller range of nodes, thus
decreasing cache misses.
After partitioning, the load balancing job is left for the

scheduler to handle. The scheduler uses a thread pool to
process decoupled LPs. To address the synchronization time
issues discussed in Observation 1, we have to figure out the
optimally balanced workload of each thread, which can be
abstracted as the multiway number partitioning problem.
Although the optimal solution is NP-hard, Unison employs

an approximation algorithm that uses the longest job first
policy combined with a heuristic approach for network sim-
ulation. To address the transient unbalanced workload issue
discussed in Observation 2 and Observation 3, the scheduler
balances the workload of each thread by assigning LPs to
different cores dynamically in each round according to this
approximation algorithm.
By combining these techniques above, we directly eradi-

cate the root cause for limitations of PDES discussed in §3.
This is because the whole partition and scheduling process is
transparent to users, allowing them to easily simulate models
in parallel without further configurations. Meanwhile, cache
misses are reduced by fine-grained partition, and the mutual
waiting time among threads is minimized by load-adaptive
scheduling, resulting in efficient parallelization.

4.2 Fine-Grained Partition
The objective of this stage is to automatically divide the
simulation model both spatially and temporally. For spatial
partition, it should be efficient for scheduling while preserv-
ing parallelism under different link delays. For temporal
partition, the causality should be guaranteed by utilizing
lookahead, while supporting specific demand for network
simulation such as dynamic topologies.

Spatial Partition. The partition algorithm is presented in
Algorithm 1. The algorithm takes a network topology as
input, assigns each node its LP identifier, and outputs the

Algorithm 1: Fine-Grained-Partition
Data: Network topology: 𝐺 (𝑉 , 𝐸)
begin

lookahead-lowerbound←Median-Delay (E);
LP-count← 0;
q←Make-Empty-Queue ();
for v in V do

if not v.visited then
LP-count← LP-count + 1;
Enqeue (q, v);
while not Empty (q) do

v← Deqeue (q);
v.LP-id← LP-count;
v.visited← true;
for (u, v) in E do

if not u.visited and Link-Delay (u, v)
< lookahead-lowerbound then

Enqeue (q, u);
end if

end for
end while

end if
end for
return LP-count;

end

120

Unison: A Parallel-Efficient and User-Transparent Network Simulation Kernel EuroSys ’24, April 22–25, 2024, Athens, Greece

total number of LPs created. First, a lower bound on the
lookahead value is set to the median of all link delays in
the topology. This is because cutting off links with a low
propagation delay value will lead to a small degree of paral-
lelism. The lower bound is set to the median instead of the
average to make sure at least half of the links will be cut
off for fine granularity. Then, for every link in the topology,
if the link delay value is greater than or equal to the lower
bound on the lookahead value, the link should be logically
cut off. Cutting off a link logically is used to produce LPs.
It will not affect the connectivity in the simulation model.
Finally, every node in each connected component forms an
LP. Note that the links in this algorithm refer to stateless
links, which have no state variables associated with them
(i.e., point-to-point links and full duplex Ethernet links). This
is because two LPs with different simulated clock times may
read and change the state variables simultaneously or in a
reversed order in real time, violating causality.
Here is a simple illustration of the partition scheme. As-

suming the delay of links between hosts and aggregation
switches of the topology in Figure 6 (i.e., the links at the
bottom) is set to zero, Unison will produce 10 LPs in total. In
contrast, for a space-symmetric static partition scheme, the
optimal partition result is to cut the topology in half from
the middle, yielding only 2 LPs.

In addition to these automatically generated LPs, Unison
introduces a public LP to handle global events. Global events
are events that can potentially affect all LPs immediately.
They are scheduled by users before the simulation begins
or by another global event. Typical global events include
changing the topology dynamically, stopping the simulator
at a given time, and printing the simulation progress. Existing
PDES approaches only support limited global events like
stopping the simulator, which are duplicated by every LP to
make sure they can coordinate at the same time. For Unison,
since the memory is shared across LPs, global events have to
be handled just once. This is what the public LP is for. It is
equivalent for the public LP to have a zero-delay connection
to other LPs. This implies that the lookahead value of the
public LP is always zero, only global events with the same
timestamp can be handled in the same round.

Temporal Partition. In the temporal dimension, we use a
modified barrier synchronization algorithm, which divides
the whole simulated time into multiple rounds, within which
LPs are parallelly processable. Thewindow size of each round
is calculated using the lookahead value. To accommodate
the public LP, the equation for calculating the window size,
or LBTS, is modified as

𝐿𝐵𝑇𝑆 = min
{
𝑁pub, min {𝑁𝑖 } + 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑

}
(2)

where 𝑁pub is the timestamp of the next event of the public
LP. 𝑁𝑖 is the timestamp of the next event of the 𝑖-th LP.
Equation (2) considers the constraint introduced by global

events. Since global events can potentially affect all LPs, the
current round must be interrupted when the next global
event in the public LP occurs.
Moreover, since the topology is not static anymore, the

lookahead value in Equation (2) can be changed during the
simulation when link delay changes, adding or removing
a link. Therefore, in addition to Equation (2), Unison will
recompute the lookahead value if a topology change occurs
when processing the public LP.

4.3 Load-Adaptive Scheduling
The objective of this stage is to assign LPs to multiple paral-
lelly executed threads T while balancing workloads among
these tasks, under the assumption that threads are running
on identical CPU cores (i.e., with the same clock frequency).
Each LP must be processed exactly once in each round. As-
sume that the job size, or processing time, of the 𝑖-th LP
in round 𝑟 is known in advance and denoted as 𝑃𝑖,𝑟 . This
assumption can be satisfied by our proposed scheduling met-
rics in this section. A thread 𝑡 ∈ T in this round has a set
of LPs L(𝑡, 𝑟) assigned to it. Therefore, the total process-
ing time of thread 𝑡 can be expressed as

∑
𝑖∈L(𝑡,𝑟) 𝑃𝑖,𝑟 . Our

goal is to determine the optimal assigning strategy L(·, 𝑟)
to minimize the largest total processing time (i.e., minimize
max𝑡 ∈T

∑
𝑖∈L(𝑡,𝑟) 𝑃𝑖,𝑟) for every round 𝑟 .

Scheduling algorithms. For a given round, the objective
can be abstracted to scheduling a set of jobs on |T | identical
machines such that the makespan is minimized, which is
equivalent to the identical machine scheduling problem, or
multiway number partitioning problem, which is NP-hard
[17]. One of the approximation algorithms [15] is the longest
job first policy: schedule the longest job to the thread with
the smallest load currently. Unison employs this policy and
stores LPs in a priority queue according to their estimated
processing time 𝑃𝑖,𝑟 in descending order. When a thread is
idle or finished with its previously assigned LP, it pops the
queue to get the current longest LP and process that one.
With this approach, scheduling 𝑛 LPs only takes 𝑂 (𝑛 log𝑛)
steps, plus the complexity of acquiring 𝑃𝑖,𝑟 in each step, with
a worse-case approximation ratio of 4/3 [15].

Scheduling metrics. The exact processing time of each LP,
or 𝑃𝑖,𝑟 , is impossible to know in advance. Therefore, estima-
tion is required to use the approximation algorithm. Finding
an accurate and low-complexity estimation method becomes
a challenge. We propose several heuristic methods suitable
for network simulation to estimate this value efficiently.
One way is to evaluate the number of pending events in

the next round of each LP, as LPs with more events tend to
have a longer processing time. In network simulation, most
event scheduling is related to packet transmission. These
scheduled events will typically have a delay that is equal to
the lookahead, falling into the next round exactly, which is
already illustrated in Figure 4. Therefore, we can count the

121

EuroSys ’24, April 22–25, 2024, Athens, Greece S. Bai, et al.

number of events scheduled to be received by each LP in the
next round (i.e., pending events), which can be simply done
in linear time. Note that the longest job policy described
above only considers the partial order of job size, rather than
the exact job size of each LP, so this method will work.
A second heuristic method is to use the processing time

of the previous round, 𝑃𝑖,𝑟−1, as an estimate. This is because
network simulation programs often have a high degree of
temporal locality. The propagation delay, or lookahead, is
far less than the transmission delay of the entire flow. As a
result, the processing time of each LP in consecutive rounds
tends to remain stable (although highly unbalanced), which
we can notice from Figure 13a. The time complexity of this
method is only constant, so it is faster than the previous one.
Moreover, this method is more accurate than the first one
and is used by default in Unison if a high-resolution system
clock is available. §6.3 will further evaluate the performance
of different scheduling metrics.

Scheduling periods. The scheduler itself will introduce
performance costs as well. Although getting the scheduling
metrics is optimized to constant time using 𝑃𝑖,𝑟−1, sorting 𝑛
LPs by their estimated processing time still takes 𝑂 (𝑛 log𝑛)
steps. When simulating a large network topology, combined
with the fine-grained partition scheme, there will be tons
of LPs to schedule. To alleviate the cost, Unison runs the
scheduler periodically rather than every round.

Due to the temporal locality of network simulation, which
we have described above, the processing time of each LP
tends to remain stable in consecutive rounds. Therefore, the
schedule results should also tend to remain stable. In order to
balance the schedule accuracy and the schedule cost, Unison
let the schedule period grow logarithmically with respect to
the number of LPs. A topology with 𝑛 LPs has a schedule
period of ⌈log2 𝑛⌉. §6.3 will further evaluate the performance
impact when choosing different scheduling periods.

5 Implementation
In this section, we delve into the implementation detail of
Unison. The implementation is based on ns-3.36.1 and con-
sists of approximately 3100 lines of code. Applying Unison
to other network simulators based on DES (e.g., OMNeT++)
is straightforward and is undergoing.We also address several
practical challenges during the implementation.

The first challenge is to resolve thread-safety issues while
minimizing the overhead. To achieve this, Unison has been
carefully implemented to ensure lock-free execution, allow-
ing the recording of global statistics seamlessly (§5.1).

The second challenge is to achieve determinism and scal-
ability. We introduce a tie-breaking rule of simultaneous
events for deterministic, reproducible simulation. we also
implement a hybrid simulation kernel with Unison for scal-
able, distributed simulation (§5.2).

① Process Events ② Global Events ③ Receive Events ④ Update Window

Schedule

Min timestamp

of ()

Round

① ②③④

Figure 7. Four phases of the lock-free execution stage.

5.1 Lock-Free Execution
The objective of the lock-free execution is to allow threads to
process LPs in a lock-free manner, either through the use of
atomic operations or by circumventing the need for synchro-
nization. Using such a manner can reduce 𝑃 by alleviating
the cost of accessing shared data, which happens frequently
during the simulation. It can also reduce 𝑆 by reducing the
overhead of the scheduler, and reduce 𝑀 by reducing the
overhead of cross-LP event insertion.

To achieve this objective, Unison divides each round into
four phases as depicted in Figure 7. During phase changes,
a barrier or a thread release is required, which are both
implemented using atomic operations.

Processing events. In this phase, Unison first runs the
scheduler to assess the priority of LPs and assign LPs to
threads as described in §4.3. However, when scheduling inter-
LP events, thread-safety issues arise as the FEL of the target
LP can be manipulated by multiple threads. To avoid this sit-
uation, Unison uses mailboxes as a cache for inter-LP events.
Before the simulation starts, each LP creates a mailbox for
any LP it has a connection with. Inter-LP events are first
stored in one of the mailboxes of the target LP. These cached
events will be subsequently inserted into the FEL during the
receiving event phase, making the whole event scheduling
process asynchronous and lock-free.
In addition to inter-LP event scheduling, the underlying

architecture of ns-3 is not thread-safe as well. We perform
the following modifications to ns-3 for thread safety:
• Reference counting. Reference counting [19] is used for
automatic memory management. We replace the reference
counter of ns-3 objects, packet tags and packet buffers
with an atomic integer counter. We also disable the lookup
cache of aggregated objects.
• Buffer recycling. Packet buffers and metadata are recycled
via a global linked list to reduce memory allocation calls.
We disable this mechanism by allocating/freeing memory
every time a new buffer is created/deleted.
• Flow monitor. The flow monitor is widely used for flow
tracking [6]. It saves statistics of tracked packets and flows
into maps shared across nodes. Since new flows and pack-
ets can be inserted into the map concurrently, we use
atomic operations to make these maps thread-safe.

122

Unison: A Parallel-Efficient and User-Transparent Network Simulation Kernel EuroSys ’24, April 22–25, 2024, Athens, Greece

• NIx-vector routing. NIx-vector routing speeds up route
decisions with a neighbor index cache [33]. The cache
is shared globally and will be re-calculated if it is dirty.
We replace the dirty state variable with a boolean atomic
variable and use atomic operations to protect the cache.

Handling global events. In this phase, Unison checks the
public LP for any global events at the current time and pro-
cesses them with the main thread. Unison will recompute
the lookahead value if a topology change occurs when pro-
cessing global events as discussed in §4.2.

Receiving events. In this phase, LPs are reallocated to
threads according to their priority in the first phase. Each LP
then retrieves all events from its mailboxes and inserts them
into the FEL. The FEL orders the inserted events automati-
cally by their timestamps. In the case of two events having
the same timestamp, they are ordered using the tie-breaking
rule (§5.2) for deterministic simulation.

Updating the window. The last phase is to calculate and
update the LBTS of every LP of the next round according to
Equation (2). If there are no more events to be executed for
all LPs, the simulation terminates.

5.2 Improving Usability
Deterministic simulation. To address the indeterminacy
caused by simultaneous events, Unison introduces the fol-
lowing tie-breaking rule. When scheduling an inter-LP event,
the timestamp of the sender LP and the event ID (which in-
dicates the number of events created in the current LP) are
sent along with the event itself. If the timestamps of two
events are the same, the event with a smaller timestamp of
the sender LP is processed first. If the sending timestamps
are still the same, the event from the LP with the smaller ID
will be processed first. If two events are still scheduled by
the same LP, then the event with a smaller event ID will be
processed first. As all events in the mailboxes have a total
order, Unison is guaranteed to have a deterministic result.

Scalable hybrid simulation. For scalability across multi-
ple hosts, we also implemented a hybrid simulation kernel
with Unison. In this approach, the network topology is first
divided into several large partitions according to the barrier
synchronization algorithm (§2.3) to map each host. Each
host then runs its large partition using Unison for further
fine-grained partition as illustrated in Figure 6.
For correct synchronization, the receiving event stage is

modified to handle inter-host events. After intra-host events
are received from the mailboxes, inter-host events are then
received by the main thread. When updating the window,
the smallest timestamp of the next event of every local LP
is calculated first, followed by an all-reduce operation to
calculate the global smallest timestamp. Given the global
smallest timestamp, the time window of the next round is
finally updated using Equation (2).

6 Evaluation
In this section, we evaluate Unison in comparison with prior
PDES algorithms and ML-based data-driven approaches. We
mainly focus on the following questions:
• Can Unison efficiently reduce the synchronization time
while providing a transparent interface for users? (§6.1)
• How is the accuracy of Unison compared with sequential
DES and data-driven approaches? (§6.2)
• How do the partition and scheduling algorithms intro-
duced in §4.2 and §4.3 improve the performance of Uni-
son? (§6.3)
Our evaluation uses an optimized build of ns-3.36.1 in

three different testbeds:
• Testbed 1. To compare the overall performance of Uni-
son with PDES, we run both Unison and other PDES
algorithms over six identically configured machines. Each
machine has 256GB RAM and two 12-core 2.2GHz CPUs
with hyper-threading off.
• Testbed 2. To demonstrate the behavior of packets in detail
which requires recording 𝑃 , 𝑆 and𝑀 defined in §3.2, we run
both Unison and other PDES algorithms on one machine
which has 256GB RAM and two 8-core 2.0GHz CPUs with
hyper-threading off.
• Testbed 3. For ML-based data-driven approaches, we run
their evaluations on one machine with two 28-core 2.0GHz
CPUs and 512GB RAM, alongside two NVIDIA A100 GPUs
with 40GB high bandwidth memory.

6.1 Unison is Fast and Transparent
With the automatic fine-grained partition scheme and the
load-adaptive scheduling, Unison resolves the complicated
configuration and slow speedup of PDES simultaneously.

Unison is faster than existing approaches. As shown in
Figure 1, we first evaluate Unison, the sequential DES, and
PDES algorithms under extremely skewed traffic (i.e., incast
traffic ratio is 1). Unison can achieve over 10× speedup with
the same number of CPU cores compared with the existing
PDES algorithms.
We further evaluate the performance of Unison against

an ML-based data-driven simulator, DeepQueueNet [40], un-
der balanced traffic (i.e., incast traffic ratio is 0). We use
three fat-tree topologies3 according to the configuration
of DeepQueueNet [40]. The link is 100Mbps with a delay
of 500µs. For traditional PDES algorithms, we evenly di-
vide the topologies as shown in Figure 3, which leads to 4
LPs on fat-tree 16, 8 LPs on fat-tree 64 and fat-tree 128. For
Unison, we launch 16 threads for all three topologies. For
DeepQueueNet, since it supports parallel DNN inference
on multiple GPUs, we use both GPUs in Testbed 3. We use

3The fat-tree 16 consists of 4 clusters, each of which has 4 hosts (i.e., 𝑘 = 4).
The fat-tree 64 consists of 8 clusters, each of which has 8 hosts. The fat-tree
128 consists of 16 clusters, each of which has 8 hosts (i.e., 𝑘 = 8).

123

EuroSys ’24, April 22–25, 2024, Athens, Greece S. Bai, et al.

Fat-tree
16

Fat-tree
64

Fat-tree
128

102

103

Si
m
ul
at
io
n
ti
m
e
(s
) Barrier Nullmsg

DQN Sequential
Unison

(a) Comparing Unison against
existing PDES algorithms and
data-driven approaches.

0 4 8 12 16 20 24
0

10

20

30

40

#core

Sp
ee
du

p

Linear speedup
Barrier
Unison

(b) Simulating a 100Gbps, 𝑘 = 8
fat-tree for 1 second with flexi-
ble speedup configurations.

Figure 8. Parallel performance and flexibility of Unison.

the example device model provided by DeepQueueNet and
only evaluate its inference time. As the number of injecting
packets increases, we find that the DeepQueueNet imple-
mentation given by [40] will crash due to the GPU memory
overflow. Therefore, we only inject 0.32, 1.28 and 2.56 million
packets into the three topologies, respectively. As shown in
Figure 8a, Unison and other PDES simulations are faster
than data-driven approaches at a small scale. As the scale
of the fat-tree grows, Unison outperforms DeepQueueNet
with full-fidelity simulation and achieves over 13× speedup
for sequential DES using 16 threads. It happens because that
DeepQueueNet operates at the packet level. Therefore, its
simulation time is proportional to the number of packets.
The parallel-efficient Unison can achieve parallelism as high
as DNN while avoiding long training time and providing
full-fidelity simulation.

Unison is transparent to users. Since the whole parti-
tion and scheduling process of Unison is automatic, all op-
erations in Unison kernel are transparent to users. Users
only need to import the Unison kernel, and the simula-
tor’s parallelism can be freely adjusted without modifying
the original DES model code. We enable Unison in several
ns-3 examples [30], including queue discipline benchmarks,
NIx-vector routing examples, multicast examples and a RIP
routing model which changes the topology by teardown
links during the simulation to observe its convergence. All
of these examples are accurately simulated without any mod-
ifications to their model code.
The previous experiment on fat-tree has demonstrated

that Unison can launch 16 threads while the manual parti-
tion scheme of the other PDES algorithms can only produce
up to 8 LPs for fat-tree 128. To further demonstrate Uni-
son’s flexibility, we increase the number of threads to 24 to
fully utilize the hardware resources of Testbed 1. We reset
the link bandwidth to 100Gbps and the link delay to 3µs to
simulate a high-performance DCN for 1 second. The 𝑘 = 8
fat-tree, which can only be divided symmetrically into 2,
4 and 8 LPs for other PDES algorithms, can be simulated
with 24 cores and achieve over 40× super-linear speedup, as
shown in Figure 8b. Unison turns two-day long (45.2 hours)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8 ·103

Incast traffic ratio

𝑇
(s
)

𝑃𝐵 𝑆𝐵 𝑃𝑁 𝑆𝑁 𝑃𝑈

(a) 𝑃 , 𝑆 ,𝑀 of Unison

0 250 500 750 1,000
0

0.2
0.4
0.6
0.8
1

Round

𝑆
/𝑇

𝑆𝐵/𝑇 𝑆𝑈 /𝑇

(b) 𝑆/𝑇 in each round

Figure 9. The combination effect of the fine-grained par-
tition and the load-adaptive scheduling. The subscript 𝑈
stands for Unison. The data of the existing PDES algorithms
is the same as those in Figure 5.

sequential DES into 1.1 hours. The super-linear speedup can
be explained by the cache boost of fine-grained partition,
which will be further evaluated in §6.3. The flexibility of Uni-
son can fully utilize hardware resources without the need
to manually re-divide the topology.

Unison eliminates the synchronization time. To under-
stand the astonishing speedup brought by Unison, we run
the fat-tree of 𝑘 = 8 introduced in §3.2 and record 𝑃 , 𝑆 ,𝑀 of
each thread (instead of each LP). Here, the processing time 𝑃
is counted for both phases of processing events and handling
global events. And the messaging time𝑀 is counted for both
phases of receiving events and updating the window.

As illustrated in Figure 9a, the 𝑆 of Unison is surprisingly
less than 2% of the total time in every case, and the𝑀 is less
than 0.3% of the total time, which is hardly visible in Fig-
ure 9a, so we omit them. Meanwhile, the 𝑃 is also less than
the other two algorithms by about 20%, which is a benefit
from the cache boost. These two factors together make Uni-
son achieve 5× speedup relative to other PDES algorithms.
We also measure the 𝑆 of Unison under the balanced traf-
fic in the first 1000 rounds of the simulation. As shown in
Figure 9b, the ratio of 𝑆 is mainly under 1% in every round.
Compared with Figure 5b, we can see that Unison solves
the issue of highly unbalanced processing time in a transient
time window. Therefore, we can understand that the perfor-
mance gain of Unison is mainly caused by eliminating the
synchronization time with adaptive scheduling optimized
for network simulation, while reducing the processing time
by leveraging the cache effect with fine-grained partition.

Unison is effective in various scenarios. To understand
the generality of Unison across different scenarios, we add
four new topologies: 2D-torus [28], BCube [16] and two wide
area networks from the Internet Topology Zoo [22] with two
traffic patterns: web-search [4] and gRPC [27]. We also add
a reconfigurable DCN model [8] to analyze the performance
impact of dynamic topologies to Unison.

For 2D-torus, we set the topology size to 48 × 48, the link
bandwidth to 10Gbps, and the link delay to 30µs. For a node
located at the 𝑖-th row, 𝑗-th column, we assign an ID of 𝑖+48 𝑗
to the node. For other PDES algorithms that require manual

124

Unison: A Parallel-Efficient and User-Transparent Network Simulation Kernel EuroSys ’24, April 22–25, 2024, Athens, Greece

12 24 48 72 96 144

104

105

#core

𝑇
(s
)

Barrier
Nullmsg
Unison

(a) 2D-torus

gRPCWeb-search

4
6
8
10
12
14

Sp
ee
du

p

Barrier
Nullmsg
Unison (8 cores)
Unison (16 cores)

(b) BCube

ChinaNetGEANT

0
0.2
0.4
0.6
0.8
1

1.2
1.4 ·105

𝑇
(s
)

Sequential DES
Unison

(c)Wide-area network

10−3 10−2

0.4

0.6

0.8

1

1.2
·103

Topology change interval (s)

𝑇
(s
)

Sequential DES
Unison

(d) Reconfigurable DCN

Figure 10. The generality of Unison under different topologies and traffic patterns.

partition, we evenly divide the range of [0, 48× 48] and treat
nodes whose ID falls in each sub-array as an LP. We run
the simulations with 48, 72, 96 and 144 cores for 1 second,
generate traffic to take up 30% of the bisection bandwidth and
record the simulation time. As shown in Figure 10a, Unison
outperforms the other two algorithms by nearly 4×. The
sequential DES is not finished in 5 days and only progresses
the simulated time to 0.6 seconds. Unison can turn this into
less than 1.5 hours with 144 cores.

For BCbue, we set𝑛 = 8 and construct the topology using 2
levels. We set the link bandwidth to 10Gbps, the link delay to
3µs, and generate traffic according to web-search and gRPC
distribution, plus incast traffic. Together these traffic takes
30% load of the bisection bandwidth.We treat each BCube0 as
an LP (so there are 8 LPs) and distribute the top-level switches
evenly into these LPs for other PDES algorithms. As shown
in Figure 10b, Unison achieves the highest speed among all
algorithms. Under the gRPC traffic, Unison achieves nearly
10× speedup with 8 cores and 15× speedup with 16 cores.

For wide area backbone networks GEANT and ChinaNet,
we use RIP dynamic routing with 50% traffic load generated
according to web-search distribution. Since finding a sym-
metric division for these versatile topologies is impossible,
we opt out of other PDES algorithms. We launch 8 threads
for Unison. As illustrated in Figure 10, Unison achieves over
10× super-linear speedup relative to sequential DES.

For reconfigurable DCN, we use 4 cores to simulate a
10Gbps, 𝑘 = 4 fat-tree under balanced traffic for 1 second.
After a given interval, we replace all core switches with one
optical switch and then replace back, by changing the link
connectivity between ToR and core switches. The configura-
tions are similar to TDTCP [8]. As shown in Figure 10d, the
simulation time of Unison and the default sequential simula-
tor both slightly increase as the topology change frequency
increases. Therefore, we conclude that the performance im-
pact of Unison under dynamic topologies is negligible.

6.2 Unison is Accurate and Deterministic
Unison is accurate and deterministic based on our several
optimizations in practice, including the lock-free implemen-
tation, the tie-breaking rule and the support for global thread-
safe measurement.

Unison is as accurate as DES. To evaluate the accuracy
of Unison and MimicNet, a data-driven approach [42], we
simulate TCP New Reno with RED queue for 5 seconds in
both 2-cluster and 4-cluster fat-trees. The number of hosts
per rack is 2, so each cluster has 4 hosts. The link speed
is 100Mbps with 500µs delay, which is similar to the setup
given in MimicNet [42]. We generate the same traffic for Uni-
son and MimicNet, which is sampled from the web-search
distribution and takes up 70% of the bisection bandwidth.
In addition, each time a flow is generated, its destination
has a 10% chance of being changed into a random host in
the very right cluster. For Unison, we record statistics with
the FlowMonitor module of ns-3 and use the default sequen-
tial DES kernel of ns-3 as the baseline. For MimicNet, we
train the ingress, egress and inter-mimic models according to
their default configurations using the same traffic generation
method but a different random seed4, and use its underlying
OMNeT++ as the baseline.
As shown in Table 2, MimicNet can accurately predict

the 2-cluster fat-tree. However, its accuracy dropped for
RTT and throughput when simulating the 4-cluster fat-tree.
This is because MimicNet only trains one cluster and uses
this cluster to predict other clusters’ performance, which
is not suitable for traffic that does not scale proportionally
in this incast situation. For Unison, due to the different
tie-breaking rules of simultaneous events (instead of the
sequential DES, which always processes the earliest created
4The training seed is 0, and the evaluation seed is 9. The hyperparameter
tuning feature of MimicNet is not utilized for the default configuration.

Table 2. The Accuracy of Unison compared with existing
data-driven approaches under different fat-tree scales. The
unit of FCT and RTT is milliseconds. The unit of throughput
is Mbps. All the data are averages.

Simulator
2-cluster 4-cluster

FCT RTT Thr. FCT RTT Thr.
OMNeT++ 617.03 8.47 7.10 418.69 10.22 3.14
MimicNet 607.17 7.38 7.44 412.58 8.02 4.56
Rel. Error 1.6% 12.9% 4.8% 1.5% 21.5% 45.2%
ns-3 default 650.89 15.14 6.81 480.84 10.49 6.50
Unison 632.52 15.03 6.99 472.45 11.39 6.41
Rel. Error 2.8% 0.7% 2.6% 1.7% 8.5% 1.4%

125

EuroSys ’24, April 22–25, 2024, Athens, Greece S. Bai, et al.

1 4 7 10

5.4

5.6

5.8

6
·107

Epoch

#e
ve
nt

Barrier
Nulmsg
Unison

(a) Event count

1 4 7 10

0.5

1

1.5

·104

Epoch

Av
er
ag
e
de
la
y
(µ
s)

Barrier
Nulmsg
Unison

(b) End-to-end delay

Figure 11. The Determinism of Unison.

event first), there is only a slight difference. It is notable that
we cannot compare the accuracy between sequential DES
and Unison, since both outcomes are possible if we handle
all the simultaneous events in random order.
Meanwhile, existing PDES algorithms in ns-3 exhibit a

significant inconsistency with the default sequential DES.
Their results are either erroneous or from a single cluster.
This is because they are unable to collect global statistics for
the FlowMonitor module unless we collect and gather them
manually. Therefore, we do not include them in Table 2 for
comparison.
We further adapt and run the existing DCTCP evalua-

tion [4] with Unison, which achieves 2.5× speedup with
4 threads compared with sequential DES. Unison success-
fully reproduced the simulation results including per-flow
throughput, Jain index and average queue delay described
in its publication.

Unison is deterministic. The tie-breaking rule introduced
by Unison guarantees that the simulation is deterministic. To
this end, we simulate a 𝑘 = 4 fat-tree 10 times and record the
event count of different algorithms. As shown in Figure 11a,
the event count of Unison is always the same. Yet for the
other two PDES algorithms, their event counts will fluctuate
when running the simulation for another time, leading to
inconsistent results, as illustrated in Figure 11b. Moreover,
since another two algorithms fail to measure global statistics,
their results are neither precise nor accurate. We also run
Unison with 1 to 16 threads. The event count and simula-
tion results of Unison also match exactly regardless of the
number of threads used.

6.3 Micro Benchmarks
We evaluate the benefits of fine-grained partition and opti-
mize configurations for different networking scenarios used
in load-adaptive scheduling.

Fine-grained partition reduces cache misses. As shown
in Figure 8b and Figure 9a, Unison can achieve super-linear
speedup because of the cache-friendly design of Unison.
To further validate the claim, we use Unison but manual
partition for a 12×12 torus network discussed in §6.1, with
1 thread. As illustrated in Figure 12a, the number of cache
misses decreases as the number of LPs increases, resulting in
a faster simulation time of 1.5× with the most fine-grained
partition (i.e., 144 LPs where each node is an LP).

To explore how different partition schemes affect the per-
formance, we use Unison but manual partition to simulate
the DCTCP example [4] in §6.2 with 4 threads. There is a
bottleneck link carrying huge traffic between sender clusters
and receiver clusters in this model. We use Unison’s fine-
grained partition, but avoid cutting off this bottleneck link in
our first manual partition scheme. We also avoid cutting off
links in the clusters in our second manual partition scheme
(i.e. coarse-grained). As shown in Figure 12b, fine-grained
partition reduces cache misses from frequent interleaving
when cutting off a link carrying huge traffic. It also produces
balanced scheduling and reduces the simulation time com-
pared with coarse-grained partition, despite a small increase
in cache misses when using multiple threads.

Evaluation on scheduling metrics and periods. To mea-
sure the impact of different metrics used in the load-adaptive
scheduling, we define a slowdown factor, 𝛼 , which is the sum
of the actual completion time of each round divided by the
sum of the idealistic round time. The idealistic round time is
calculated by assuming that the scheduler knows the exact
processing time of each LP in advance, and schedules these
LPs according to their exact processing time.
We simulate a 𝑘 = 8 fat-tree. Figure 12c shows that the

default metric used by Unison, which is the processing time
of the last round, stands out by reducing the slowdown factor
by 6% compared with no scheduling (i.e., random priorities
of LPs) as the number of threads increases to 16, and achieves

1.2

1.4

1.6

1.8

2·103

𝑇
(s
)

Simulation time

0 48 96 144

4

5

6

7
·109

#LP

C
ac
he

m
is
se
s Cache misses

(a) Cache misses under different
partition granularities

0
100
200
300
400
500

𝑇
(s
)

Simulation time

AutoBottleneck Coarse

0

2

4

6

8

·109

C
ac
he

m
is
se
s Cache misses

(b) Cache misses under different
partition schemes

4 8 12 16
1

1.02
1.04
1.06
1.08

11

#thread

𝛼

By # of pending events
By processing time
None

(c) Slowdown factors under dif-
ferent scheduling metrics

20 23 26
622

624

626

628

630

Scheduling period

𝑇
(s
)

(d) Simulation time under differ-
ent scheduling periods

Figure 12. Micro benchmarks of fine-grained partition and load-adaptive scheduling.

126

Unison: A Parallel-Efficient and User-Transparent Network Simulation Kernel EuroSys ’24, April 22–25, 2024, Athens, Greece

only 2% more of the round time compared with the idealistic
situation.
We evaluate the performance impact of different sched-

uling periods since there is a trade-off between scheduling
benefits and overheads (i.e., caused by sorting LPs). As shown
in Figure 12d, the performance of Unison gets better as the
period increases to 16. Further increases in the scheduling
period will cause degraded performance. Based on our expe-
rience, a period of 16 is large enough to handle 216 LPs with
minimal impact on performance.

7 Discussion
Memory Overhead. In addition to the parallel efficiency
and user transparency, Unison also reduces the memory
overhead of PDES. This is because the network topology and
flow information is shared among LPs via multithreading.
Therefore, the memory usage of Unison is comparable with
the default sequential DES.

Applicability and Generality. One of the limitations on
the applicability of Unison is that, it cannot handle models
that only contain stateful links such as wireless channels,
since they cannot be cut off for fine-grained partition. In
addition, for a largemodel with a low traffic load, the speedup
of Unison is less significant, which is about the same as
other PDES approaches. However, it is fast to simulate such
a model even with sequential DES due to a small number of
events and a small degree of parallelism.

Heterogeneous parallel simulation. The scheduling al-
gorithm of Unison assumes that each processor core has the
same clock frequencies. For parallel simulation on processor
cores with different clock frequencies, a more general sched-
uling strategy has to be considered. Furthermore, Unison
only utilizes CPU cores. For GPU and FPGA-based devices,
other approaches are required to utilize their potential com-
putation power and parallelism.

Future work. We will apply Unison to other network sim-
ulators including OMNeT++ and ns.py. We are also going
to explore heterogeneous parallel simulation and emulation
by investigating the use of other computation components,
such as FPGAs and programmable switches.

8 Related Work
Network performance estimation. In addition to DES,
flow-level mathematical modeling and end-to-end perfor-
mance estimators [9, 24, 26, 36] can be used in network per-
formance estimation as well. However, they treat the whole
network as a black box, which cannot provide detailed visi-
bility [40]. Data-driven approaches are currently replacing
their roles. However, as already discussed in §2.2, existing
data-driven approaches still have limited usability, long train-
ing time, approximated results and rely on DES to collect
training data for new scenarios [40, 42].

Another recent work eliminates the need for training
by transforming the original topology into many link-level
topologies [43]. It then simulates these topologies using DES
in parallel and aggregates the results. However, it still relies
on DES and can only be used to estimate the tail latency.

Zero-configuration fast network PDES. We identified
that both ns-3 andOMNeT++ communities have attempted to
achieve zero-configuration network PDES by using a shared-
memory approach. The ns-3 community has attempted a
multithreaded approach [37]. However, they primarily focus
on thread safety issues and their costs, ignoring cache effects,
scheduling strategy, determinism and scalability. In contrast,
our work provides an extensive enhancement and a greater
speedup upon this.

The proposal of OMNeT++ [5] is to identify concurrently
processable events in the FEL via a colorization algorithm
running on a worker thread, allowing other threads to grab
these processable events. However, their proposal relies on
the distance matrix of every LP, which would occupy a sig-
nificant amount of memory (𝑂 (𝑛2) if the number of LPs is
𝑛) for large models, and it has not been implemented yet.

Another recent work uses a data-oriented design to reduce
cache misses in network simulation [11]. They adopt exist-
ing PDES algorithms to cope with large-scale simulations,
but the profiling and optimization of PDES are not in their
design scope. Moreover, it requires a full re-architecture of
existing network simulators to cope with the data-oriented
paradigm, which means the entire network protocol stack
and applications have to be redesigned to use their simulator.
In contrast, our work retains compatibility with existing ns-3
frameworks, requires zero configurations, and can be easily
adapted to other network simulators based on DES.

9 Conclusion
Existing PDES algorithms for network simulation are not
widely used in practice due to their complex configuration
and limited performance gains. This paper introduces a new
network simulation kernel, Unison, which is parallel-effect
and user-transparent. Unison addresses these limitations by
adapting fine-grained partition and load-adaptive scheduling.
Our evaluations demonstrate that Unison is fast, transparent,
accurate and deterministic across various scenarios.

Acknowledgments
Wewould like to thank our shepherd, Qizhen Zhang, and the
anonymous EuroSys ’24 reviewers for all their constructive
feedback and comments. This research is supported by the
National Key R&D Program of China under Grant Numbers
2022YFB2901502, and the National Natural Science Founda-
tion of China under Grant Numbers 62072228, 62172204 and
62325205.

127

EuroSys ’24, April 22–25, 2024, Athens, Greece S. Bai, et al.

References
[1] Vamsi Addanki, Maria Apostolaki, Manya Ghobadi, Stefan Schmid,

and Laurent Vanbever. 2022. ABM: active buffer management in
datacenters. In Proceedings of the ACM SIGCOMM 2022 Conference.
36–52.

[2] Vamsi Addanki, Oliver Michel, and Stefan Schmid. 2022. PowerTCP:
Pushing the performance limits of datacenter networks. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI

22). 51–70.
[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A

scalable, commodity data center network architecture. ACM SIGCOMM

computer communication review 38, 4 (2008), 63–74.
[4] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Pad-

hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data center tcp (dctcp). In Proceedings of the ACM

SIGCOMM 2010 Conference. 63–74.
[5] OMNeT++ Technical Articles. 2020. Zero Configuration Automatic

Parallel Simulation. https://docs.omnetpp.org/articles/zero-conf-
parsim/

[6] Gustavo Carneiro, Pedro Fortuna, and Manuel Ricardo. 2009. Flow-
monitor: a network monitoring framework for the network simulator
3 (ns-3). In Proceedings of the Fourth International ICST Conference on

Performance Evaluation Methodologies and Tools. 1–10.
[7] K. Mani Chandy and Jayadev Misra. 1979. Distributed simulation: A

case study in design and verification of distributed programs. IEEE
Transactions on software engineering 5 (1979), 440–452.

[8] Shawn Shuoshuo Chen,WeiyangWang, Christopher Canel, Srinivasan
Seshan, Alex C Snoeren, and Peter Steenkiste. 2022. Time-division
TCP for reconfigurable data center networks. In Proceedings of the

ACM SIGCOMM 2022 Conference. 19–35.
[9] Miquel Ferriol-Galmés, Jordi Paillisse, José Suárez-Varela, Krzysztof

Rusek, Shihan Xiao, Xiang Shi, Xiangle Cheng, Pere Barlet-Ros, and
Albert Cabellos-Aparicio. 2023. RouteNet-Fermi: Network Modeling
With Graph Neural Networks. IEEE/ACM Transactions on Networking

(2023).
[10] Richard M Fujimoto. 2000. Parallel and distributed simulation systems.

Vol. 300. Citeseer.
[11] Kaihui Gao, Li Chen, Dan Li, Vincent Liu, Xizheng Wang, Ran Zhang,

and Lu Lu. 2023. DONS: Fast and Affordable Discrete Event Network
Simulation with Automatic Parallelization. In Proceedings of the ACM

SIGCOMM 2023 Conference. 167–181.
[12] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang,

Wenwen Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, et al. 2021.
When cloud storage meets RDMA. In 18th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 21). 519–533.
[13] Hamid Ghasemirahni, Tom Barbette, Georgios P Katsikas, Alireza

Farshin, Amir Roozbeh, Massimo Girondi, Marco Chiesa, Gerald Q
Maguire Jr, and Dejan Kostić. 2022. Packet order matters! Improving
application performance by deliberately delaying packets. In 19th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 22). 807–827.
[14] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Nikolaidis, Mo-

hammad Alizadeh, and Thomas E Anderson. 2022. Backpressure Flow
Control. In 19th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 22). 779–805.
[15] Ronald L. Graham. 1969. Bounds on multiprocessing timing anomalies.

SIAM journal on Applied Mathematics 17, 2 (1969), 416–429.
[16] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yun-

feng Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. 2009. BCube:
a high performance, server-centric network architecture for modular
data centers. In Proceedings of the ACM SIGCOMM 2009 conference on

Data communication. 63–74.
[17] Juris Hartmanis. 1982. Computers and intractability: a guide to the

theory of np-completeness (michael r. garey and david s. johnson).

Siam Review 24, 1 (1982), 90.
[18] Huawei 2012 Labs. 2020. ns.py. https://github.com/TL-System/ns.py
[19] Paul Hudak. 1986. A semantic model of reference counting and its

abstraction (detailed summary). In Proceedings of the 1986 ACM Con-

ference on LISP and Functional Programming. 351–363.
[20] David R Jefferson. 1985. Virtual time. ACM Transactions on Program-

ming Languages and Systems (TOPLAS) 7, 3 (1985), 404–425.
[21] Vikas Jha and Rajive Bagrodia. 2000. Simultaneous events and looka-

head in simulation protocols. ACM Transactions on Modeling and

Computer Simulation (TOMACS) 10, 3 (2000), 241–267.
[22] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and

Matthew Roughan. 2011. The internet topology zoo. IEEE Journal on

Selected Areas in Communications 29, 9 (2011), 1765–1775.
[23] Georg Kunz. 2010. Parallel discrete event simulation. In Modeling and

Tools for Network Simulation. Springer, 121–131.
[24] Jean-Yves Le Boudec and Patrick Thiran. 2001. Network calculus: a

theory of deterministic queuing systems for the internet. Springer.
[25] Hejing Li, Jialin Li, and Antoine Kaufmann. 2022. SimBricks: end-to-

end network system evaluation with modular simulation. In Proceed-

ings of the ACM SIGCOMM 2022 Conference. 380–396.
[26] Marco Ajmone Marsan, Michele Garetto, Paolo Giaccone, Emilio

Leonardi, Enrico Schiattarella, and Alessandro Tarello. 2005. Using
partial differential equations to model TCP mice and elephants in
large IP networks. IEEE/ACM Transactions on Networking 13, 6 (2005),
1289–1301.

[27] RadhikaMittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-
all, and David Zats. 2015. TIMELY: RTT-based congestion control for
the datacenter. ACM SIGCOMM Computer Communication Review 45,
4 (2015), 537–550.

[28] Yasuyuki Miura, Kentaro Shimozono, Shigeyoshi Watanabe, and
Kazuya Matoyama. 2013. An adaptive routing of the 2-D torus net-
work based on turn model. In 2013 First International Symposium on

Computing and Networking. IEEE, 587–591.
[29] David M Nicol. 1993. The cost of conservative synchronization in

parallel discrete event simulations. Journal of the ACM (JACM) 40, 2
(1993), 304–333.

[30] nsnam. 2017. ns-3. https://www.nsnam.org
[31] OpenSim Ltd. 2018. OMNeT++. https://omnetpp.org
[32] Alfred Park, Richard M Fujimoto, and Kalyan S Perumalla. 2004. Con-

servative synchronization of large-scale network simulations. In Pro-

ceedings of the eighteenth workshop on Parallel and distributed simula-

tion. 153–161.
[33] George F Riley, Mostafa H Ammar, and Richard Fujimoto. 2000. State-

less routing in network simulations. In Proceedings 8th International

Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems (Cat. No. PR00728). IEEE, 524–531.
[34] George F Riley and Thomas R Henderson. 2010. The ns-3 network

simulator. Modeling and tools for network simulation (2010), 15–34.
[35] George F Riley, Talal M Jaafar, Richard M Fujimoto, and Mostafa H

Ammar. 2004. Space-parallel network simulations using ghosts. In
18th Workshop on Parallel and Distributed Simulation, 2004. PADS 2004.

IEEE, 170–177.
[36] Krzysztof Rusek, José Suárez-Varela, Paul Almasan, Pere Barlet-Ros,

andAlbert Cabellos-Aparicio. 2020. RouteNet: Leveraging graph neural
networks for network modeling and optimization in SDN. IEEE Journal
on Selected Areas in Communications 38, 10 (2020), 2260–2270.

[37] Guillaume Seguin. 2009. Multi-core parallelism for ns-3 simulator.
INRIA Sophia-Antipolis, Tech. Rep 106 (2009), 110.

[38] András Varga, Yasar Ahmet Sekercioglu, and Gregory K Egan. 2003.
A practical efficiency criterion for the null message algorithm. In
European Simulation Symposium 2003. SCS Europe Publishing House,
81–92.

128

https://docs.omnetpp.org/articles/zero-conf-parsim/
https://docs.omnetpp.org/articles/zero-conf-parsim/
https://github.com/TL-System/ns.py
https://www.nsnam.org
https://omnetpp.org

Unison: A Parallel-Efficient and User-Transparent Network Simulation Kernel EuroSys ’24, April 22–25, 2024, Athens, Greece

[39] Hao Wu, Richard M Fujimoto, and George Riley. 2001. Experiences
parallelizing a commercial network simulator. In Proceeding of the

2001 Winter Simulation Conference (Cat. No. 01CH37304), Vol. 2. IEEE,
1353–1360.

[40] Qingqing Yang, Xi Peng, Li Chen, Libin Liu, Jingze Zhang, Hong Xu,
Baochun Li, and Gong Zhang. 2022. DeepQueueNet: towards scalable
and generalized network performance estimation with packet-level
visibility. In Proceedings of the ACM SIGCOMM 2022 Conference. 441–
457.

[41] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. 1998. GloMoSim: a
library for parallel simulation of large-scale wireless networks. In Pro-

ceedings of the twelfth workshop on Parallel and distributed simulation.
154–161.

[42] Qizhen Zhang, Kelvin KW Ng, Charles Kazer, Shen Yan, João Sedoc,
and Vincent Liu. 2021. MimicNet: fast performance estimates for data
center networks with machine learning. In Proceedings of the 2021

ACM SIGCOMM 2021 Conference. 287–304.
[43] Kevin Zhao, Prateesh Goyal, Mohammad Alizadeh, and Thomas E

Anderson. 2023. Scalable Tail Latency Estimation for Data Center
Networks. In 20th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 23). 685–702.
[44] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina

Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang. 2015. Congestion control for
large-scale RDMA deployments. ACM SIGCOMM Computer Commu-

nication Review 45, 4 (2015), 523–536.

129

EuroSys ’24, April 22–25, 2024, Athens, Greece S. Bai, et al.

A Processing Time
We record the processing time 𝑃 of the first 10000 rounds
of the barrier synchronization algorithm and Unison, as
shown in Figure 13. In Figure 13a, we can notice that the
processing time of each LP (the Y-axis) is highly different,
yet the processing time of consecutive rounds of a single LP
(the X-axis) changes more smoothly. In Figure 13b, Unison
can perfectly balance the skewed workload in Figure 13a
while reducing the processing time with cache boost.

B Artifact Appendix
B.1 Abstract
This artifact includes Unison’s implementation based on ns-
3.36.1, along with experiments for profiling and performance
comparison between Unison and existing PDES approaches.

B.2 Description & Requirements
B.2.1 How to access. The artifact is publicly visible at
https://github.com/NASA-NJU/Unison-for-ns-3. The eval-
uated artifact is persistently indexed by https://doi.org/10.
5281/zenodo.10077300.

B.2.2 Hardware dependencies. You should have at least
144 CPU cores and 512GB of memory to run all experiments.
These computation resources can come from either a single
host or multiple identically configured hosts within a cluster.

B.2.3 Software dependencies. AUnix-like operating sys-
tem installed with Python 3.8 or above, Git, CMake, Linux
Perf, OpenMPI library and NFS server/client is required. The
minimum compiler versions supported by Unison are g++-7,
clang-10 or Xcode 11.

B.2.4 Benchmarks. Our artifact requires WAN network
topology data from the Internet Topology Zoo [22] and traffic
CDF data from previous publications [4, 27]. We already
packed these data into the artifact.

B.3 Set-up
You should first get the source code of Unison by cloning its
GitHub repository to your host. Then, switch to the unison-
evaluations branch and follow the README.md file in that
branch to set up.

0 25 50 75 100
0
1
2
3
4
5
6
7

× 100 round

LP

5

10

15

𝑃
𝐵
(s
)

(a) Barrier synchronization

0 25 50 75 100
0
1
2
3
4
5
6
7

× 100 round

Th
re
ad

5

10

15

𝑃
𝑈

(s
)

(b) Unison

Figure 13. Sum of 𝑃 in every consecutive 100 rounds for a
𝑘 = 8 fat-tree.

B.4 Evaluation workflow
B.4.1 Major Claims. Here we list all of our major claims
and their corresponding figures and experiments below.
Claim 1. Unison can achieve 10× speedup over existing PDES
approaches. This is proven by Exp 1 and Exp 2 whose results
are reported in Figure 1.
Claim 2. The synchronization time of existing PDES ap-

proaches gradually dominates as the traffic inhomogeneity

increases. This is proven by Exp 3 whose results are reported
in Figure 5a.
Claim 3. The synchronization time ratio is high in a transient

time window for existing PDES approaches, even if the traffic

pattern is balanced in macro. This is proven by Exp 4 whose
results are reported in Figure 5b.
Claim 4. The synchronization time is long for low-latency

and high-bandwidth networks for existing PDES approaches.

This is proven by Exp 5 and Exp 6 whose results are reported
in Figure 5c and Figure 5d.
Claim 5. Unison can significantly reduce the synchronization

time to near zero. This is proven by Exp 7, Exp 8 whose results
are reported in Figure 5a and Figure 9b.
Claim 6. Unison exhibit super-linear speedup and its paral-

lelism is flexible to set. This is proven by Exp 9, Exp 10 and
Exp 11 whose results are reported in Figure 8b.
Claim 7. Unison is also fast with other topologies and under

different traffic patterns. This is proven by Exp 12, Exp 13 and
Exp 14 whose results are reported in Figure 10b.
Claim 8. The output of Unison is deterministic under multiple

runs while other PDES approaches are not. This is proven by
Exp 15 whose results are reported in Figure 11.
Claim 9. Fine-grained partition of Unison can reduce cache

misses which can further reduce the simulation time. This is
proven by Exp 16 whose results are reported in Figure 12a.
Claim 10. The default scheduling metric of Unison performs

better than others and without scheduling. This is proven by
Exp 17 whose results are reported in Figure 12c.

Notably, our artifact does not fully validate Figure 8a and
Table 2, since they both 1) have to modify and evaluate other
artifacts of ML-based data-driven simulators [40, 42] and 2)
require expensive GPUs to run these ML-based simulators.

The validation of the figures not mentioned in this section,
and part of the Figure 8a and Table 2 is included in our arti-
fact. You can find instructions to run these in our repository.
However, they are less important so we do not treat them
as major claims. Specifically, Figure 10a, Figure 10c and Fig-
ure 10d imply the same as Claim 7 but takes a longer time
to run. Figure 12b implies the same as Figure 12a but in the
corner case. Figure 12d also reflects the optimization of the
load-adaptive scheduling in Claim 10 but the effect is less
significant than Figure 12c.

130

https://github.com/NASA-NJU/Unison-for-ns-3
https://doi.org/10.5281/zenodo.10077300
https://doi.org/10.5281/zenodo.10077300

Unison: A Parallel-Efficient and User-Transparent Network Simulation Kernel EuroSys ’24, April 22–25, 2024, Athens, Greece

B.4.2 Experiments. It is easy to run experiments of our
artifact. We provide a script exp.py and all you need to do
is pass an argument indicating the experiment name. Here
we list all the experiments required to validate our major
claims. We also list the corresponding name and its expected
machine time for each experiment.

Exp 1 (fat-tree-distributed, 7d). This experiment will
simulate 48-cluster to 144-cluster fat-trees under incast traffic
onmultiple hosts, assuming the number of cores used in total
is equal to the number of clusters and each host has 24 cores.
If your hosts have a different number of cores (e.g., 16), you
can change the cluster parameter to 32, 48, 64, etc. 24 clusters
(cores) should be enough to produce the 10× relative speedup
result. Therefore if you do not have so many cores, you can
run a small-scale experiment with 8 to 24 clusters, but the
relative speedup is only about 6× at 8 clusters.

Exp 2 (fat-tree-default, 4d). This experiment will use
the default sequential simulation kernel to run Exp 1. If you
have changed any parameters of Exp 1, please adjust these
parameters in this experiment accordingly.

Exp 3 (mpi-sync-incast, 18h). This experiment runs a
𝑘 = 8 fat-tree with existing PDES algorithms using 8 cores
under different incast traffic ratios, and records the average
𝑃 , 𝑆 and𝑀 of every LP. It is expected that 𝑆 will increase to
over 70% of the total time as the incast traffic ratio increases.

Exp 4 (mpi-sync, 1h). This experiment runs a 𝑘 = 8 fat-tree
with the barrier synchronization algorithm using 8 cores
under balanced traffic, and records the 𝑆 ratio of each round.
It is expected that the 𝑆 ratio will fluctuate and will be above
20% for most of the time.

Exp 5 (mpi-sync-delay, 20min). This experiment runs a
𝑘 = 8 fat-tree with existing PDES algorithms using 8 cores
under different link delay, and records the average 𝑆 ratio of
every LP. It is expected that the 𝑆 ratio will decrease as the
link delay increases.

Exp 6 (mpi-sync-bandwidth, 10min). This experiment runs
a 𝑘 = 8 fat-tree with existing PDES algorithms using 8 cores
under different link bandwidth, while keeping the same traf-
fic load, and records the average 𝑆 ratio. It is expected that
the 𝑆 ratio will increase as the link bandwidth increases.

Exp 7 (mtp-sync-incast, 3h). This experiment runs a𝑘 = 8
fat-tree with Unison using 8 threads under different incast
traffic ratios, and records the average 𝑃 , 𝑆 and 𝑀 of every
thread. It is expected that 𝑆 is less than 5% for every case.

Exp 8 (mtp-sync, 40min). This experiment runs a 𝑘 = 8
fat-tree with Unison using 8 threads under balanced traffic,
and records the 𝑆 ratio of each round. It is expected that the
𝑆 ratio will be near zero in almost every round.

Exp 9 (flexible, 1d). This experiment runs a 𝑘 = 8 fat-
tree with Unison using 2-24 threads. It is expected that 24

threads can achieve about 2.5× speedup relative to 8 threads.
If you do not have so many cores, you can run a small-scale
experiment (a 𝑘 = 4 fat-tree) with 2-8 threads.

Exp 10 (flexible-barrier, 3d). This experiment runs a
𝑘 = 8 fat-tree with the barrier synchronization algorithm us-
ing 2-8 cores. It is expected that the barrier synchronization
algorithm is slower than Unison in Exp 9 under the same
number of cores. If you do not have so many cores, you can
run a small-scale experiment (a 𝑘 = 4 fat-tree) with 2-4 cores.

Exp 11 (flexible-default, 1d). This experiment will use
the default sequential simulation kernel to run Exp 9 and
Exp 10. If you change any parameters of Exp 9 and Exp 10,
please adjust these parameters in this experiment accord-
ingly.

Exp 12 (bcube, 40min). This experiment runs a 3-level 𝑛 = 8
BCube with Unison using 8 and 16 threads. It is expected
that 16 threads can achieve about 1.3-1.6× speedup relative
to 8 threads.

Exp 13 (bcube-old, 2h). This experiment runs a 3-level
𝑛 = 8 BCube with Unison existing PDES algorithms 8 cores.
It is expected that the existing PDES algorithms are slower
than Unison in Exp 12.

Exp 14 (bcube-default, 1d). This experiment will use the
default sequential simulation kernel to run Exp 12 and Exp 13.
If you change any parameters of Exp 12 and Exp 13, please
adjust these parameters in this experiment accordingly.

Exp 15 (deterministic, 4h). This experiment runs a 𝑘 =

8 fat-tree with Unison and existing PDES algorithms 20
times. It records the number of processed events and flow
statistics. It is expected that Unison’s event count and flow
statistics are the same across multiple runs, while other PDES
algorithms are not.

Exp 16 (partition-cache, 1d). This experiment runs a
12× 12 torus with Unison using only 1 thread. However, the
automatic partition of Unison is disabled and we change the
granularity of the partition (i.e., number of LPs) manually. It
is expected that Unison’s cache miss and simulation time
are reduced while the partition granularity increases.

Exp 17 (scheduling-metrics, 4h). This experiment runs a
𝑘 = 8 fat-tree with Unison with different scheduling metrics.
It is expected that the slowdown factor of Unison’s default
scheduling metric ByExecutionTime is the smallest among
others.

131

	Abstract
	1 Introduction
	2 Background
	2.1 DES for Networks
	2.2 Data-Driven Approaches
	2.3 PDES Algorithms

	3 Why Don't We Use PDES in Practice
	3.1 Complex Manual Configurations
	3.2 Slow Speedup

	4 Unison Design
	4.1 System Overview
	4.2 Fine-Grained Partition
	4.3 Load-Adaptive Scheduling

	5 Implementation
	5.1 Lock-Free Execution
	5.2 Improving Usability

	6 Evaluation
	6.1 Unison is Fast and Transparent
	6.2 Unison is Accurate and Deterministic
	6.3 Micro Benchmarks

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Processing Time
	B Artifact Appendix
	B.1 Abstract
	B.2 Description & Requirements
	B.3 Set-up
	B.4 Evaluation workflow

