
EdgeCross: Cloud Scale Traffic Management at Peering Edges

XIAOLIANG WANG, State Key Laboratory for Novel Software Technology, Nanjing University, China
PENGHUI MI, YONG ZHU, BAOYI AN, YINHUA WANG, LIXIANG WANG, XUEZHI YU,
QIONG XIE, XIANG HUANG, MINGLIANG YIN, CHAOYANG JI, WEI SUN,
YIHANG LV, Huawei Cloud Computing Technologies Co., Ltd., China
YUHANG CHEN, CAM-TU NGUYEN, CHEN TIAN, State Key Laboratory for Novel Software
Technology, Nanjing University, China
XIAOMING FU, Institute of Computer Science, University of Göttingen, Germany

Cloud providers deployed dozens of PoPs and data centers globally to serve billions of geo-distributed users.
The traffic management at peering edges has become a key capability of cloud network operators to meet the
diverse demands of users. With the rapid growth of cloud applications, users have recently announced new
performance requirements, e.g., achieving latency as low as possible instead of maintaining a specified delay.
The conventional inter-domain bandwidth allocation approach, which aims to reduce the high operating
expenditures of bandwidth usage, fails to meet these new requirements. We further reveal that the flow
scheduling among PoPs may fail due to the limited link capacity hidden by the cloud private backbone network
controller. Therefore we seek a new traffic management at peering edges.

We propose a new controller framework, EdgeCross, that satisfies not only users’ emerging demands but
maintains low operating costs. The large number of fine-grain application-aware flows and the consideration of
backbone links’ capacity lead to very high complexity of routing computation and verification for the controller.
EdgeCross introduces a two-phase operation that first achieves the low-expense bandwidth allocation according
to the standard 95𝑡ℎ percentile billing model and then allocates specified flows to peering edges based on
users’ requirements. EdgeCross further reduces large memory consumption by proposing an effective routing
table compression approach. The evaluation based on a production network with 16 PoPs has shown that
EdgeCross can successfully process the routes of 1 billion flows in 10 seconds, reduce the average delay for
performance-sensitive flows by 2 milliseconds compared to traditional BGP, and is able to save the bandwidth
cost by 10-26% compared to the state-of-the-art Cascara[25].

CCS Concepts: • Networks→ Network management.

Additional Key Words and Phrases: Cloud Network, Peering Edges, SDN Controller, Flow Scheduling

ACM Reference Format:
Xiaoliang Wang, Penghui Mi, Yong Zhu, Baoyi An, Yinhua Wang, Lixiang Wang, Xuezhi Yu, Qiong Xie,
Xiang Huang, Mingliang Yin, Chaoyang Ji, Wei Sun,, Yihang Lv, Yuhang Chen, Cam-Tu Nguyen, Chen Tian,
and Xiaoming Fu. 2024. EdgeCross: Cloud Scale Traffic Management at Peering Edges. Proc. ACM Netw. 2,
CoNEXT4, Article 24 (December 2024), 23 pages. https://doi.org/10.1145/3696396

1 Introduction
The public clouds provide high-speed, reliable, low-latency networking services for geo-distributed
users. The cloud wide-area networks (WANs) play an important role in connecting data centers
and users through globally deployed Points of Presence (PoP). These PoPs are interconnected by
the cloud private backbone network. Through the SDN-based centralized controller [15, 16], cloud

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2834-5509/2024/12-ART24
https://doi.org/10.1145/3696396

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

https://doi.org/10.1145/3696396
https://doi.org/10.1145/3696396
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696396&domain=pdf&date_stamp=2024-11-25

24:2 Xiaoliang Wang et al.

network operators can establish optimal routes, which meet users’ demands and minimize operating
expenditure of bandwidth costs[3, 23, 32]. Prior efforts mainly focus on reducing the inter-domain
bandwidth cost by leveraging multiple latency-equivalent peering links of PoPs [25, 33].
Recently, with the rapid growth of diverse cloud services, like metaverse-gaming, quantitative

finance, and short videos, the cloud provider receives various and stringent requirements on
networking quality. For example, finance institutions demand ultra-low latency as much as possible.
The prior cost-oriented bandwidth allocation approach can not satisfy the requirements of users.
The operators have to manually select the peering link with the lowest latency from remote PoPs,
which potentially increases the operating cost of cloud networks. Therefore we need a new unified
model to re-define the objective functions for both users and cloud providers.
Our operation experience further reveals another shortcoming of the current inter-domain

bandwidth allocation approach. It does not consider the capacity constraints of links in the cloud
private backbone network, which connects PoPs in different places. When scheduling network flows
to the remote low latency PoP egress, the operation may fail and can not satisfy the performance
requirement of users in practice due to congestion in the backbone network. Therefore, we seek
to improve the operation effectiveness by taking into account the link capacity of the backbone
network when scheduling the egress traffic to peering edges.

In this paper, we propose EdgeCross, a software-defined centralized controller for inter-domain
traffic routing at peering edges. EdgeCross first formulates traffic management as a multi-objective
optimization to balance the bandwidth costs and the specified requirements of users. The main
challenges are the high computation complexity caused by the fine-grained application-aware
flows, the capacity constraints of links in the backbone network, and the storage complexity of the
large cloud WAN routing tables in the controller’s memory. When formulating the optimization
problem, the variables and constraints have reached as high as 𝑂 (1010) and 𝑂 (108) respectively,
which can not be solved by the commodity optimization solvers [11].

To complete the route decision in each 5-minute execution interval in the product network, we
propose a two-phase acceleration approach. It consists of a coarse-grained offline optimization for
the pre-allocation of bandwidth usage at each peering edge and a fine-grained online optimization
to schedule critical flows to the peering links. A parallel implementation is introduced to further
accelerate the routing computation. EdgeCross realizes routing table compression through a hi-
erarchical forest-based index structure, which allows storage and fast routing verification inside
controllers. In summary, the contributions of this paper are:

• EdgeCross explains a key problem of traffic management at peering edges in modern cloud WAN
networks. As far as we know, EdgeCross is the first work explaining the new requirements of cloud
customers, such as low latency as possible, and as low cost as possible, instead of deterministic
latency, and bandwidth. We further reveal the design and implementation challenges to meet the
user demands, while reducing the operating expenditure of cloud providers.

• EdgeCross overcomes the challenge of high computation complexity for scheduling application-
aware flows. We introduce a series of effective optimization approaches to accelerate the route
computation, including joint-optimization of both peering edges and backbone networks, and
the routing table compression at the control plane to verify the generated routes.

• The effectiveness of EdgeCross has been verified through the product network traffic. EdgeCross is
able to process over 1 billion flows within 10 seconds, reduces the average delay for performance-
sensitive flows by 2 milliseconds compared to traditional BGP, and saves the bandwidth cost by
10-26% compared to the state-of-the-art Cascara[25].

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

EdgeCross: Cloud Scale Traffic Management at Peering Edges 24:3

Fig. 1. DCs are connected to BRs and PRs through Data center Routers (DRs). Outbound traffic can be routed
to peering link at any PoP.

2 EdgeCross Overview
2.1 Background
We briefly introduce the architecture of the cloud Wide-Area Networks (WANs). To serve geo-
distributed users, the cloud providers deployed multiple Point-of-Presences (PoPs) and Data Centers
(DCs) globally. As shown in Figure 1, each PoP hosts multiple Peering Routers (PRs) to connect
with the Internet Service Providers (ISPs) through peering links. Each ISP also serves as a transit
provider. We focus on the egress traffic management at Peering Routers, i.e. scheduling traffic
from DCs to the Internet through carefully selected peering links. Notice that, through Backbone
Routers (BRs), PoPs in different places are interconnected by the cloud private backbone network,
the outbound traffic from DCs can go to the Internet through either directly connected PoPs or
remote PoPs across the private backbone. Each peering router is equipped with a monitoring server
(MS) to monitor the link quality to the ISP [30].

The operation experience is billed by the bandwidth usage of peering links. The widely used
billing model is the 95𝑡ℎ percentile billing model which has evolved as an industry standard
when cloud providers sign contracts with ISPs [15, 25]. Over the monthly billing cycle, bandwidth
usage in the peering link is recorded for every time slot (usually 5 mins). By sorting the utilization
of megabits in every time slot, the billing model charges the 95𝑡ℎ percentile of the link usage. The
top 5% of bursty bandwidth usage over the billing period will not be counted. Notice that in the
contract each peering link is assigned a committed bandwidth to guarantee the benefit of ISPs. The
cloud provider is obligated to pay the committed bandwidth even if the total used traffic is less than
the committed bandwidth value. Since outbound traffic is significantly higher than inbound traffic,
the cloud operators, e.g. Microsoft [25], focus on minimizing the total outbound bandwidth cost at
peering links. The following trends lead to new challenges for modern cloud network operators.

2.2 Motivation

Differentiated Requirements of Cloud Users. With the rapid growth of newly emerging
cloud applications, users have differentiated requirements for networking services. We take the
applications in Table 1 as examples. For gaming and finance, rather than low prices, users prefer
the Premium Services to achieve latency as low as possible. On the contrary, for CDN and storage,
users mainly apply for the routing path with low price by using the Cost-centric Service. For the
short videos deployed in multiple clouds of a specified region, users distribute the workloads to
different cloud networks based on the latency measured in real time.

Congestion of Workflows in Cloud Private Backbone. Traffic scheduling focuses on balanc-
ing workloads among PoPs in different domains to save cost, and enhance the availability and
performance of applications workloads. Generally, traffic scheduling for the Internet and traffic

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

24:4 Xiaoliang Wang et al.

Service Scenario Demands

Premium Game, Finance Global Performance-aware
Latency-centric Short Video Specific Region Performance-aware

Bandwidth-centric IT business Global Access, Bandwidth-aware
Cost-centric CDN, Storage Service Low Cost

Table 1. Recommended choices of services

1

EdgeCross Controller
Computation Module

Overall Cost
Optimization

Time Slot
Optimization

Routes
Verification

Data Collector
Probing Routes Collector

Route Injector
Routing Tables

Fig. 2. The EdgeCross controller.
engineering (TE) for the private backbone is operated independently through different controllers
[19]. Therefore the cloud WAN controller usually takes the assumption that the backbone network
has sufficient bandwidth resources for routing all traffic. However, since the virtual paths of different
pairs of PoPs may share the same physical backbone links, the assigned workload can exceed the
capacity of a certain backbone link, and lead to congestion, unexpected delay, and even packet loss.
We verify the problem by using the state-of-the-art inter-domain bandwidth allocation algorithm,
Cascara [25], which assumes that the link capacity of the backbone is not limited. We conduct
experiments by using the traffic data in our product networks without considering the constraints
of backbone link capacity (see §6). Surprisingly, we observed that ∼10-30% of the backbone links
are overloaded. And in the worst case, the maximum link usage can be as high as 800%.

2.3 EdgeCross Controller
To address the above issues, we introduce the EdgeCross controller which revisits the outbound
traffic scheduling approach at the peering edge to satisfy the new demand of users and save
the bandwidth costs simultaneously. Similar to the sample given in Table 1, we provide the user
interface for customers to explicitly demonstrate their requirements. The core of EdgeCross is
shown in Figure 2, EdgeCross controller is designed to optimize and control traffic for cloud peering
edges, which consists of a data collector, a route computation module, and a route injector. The
data collector gathers route announcements from each PR device, the status of backbone links and
peering links. These collected data are forwarded to the computation module, which computes and
verifies the routes to be advertised.

We employ the triplet <PoP, service class, destination prefix> to identify flows. Here, the service
class is aggregated to the source virtual machine’s Elastic IP (EIP) address, serving to differentiate
the performance metrics of customers. Finally, the route injector installs the routes into the routing
tables of PRs in the network 1. In this paper, we focus on the computation module and need to
overcome the following key challenges:
Traffic Scheduling with Multi-objective. We need to carefully define the problems to simul-
taneously meet the differentiated requirements of users and applications while maintaining low
operating costs based on the 95𝑡ℎ percentile billing model (§3).
1The data plane operation of overriding BGP’s path selection and identifying the application-aware traffic is out of the
scope of the paper, please refer to the operational experience works [23, 30, 32].

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

EdgeCross: Cloud Scale Traffic Management at Peering Edges 24:5

High Computation Complexity. Concerning the application-aware fine-grain traffic flow identi-
fication as well as the link capacity associated with both peer routers and private backbone, the
variables and constraints have reached as high as𝑂 (1010) and𝑂 (108) respectively in the formalized
problem. We need an effective scheduling approach to solve the multi-objective problem with high
computation complexity. The objective is to compute 1 billion routes within 10 seconds (§4.2).
Large Routing Table Size. The controller needs to collect all routing tables of PRs to verify the
generated routes before installing new routes to PRs. Each PR has a routing table of ∼8 million
routes. Given around 200 PRs in our WAN, the size of the complete routing tables can be as large
as 1600GB. It is hard to store the large table in the memory of controllers. We need an efficient
routing table compression approach (§5).

3 Traffic Management at EdgeCross
We define the optimization problem (§3.1) and propose a two-phase scheme to solve the problem
(§3.2), the details of which are introduced (§3.3 and §3.4) respectively.

3.1 Objective
We explain the goal of cloud peering edge traffic engineering. EdgeCross has two objectives
concerning both operating cost and performance-sensitive traffic.
Ojective 1: Minimizing the total 95𝑡ℎ percentile bandwidth cost. Our allocation scheme aims to
determine a traffic assignment to peering links over the entire billing period while minimizing the
cumulative egress bandwidth cost and considering the capacity constraints of backbone links and
committed bandwidth of peering links.

Objective 2: Minimizing the sum of weighted performance factors in each time slot. The perfor-
mance factors encompass variables such as latency, packet loss, and delay jitter, which affect the
quality of users’ experiences when accessing the cloud. We compute the weighted sum of these
performance factors by aggregating the factors associated with all performance-sensitive flows.

3.2 Problem Decomposition
Previous solutions on multi-objective optimization problems [5, 13, 18] identify a single decision
vector to balance the trade-offs between many objectives. An optimal trade-off to achieve Pareto
Optimal. We notice that the above two optimization objectives are in different time granularity.
The first objective takes the overall bandwidth variance of the cloud as input and generates the
minimum 95𝑡ℎ percentile billable bandwidth for each peering link. Therefore, solving the 95𝑡ℎ
percentile charging problem requires considering the entire charging period of 1 month, which is
not sensitive to the specific flow scheduling in each 5-minute slot. The second objective, minimizing
the weighted sum of performance factors, focuses solely on assigning each performance-sensitive
flow within each time slot. Therefore, we can decompose the optimization problem based on the
granularity of the optimization period and adopt a two-phase model for the flow scheduling:

Phase 1: Estimation of 95𝑡ℎ Percentile Billable Bandwidth (§3.3). In the first phase, we focus
on accurately estimating the optimal 95𝑡ℎ percentile billable bandwidth for each peering link based
on the historical traffic. The estimation is triggered periodically, e.g. each month. However,
when the traffic pattern is significantly changed, such as network device failures, we need to
recompute the billable bandwidth. In our product network, the execution interval is about 10 hours.

Phase 2: Flow Scheduling (§3.4). The second phase takes the estimated 95𝑡ℎ percentile billable
bandwidth given in the first phase as input, and schedules flow to PoPs at each time slot. It
dynamically deals with performance-sensitive flows. The flow scheduling is executed online

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

24:6 Xiaoliang Wang et al.

Symbol Meaning
𝐸 Set of backbone links
𝑉 Set of PoPs
𝑇 Set of time slots
𝐿 Set of peering links
𝐹 Set of flows
𝐹𝑆 Set of performance-sensitive flows
𝑚 Number of peering links
𝑛 Number of five-minute time slots in a month
𝑙𝑖 Peering link i
𝐶𝑖 Capacity of peering link 𝑙𝑖

𝐶 (𝑢,𝑣) Capacity of backbone link from PoP 𝑢 to PoP 𝑣

𝐿𝑢 Set of peering link of PoP 𝑢
𝑢𝑏𝑖 Minimal billable bandwidth of peering link 𝑙𝑖
𝐸𝑆𝑢 Set of outgoing backbone links from PoP 𝑢
𝐸𝐷𝑢 Set of incoming backbone links to PoP 𝑢
𝑐𝑖 Peering rate (USD/Gbps) for peering link 𝑙𝑖

𝑝𝑒𝑟 𝑓 (𝑖, 𝑓) Performance function of flow 𝑓 and peering link 𝑙𝑖
Table 2. Symbols used in both overall and the time slot optimization

every 5 minutes, and thus the execution time of the optimization is generally confined to
10 seconds with regard to the time consumption used to collect data.

3.3 Estimation of 95𝑡ℎ Percentile Billable Bandwidth
We first formalize the task of estimating the 95𝑡ℎ percentile billable bandwidth. Different from the
previous cost-optimal allocation approach in Cascara[25], EdgeCross further considers the impact
of the limitation of the backbone links. The notation given in Table 2 comprises symbols related to
the backbone and peering edges. The formulation detail is introduced in Appendix A.1.

Objective Function. The objective is to minimize the total outbound bandwidth cost incurred
across all peering links, i.e. min

∑
𝑙𝑖 ∈𝐿 𝑐𝑖𝑝𝑖 , where 𝑝𝑖 is the 95

𝑡ℎ percentile billable bandwidth of
peering link 𝑙𝑖 .

Input Parameters. In addition to the common input parameters, we predict the traffic demand
{𝑏1𝑢, 𝑏2𝑢, ..., 𝑏𝑖𝑢, ..., 𝑏𝑛𝑢 } at each slot 𝑖 for all peering links associated with PoP𝑢 ∈ 𝑉 , which are achieved
based on the traffic of the last three months as well as the same month of last year.

Output Parameters. The predicted billing bandwidth 𝑝𝑖 for each peering link 𝑙𝑖 .

Key Insights. We draw insights from the status quo of the cloud provider’s network, which
motivates the estimation of the 95𝑡ℎ percentile billable bandwidth:

• Be aware of the impact of the backbone network. Notice that efficient utilization of the
backbone network can avoid congestion and failed scheduling. The 95𝑡ℎ bandwidth estimation
in the overall optimization should take into account the constraints of backbone link capacity.

• Minimizing 95𝑡ℎ percentile bandwidth cost. The problem of 95𝑡ℎ percentile bandwidth
allocation is not new [15, 25]. To ease understanding, a toy example is shown in Figure 3. Given
the traffic flows of peering link 𝑙𝑖 , cloud providers carefully schedule traffic to the 5% free time
slots, and evenly distribute the traffic to the remaining peering link, to achieve a low billable
bandwidth cost. This operation is called bursting of the peering link. The scheduler can then

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

EdgeCross: Cloud Scale Traffic Management at Peering Edges 24:7

determine 𝑝𝑖 , the 95𝑡ℎ percentile billable bandwidth of peering link 𝑙𝑖 . It guarantees that no cost
increases if the bandwidth usage of peering link 𝑙𝑖 follows the distribution given in Figure 3(b).
However, in practice, the operation of bursting the peering link can change the traffic pattern
and lead to network congestion. To mitigate the impact of this problem, EdgeCross employs an
incremental bursting strategy by gradually increasing the traffic allocation at the peering links
to ensure a more stable traffic growth there.

5% Time

95% Time
Time Slot

B
an

d
w

id
th

(a) Before optimization

B
an

d
w

id
th

Time Slot

5% Time 95% Time

(b) After optimization

Fig. 3. Bandwidth usage distribution of peering link 𝑙𝑖 .

Complexity Analysis. Regarding the ca-
pacity constraints of the egress ports and
backbone networks for all time slots in a
month, both the number of variables and
constraints is𝑂 (𝑛(|𝐸 |+ |𝐿 |+ |𝑉 |)), which is
approximately 15 million variables and 30
million constraints in our network topol-
ogy for 𝑛 = 8640. We can not solve the
problem in time with a commodity opti-
mization solver like Google OR-Tools [11], which takes more than one month. We provide the
corresponding solution in §4.1.

3.4 Flow Scheduling per Time Slot
The task of flow scheduling is performed in each slot. i.e. assigning flows to the peering links
based on the 95𝑡ℎ percentile billable bandwidth given in Phase 1. The problem is a Generalized
Assignment Problem (GAP) [24], which is NP-hard, and formulated in Appendix A.2.

Objective Function. The goal of our time slot optimization scheme is to find a flow assignment to
edge links in the current time slot such that the current weighted sum of the performance factor of
all flows and residual capacities of peering links are minimized. i.e.

min 𝛽

|𝐹𝑠 |
∑︁
𝑓 ∈𝐹𝑠

∑︁
𝑙𝑖 ∈𝐿

𝑤1 (𝑓)𝑥 𝑓

𝑖
𝑝𝑒𝑟 𝑓 (𝑖, 𝑓) + (1 − 𝛽)

∑
𝑙𝑖 ∈𝐿 𝑦𝑖∑
𝑙𝑖 ∈𝐿𝐶𝑖

Each performance-sensitive flow 𝑓 ∈ 𝐹𝑆 is associated with a function 𝑝𝑒𝑟 𝑓 (𝑖, 𝑓), which indicates
the achieved performance at peering link 𝑙𝑖 based on the service class in the current time slot. For
example, 𝑝𝑒𝑟 𝑓 (𝑖, 𝑓) can be a discretized weighted functions of latency and packet loss, consisting
of both a latency function and a packet loss function. The latency term assigns a value based on
pre-determined thresholds: if the latency exceeds 100𝑚𝑠 , the latency term is set to 1; if it exceeds
50𝑚𝑠 but is below 100𝑚𝑠 , the value is 0.8, and so on. The packet loss term is similarly defined, where
different packet loss rates correspond to specific weight values. Thus, lower values of 𝑝𝑒𝑟 𝑓 (𝑖, 𝑓)
correspond to better performance. The binary variable 𝑥 𝑓

𝑖
indicates whether flow 𝑓 is scheduled

to peering link 𝑙𝑖 , where 𝑥 𝑓

𝑖
= 1 if flow 𝑓 is routed through 𝑙𝑖 , and 𝑥 𝑓

𝑖
= 0 otherwise. The weight

𝑤1 (𝑓) identifies the priority of flow 𝑓 . The first function in the formulation defines the aggregate
performance across all applications. 𝛽 is a hyperparameter used to adjust the trade-off between cost
and performance. Furthermore, we incorporate the selection of bursting egresses. The variable 𝑦𝑖
represents the available capacity at egress 𝑙𝑖 . If selecting as the slot of 5% bursting peering link, 𝑦𝑖 is
set to the maximum capacity 𝐶𝑖 ; otherwise, 𝑦𝑖 is set to the estimated 95𝑡ℎ percentile bandwidth 𝑝𝑖 .

Constraints. The constraints introduced in our formalization pertain to peering links, backbone
links, and PoPs. The bandwidth allocation of a PoP depends on its outgoing, incoming, and total

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

24:8 Xiaoliang Wang et al.

traffic. The assignment of a flow during the current time slot depends on the available capacity of
peering links and backbone links.

Input Parameters. In addition to the common input parameters of WAN and edge of the cloud.
The data input is all related to the current time slot, including 𝑏𝑢 and a set of flows 𝐹 .

Key Insights. In the process of time slot optimization, we conduct a comprehensive analysis of
prior research findings. Based on this analysis, we summarize several valuable insights:
• The billable bandwidth ensures the predicted traffic can be forwarded to the peering link with a
low operating expenditure. However, the 95𝑡ℎ billable bandwidth is estimated offline based on
the predicted traffic. During the online flow scheduling, the real traffic usually varies from the
predicted traffic. Therefore, we need to solve two problems at each time slot: 1) Determiningwhich
peering link we can fully utilize its bandwidth, i.e. bursting of the peering link; 2) Maintaining
the bandwidth usage of other links close to the billable bandwidth 𝑝𝑖 as much as possible, which
can avoid high unexpected bandwidth cost.

• We need to avoid the waste of peering links bandwidth resource. For example, if the peering
links of remote PoPs have sufficient resources, we need to avoid the backbone network becoming
the bottleneck and affecting the scheduling decision. Thus we still need to consider the limited
capacity of backbone links in real-time during the flow scheduling at each time slot.

These insights further motivate us to decompose the time slot optimization problem into two
subproblems: selecting bursting peering links and assigning traffic flows, the detail of which is
introduced in §4.2.2. Ultimately, we achieve a ratio of outbound bandwidth cost optimization of
approximately 32%, which reveals that deliberating the selection of bursting peering links is much
more critical than the estimation of billable bandwidth.

Complexity Analysis. The total number of constraints amounts to 𝑂 (|𝐹 | ¤(|𝐸 | +𝑚)), where |𝐹 |
represents the number of flows. In our testing topology, there are 2 million flows per time slot, i.e.,
the time slot algorithm is projected to involve approximately 200 million constraints and 2 billion
decision variables. The current optimization solver can schedule 10,000 flows in ∼1 minute. Hence,
it is unable to schedule 200 million flows per time slot. We seek for acceleration approach in §4.2.

4 Optimization
4.1 Accelerating the Estimation of 95𝑡ℎ Percentile Billable Bandwidth
In order to estimate the 95𝑡ℎ percentile billable bandwidth in a few hours (10 hours in our network),
we introduce an approximation approach to estimate the bandwidth demand but significantly
reduce the computation complexity. It is reasonable because the traffic workload varies in practice
and we can not achieve the precise bandwidth demand through prediction. We can mitigate the
impact of the approximation approach through the realistic flow scheduling in each time slot (§4.2).

B
a
n

d
w

id
th

Time Slot

α=5 Windows

(a) Before sampling

B
a
n

d
w

id
th

Time Slot

(b) After sampling
Fig. 4. A toy example of sampling when 𝛼 = 5.

Minimizing the number of time
slots to be considered while retain-
ing the characteristics of the band-
width distribution. Notice that the num-
ber of variables and constraints are both
closely related to the number of time
slots, we aim to reduce the number of
time slots to be considered through a sam-
pling scheme. We design an optimization
scheme through the idea of sorting and

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

EdgeCross: Cloud Scale Traffic Management at Peering Edges 24:9

sampling that greatly reduces the problem-solving time while ensuring a certain degree of optimal-
ity. For each peering link, we first sort the total predicted bandwidth demands of the whole time
slots in a month. Figure 4 shows a toy example of the sampling approach. We equally divide all
time slots into 𝛼 parts, each of which is referred to as a window. Within each window, we retain the
time slot with the maximum bandwidth demand and remove the others. We select the maximum
one to ensure that any other demand in the same window can be scheduled to the peering link
without violating the link capacity constraint in practice. Since we sort the bandwidth demands of
all slots, given a carefully selected window it ensures that the difference in bandwidth requirements
is small enough. Finally, we take all sampled bandwidth demands into consideration which can
represent the distribution of bandwidth demands in a PoP.
As long as we choose the proper size 𝛼 , we can maintain the accuracy while gaining a huge

acceleration. 𝛼 is determined by the traffic in practice. Generally, given 𝑛 = 8640 slots in a month,
we chose 𝛼 = 288 and successfully reduced the number of variables and constraints by 96.6%. Since
there appears to be a tradeoff between time and accuracy of the optimization problem, we can solve
the estimation of 95𝑡ℎ percentile billable bandwidth problem within 20 minutes, but with an error
of less than 5% compared to the optimal solution.

4.2 Accelerating Flow Scheduling
To ensure the flow scheduling algorithm execution time is under 10 seconds, we analyze the traffic
characteristics and introduce feasible solutions.

10bps 10Kbps 10Mbps 10Gbps
Flow bandwidth log scale

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Count
Total traffic

(a) All flows

10bps 10Kbps 10Mbps 10Gbps
Flow bandwidth log scale

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Count
Total traffic

(b) Performance-sensitive flows
Fig. 5. Bandwidth distribution of outbound traffic

4.2.1 Minimize the number of sched-
uled flows. We analyze the distribu-
tion of the traffic flows based on the
traffic of one week, i.e. from May
22 to May 28, 2023, in the product
cloud network. As shown in Figure
5, the flows using 94.21% of the to-
tal bandwidth comprise only 0.91%
of the overall flow count. In addition,
we find that approximately 4.5% of the total flows are performance-sensitive flows, accounting for
approximately 0.8% of the total bandwidth of all flows. The cost is mainly determined by the total
bandwidth instead of the number of flows. A small number of large flows use the majority of the
bandwidth.

By observing the distribution of the outbound traffic, we notice that a few large flows dominate
the bandwidth usage. We do not need to schedule all the flows in each slot. Instead, we can focus on
those large flows for cost-saving and scheduling performance-sensitive flows to satisfy the service
requirements. Specifically, this optimization avoids frequent traffic scheduling and mitigates the
impact of packet loss and delay jitter. We introduce a hyperparameter 𝐹𝑇 to identify the threshold.
Those flows demanding for bandwidth less than 𝐹𝑇 are directly forwarded to the default peering
links. After setting a proper 𝐹𝑇 , we can drastically reduce the number of flows that need to be
scheduled by 94%.

4.2.2 First allocating bandwidth and then scheduling flows. To reduce the computation complexity
of the flow scheduling in each time slot, we decompose the optimization per slot into two steps.
Step 1: Allocating the total demanded bandwidth of users in the current time slot to peering link
of all PoPs with regard to both the constraint of the backbone link capacity and the estimated
95𝑡ℎ percentile billable bandwidth values. In this step, we only consider the total traffic bandwidth
demands of each PoP in the current time slot, and allocate bandwidth demands on the backbone

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

24:10 Xiaoliang Wang et al.

links, and determine whether we can use the full capacity of peering link 𝑙𝑖 without considering
the specified flow scheduling. The bandwidth allocation problem can be formalized as a MILP. Step
2: Scheduling flows to the peering links based on the bandwidth allocation given by Step 1 while
ensuring optimal performance for performance-sensitive flows. The flow scheduling problem can
be formulated as a bin packing problem, and we apply a heuristic algorithm to solve this problem.

Bandwidth Allocation. We model the bandwidth allocation problem as a MILP. The model uses
the methodology of estimating 95𝑡ℎ percentile billable bandwidth algorithm to statistically compute
the flow bandwidth within a PoP while considering the goal of minimizing the cost.

Objective function. To minimize the cost, the objective function is set to minimize the sum of
unused capacity at each peering link.

Input parameters. In addition to the common inputs listed in Table 2, the algorithm requires only
the current time slot and the total traffic in each PoP in the current time slot.

Variables. We set two variables. 𝐵 (𝑢,𝑣) denotes the usage of the backbone link from PoP 𝑢 to PoP
𝑣 in the current time slot. 𝑘𝑖 is a binary variable indicating if peering link 𝑖 needs to burst in the
current time slot, i.e. use all available capacity.

The optimization formulation is explained in Appendix A.3. To address the constraint imposed
by the limited backbone network capacity, we need to determine the bandwidth that can be
scheduled between each pair of PoPs. To this end, we leverage the intermediate results of the above
optimization problem: the expected utilization of each backbone link, i.e. the bandwidth should be
used for each link of the private backbone network such that we can achieve the optimal objective
results. We denote this bandwidth usage of the physical backbone network by "recommended
bandwidth". We then allocate the workload between PoPs based on the recommended bandwidth.
To this end, we define the virtual link between PoP 𝑢 and PoP 𝑣 , 𝐵 (𝑢,𝑣) , the capacity of which
represents the sum of the bandwidth of flows to be scheduled. Therefore, the goal of this step is to
determine the capacity of the virtual links between PoPs based on the recommended bandwidth
usage of the physical backbone network links.
We need to find some virtual links to fully use the recommended bandwidth, i.e. the sum of

allocated virtual links capacity is equal to the recommended bandwidth. This problem can be
regarded as a specialized maximum flow problem, which can be solved using a greedy algorithm
with the time complexity of 𝑂 (|𝑉 |2 |𝐸 |) where |𝑉 | stands for the number of PoPs and |𝐸 | is the
number of physical links in the backbone network. Finally, we can obtain the virtual link capacity
𝐵 (𝑢,𝑣) for each pair of PoP 𝑢 and PoP 𝑣 , which means allocating 𝐵 (𝑢,𝑣) bandwidth for flows from
PoP 𝑢 to PoP 𝑣 in the scheduling process.

Flow Scheduling. Flow scheduling requires the use of the capacity of the virtual links solved in
the previous step. The principle is to make the actual used capacity of the virtual links as much
as possible. Due to the small number of performance-sensitive flows and total bandwidth, we can
first schedule those performance-sensitive flows to the peering link with the best performance, i.e.
finding the peering link 𝑙𝑖 that can minimize the 𝑝𝑒𝑟 𝑓 function defined in §3.4). The scheduling
process needs to avoid violating the capacity limit of each peering link and not exceeding the
capacity limit of the inter-PoP virtual links. Traffic characterization analysis in §4.2.1 indicates
that performance-sensitive flows constitute only a small portion of the total bandwidth. Therefore,
almost all performance-sensitive flows can be allocated to the optimal peering link.
For the non-performance-sensitive flows, the scheduling problem can be regarded as a bin-

packing problem, assigning flows to fill up the peering link capacity of the virtual links as much
as possible. Algorithm 4 in Appendix A.4 presents the pseudo-code of the heuristic scheduling

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

EdgeCross: Cloud Scale Traffic Management at Peering Edges 24:11

Fig. 6. An example of parallelization. A, B, and C represent distinct PoPs, where the traffic from A to B, and
traffic from C to B can be calculated in parallel at A and C.

algorithm. Briefly, flows are first sorted based on the traffic bandwidth demands, and then assigned
to the predetermined virtual links greedily. Specifically, the priority is used to ensure that virtual
links across the PoP are filled before scheduling flows within the PoP.

4.2.3 Parallel Flow Scheduling at Each PoP. The flow scheduling algorithm can be executed in
parallel at each PoP. We use a local controller in each PoP for scheduling flows from that PoP to
other PoPs by assigning flows to the virtual link in parallel. The local controller within each PoP
runs the algorithm individually and uploads these results to the central controller. It is notable
that the capacity of the virtual link is determined based on the recommended bandwidth of the
backbone network. The traffic workload will not exceed the recommended bandwidth, which will
lead to no congestion. As shown in Figure 6, the central controller makes the peering link bursting
decision and allocates the virtual link bandwidth between PoPs, i.e. 2Gbps from PoP A to PoP B
and 1Gbps from PoP C to PoP B. After getting the bandwidth of the virtual links between PoPs, the
local controller can then assign flows to a virtual link based on its capacity. Here, PoP assigned
three flows: 𝑓1 of 1Gbps, 𝑓2 of 0.6Gbps, and 𝑓3 of 0.4Gbps, the sum of which is no larger than the
capacity of the virtual link from PoP A to PoP B. The first step is to conduct inter-PoP scheduling
to ensure optimal utilization of the capacity across all virtual links. Scheduling of flows within a
PoP can be regarded as a bin packing problem which can be solved in parallel [6]. This approach
enables each PoP to autonomously handle data collection, optimal scheduling computation, and
scheduling result dissemination.

5 Routing Table Compression
EdgeCross uses the routing computation module (§3) to determine the traffic routes based on the
complete routing tables collected from all PRs. Besides, we need the complete routing table of
cloud WAN to verify the generated routes before installing the new routes to PR devices. The
storage of routing tables introduces a big challenge for the limited memory of the controller’s server.
Specifically, each entry in the routing table consists of a prefix and a series of routing information,
e.g., next hop, origin, AS path, community_list, origin_as, local_pref, etc. A 64GB memory can only
store ∼15 million routing entries.
Therefore, we target compressing the routing table in the EdgeCross controller. Generally, the

tree-based index structures are used to compress the routing table, such as Binary tree[29], Patricia
trie[27], Radix tree[26], TreeBitmap[7], Poptrie[1], etc. For example, the routing information can
be compressed by dictionary encoding, and an original table with a total of 918768 entries can
be compressed to 119856 entries, with a compression ratio of about 7.6. However, in practice,
the EdgeCross controller’s memory still can not accommodate the compressed index of routing
table entries for the entire network, the routing computations of which require a large number
of data exchanges between memory and disk and slow down the actions of the longest matching,
full matching, subnet matching, field filtering, etc. We notice that compressing all routes onto
a single tree causes the depth of the tree to be too large, which affects the efficiency of routing
index construction and computations. Updating a large tree frequently also incurs a significant
computation overhead. Therefore, we consider how to efficiently compress routing entry indexes

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

24:12 Xiaoliang Wang et al.

(a) Logical structure (b) Memory structure
Fig. 7. Logical and Memory Data Structure: Forest

Fig. 8. Logical and Memory Data Structure: Subtree

Fig. 9. The network topology

while ensuring the functionality and performance of dynamic addition, deletion, modification, and
querying.

Index Structure. To improve efficiency, it is crucial to effectively manage the scope of route compu-
tations and prioritize localized updates. We propose a hierarchical forest-based index structure, as
illustrated in Figure 7(a), which decomposes a large tree into multiple flattened subtrees according
to the prefix hierarchy (e.g., [/16, /20], [/20, /24]). This structure can reduce the path length of
route computations and control the scope of routing updates within a smaller subtree.
However, the space required to maintain the hierarchical forest directly in memory remains

non-trivial. We further propose a more compact routing index structure to compress every subtree,
i.e., ForestBitmap2. By uniquely representing each subtree with two integers, i.e., subtree id and
bitmap value, and mapping it to a memory entry, we can significantly reduce the memory overhead.
As shown in Figure 7(b), the prefix “192.168.10.132/28” is encoded as a logical subtree with the root
node “192.168.10.128/28”, which has the id 470450334 as the subtree id. The bitmap value of the
logical subtree, e.g., 68, indicates the non-null nodes with valid routes by setting the corresponding
bits to “1” in the order of level traversal.

In addition, routing computations are primarily executed through efficient bit operations, while
avoiding extensive search and backtracking on the tree structure, ensuring a better performance.
This compact and flexible indexing structure can achieve 𝑂 (1) online update performance and is
easily expandable.

Subtree Encoding. Irrespective of the pure prefix index, we need a more comprehensive approach
to storing and indexing the entire routing tables with attribute information. To illustrate the process
of subtree compression encoding, we use the 3-layer subtree as an example. As shown in Figure
8, the logical subtree stores the routing table entries, each of which consists of a prefix and its
associated routing information. These entries can be encoded in a memory Map entry, where the
Map key is the subtree id (e.g., 1464960) and the Map value is an array that contains the bitmap
(e.g., 238) and a series of attribute id(s).

We obtain the subtree index id from the common binary prefix resulting from subnet aggregation,
represented as 1 0110 0101 1010 1000 0000. We pad the most significant bit of 1 to acquire the
unique subtree id of 146960. This id enables us to locate the subtree containing the route. A 3-layer

2ForestBitMap is implemented by JAVA similar to the general-purpose radix-tree implementation.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

EdgeCross: Cloud Scale Traffic Management at Peering Edges 24:13

Days 1 2 3 4 5 6 7
BGP 1080.09 1106.51 1137.02 1162.89 1173.52 1181.04 1187.20

EdgeCross 734.03 741.36 753.73 760.99 768.30 773.93 777.97
Optimization 32.04% 33.00% 33.71% 34.56% 34.53% 34.47% 34.47%

Table 3. Cost optimization for offline testing under a 90% bursting
threshold and a 0.1Mbps flow filter threshold.

Memory (MB) Prefix Index Routing Index
RadixTree[12] 204.37 556.48
EdgeCross 11.55 95.31

Optimization 17.69× 5.93×
Table 4. Memory optimization

subtree can store up to seven routes, so we employ an 8-bit bitmap to encode non-null nodes and
achieve 238 (i.e., 11101110), with the least significant bit reserved.
ForestBitmap uses dictionary encoding to eliminate redundancy and acquire a dictionary table

of the route attribute information. The encoded routing information table is shared by all routes,
whose id is stored as the index of routing information according to the valid bits of the bitmap, e.g.,
1,1,2,3,1,3. Thus, we can compress a 3-layer subtree with routing table entries into a memory entry.

Remark. Taking IPv4 as an example, a 5-layer subtree that stores 31 routing table entries can
be represented by a Map entry. This allows for the compression of IPv4 BGP routing entries with
over 900,000 unique prefixes to less than 170,000 Map entries. Compared to simple tree structures,
the memory compression ratio is higher due to the utilization of compact structures and aligned
integer encoding. Besides, it is more suitable for cache placement, thus enhancing the hit rate.

6 Evaluations
We evaluate EdgeCross through the topology given in Figure 9, which consists of 4 areas, 16 PoPs,
and 860 peering links. 8 of the PoPs are equipped with monitoring devices, while the other 8 PoPs
(in white) solely work as transit PoPs connected by the backbone. The total number of links in
the backbone network is 54. The amount of flows in the test input is approximately 2 million per
time slot and the flows are all from real business traffic of 1 week (from May 22, 2023 to May
28, 2023). The data from different weeks are very large (Tbits) but we have demonstrated the
consistency of data in Table 3. Performance-sensitive flows are identified based on the application
service class, constituting approximately 4% of the total flow count. The algorithm runs on a single
server with 64GB of memory and 32 CPU cores. There are two parameters to be determined. We
filter non-performance-sensitive small flows based on the flow filter threshold 𝐹𝑇 . Considering the
congestion risk in the product network, we set the maximum percentage of peering link bursting
capacity, named bursting threshold 𝐵𝑇 .

6.1 Cost Optimization
We first conduct offline tests for 1 to 7 days with hyperparameters such as a bursting threshold of
90% and a flow filter threshold of 0.1Mbps. Table 3 illustrates the 95𝑡ℎ percentile bandwidth costs of
EdgeCross and traditional BGP under different test durations. The results indicate that, compared
to BGP, EdgeCross achieves ∼32.04-34.4% cost saving on different days. Moreover, this optimization
ratio remains relatively stable on different days.

We then test the cost optimization of EdgeCross under different hyperparameters, benchmarking
against traditional BGP. As shown in Figure 10, with a fixed bursting threshold, the percentage of
cost savings increases with the decrease of the flow filter thresholds. However, when the flow filter
threshold becomes sufficiently small (e.g., 0.1Mbps), further decreasing the flow filter threshold
does not significantly increase the cost. This is mainly because an excessively low 𝐹𝑇 would lead
the algorithm to schedule additional small flows. However, the total bandwidth proportion of these
small flows is small, resulting in a negligible impact on cost optimization. Besides, 𝐵𝑇 significantly
influences the results of cost optimization, as changes in 𝐵𝑇 imply variations in the maximum
capacity of each peering link.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

24:14 Xiaoliang Wang et al.

80% 90% 100%
Burst Threshold

15

20

25

30

35

Pe
rc

en
ta

ge
 o

f C
os

t S
av

in
gs

FT=0.01Mbps
FT=0.1Mbps

FT=0.5Mbps
FT=1Mbps

FT=5Mbps

Fig. 10. Cost optimization with different bursting
thresholds and flow filter thresholds.

Intra-PoP Inter-PoP
Scheduling Strategy

0

10

20

30

Pe
rc

en
ta

ge
 o

f C
os

t S
av

in
gs

EdgeCross Cascara

Fig. 11. Cost optimization of EdgeCross and Cas-
cara.

0 50 100 150 200 250 300
Time Slot

a

a+1

a+2

a+3

a+4

Av
er

ag
e

De
la

y(
m

s)

EdgeCross Traditional BGP

Fig. 12. Average delay of performance-sensitive
flows using EdgeCross and traditional BGP.

0 10 20 30 40 50 60
Number of Threads

10

20

30

40

50

Ru
nt

im
e(

s)

Fig. 13. Runtime when serving 5 million flows
under different numbers of threads.

Finally, we compare the cost saving of EdgeCross and Cascara[25]. We consider two scenarios (i)
flows can only be scheduled within a PoP and (ii) flows can be scheduled among PoPs. Notice that
Cascara does not consider the backbone network, we added additional constraints of link capacity
in their backbone for inter-PoP flow scheduling. As shown in Figure 11, EdgeCross achieves higher
cost optimization compared to Cascara in our network topology. For example, for inter-PoP flow
scheduling, EdgeCross achieves cost savings by 32% while Cascara achieves 6% cost optimization.
For intra-PoP scheduling, EdgeCross still outperforms Cascara because it maximizes the utilization
of the bursting peering links’ free bandwidth. This is mainly attributed to EdgeCross’s carefully
designed algorithm that selects the bursting peering links for each time slot. Cascara’s heuristic
bursting peering links selection may result in underutilization of the free bandwidth of bursting
peering links. Particularly in inter-PoP scheduling, insufficient backbone network link capacity
means that only a few flows can be assigned to the bursting peering links.

6.2 Performance Optimization
We evaluate the performance of EdgeCross on performance-sensitive flows. Notice that Cascara
aims to optimize cost in the first phase of EdgeCross for billable bandwidth, we can not demonstrate
the performance optimization result of Cascara here. Our chosen performance metric is the delay of
flows, encompassing both the delay at peering links and the backbone network delay. We evaluate
the average latency of performance-sensitive flows in each time slot under both EdgeCross and
traditional BGP routing. The test involved 288 time slots, employing a bursting threshold of 90% and
a flow filter threshold of 0.1 Mbps. As illustrated in Figure 12, EdgeCross exhibits an approximate 2
ms reduction in the latency of performance-sensitive flows compared to BGP. Furthermore, roughly
67% of these performance-sensitive flows gain performance improvements. We achieve the similar
relusts by using different parameters 𝐹𝑇 = {0.01, 0.1, 0.5, 1, 5}Mbps and 𝐵𝑇 = {100%, 90%, 80%}.

6.3 Scalability
We scale up the number of flows to approximately 5 million by triplicating each flow, without
filtering any flows, while other experimental settings remain consistent. We compare the average
runtime of the algorithm per time slot under different numbers of threads. We allocate an equal
number of threads for each PoP, enabling parallel scheduling both across PoPs and within each

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

EdgeCross: Cloud Scale Traffic Management at Peering Edges 24:15

Time (ms) Index Build Longest Match Full Match Subnet Match Delete Origin_as Filter Update
RadixTree[12] 1534 4.463 8.251 758.3 122.6 75.44 1306
EdgeCross 533.8 1.453 2.554 39.31 25.76 55.79 81.31

Optimization 2.87× 3.07× 3.23× 19.29× 4.75× 1.35× 16.06×
Table 5. Routing computation optimization of ForestBitmap

Functionalities Edge Fabric[23] Espresso [32] Cascara [25] OneWAN [19] EdgeCross

Optimization objective Performance Performance Cost Performance Cost + performance
Flow granularity Dest prefix PoP + Service + dest prefix Bandwidth Node + Service + dest prefix PoP + Service + dest prefix

Backbone capacity limitation No No No Yes Yes
Distinguished service classes No Yes No Yes Yes

Scheduling scope Internet Internet Internet Internet and datacenter Internet

Table 6. Comparison on transport features of EdgeCross and other solutions.

PoP. As shown in Figure 13, when employing parallel execution with 32 threads, the algorithm’s
average runtime is approximately 80% shorter than the sequential execution. As we mentioned
before, if we filter the flows by a 𝐹𝑇 of 0.1Mbps, the remaining number of flows will be decreased
by about 94%. This indicates that if filtering is applied to flows with a 𝐹𝑇 of 0.1Mbps, our method
can achieve our target, which is to schedule around 1 billion flows in approximately 10 seconds
with 32 threads.

In summary, EdgeCross’s scalability is attributed to three optimization strategies in the time slot
scheduling algorithm: 1) The model for choosing the bursting egress reduces the time complexity
of the original problem from exponential to linear in terms of the number of flows; 2) The flow
filtering approach balances cost and performance optimization while reducing the number of flows
the algorithm needs to consider 3) The computation of virtual link capacities between PoPs enables
parallel execution of inter-PoP scheduling.

6.4 Efficient Routing Table Compression
MB

0

0

0

0

0

0

0

o

o

o

o

o

o

6

5

4

3

2

1

100000 200000 300000 400000 500000 600000 700000 800000 900000

■ RadixTree[12] ■ EdgeCross

#. entries

Fig. 14. Memory Usage

We test the performance and computation efficiency
based on the live network datasets using Google
RadixTree (i.e., baseline) and our proposed compact
data structure ForestBitmap. The results in Table 4
demonstrate that ForestBitmap achieves a compres-
sion ratio of 17.69 times when storing about one
million unique prefixes, compared to the baseline
for pure prefix index. For the complete routing in-
dex with extra attribute information, ForestBitmap
achieves a compression ratio of 5.83 times. Moreover, we test the cumulative time of perform-
ing different routing computations on thousands of routes with the baseline and ForestBitmap
respectively. As shown in Table 5, compared with the baseline, ForestBitmap improves computation
efficiency by 1.35X to 19.29X. ForestBitmap achieves significant improvement in both compression
effect and computation efficiency. Moreover, with the increasing number of routing table entries,
ForestBitmap introduces greater benefits in terms of memory usage. As shown in Figure 14, the
memory usage of ForestBitmap is 4.88 to 5.775 times less in comparison with RadixTree when the
number of route entries is 100K and 900K respectively.

7 Related Work
Traffic Engineering in SDN-based Cloud WAN. In comparison to BGP [23, 32], EdgeCross
differentiates between the service classes of flows. EdgeCross can tailor specific performance
functions based on their requirements. By probing performance metrics for each backbone network

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

24:16 Xiaoliang Wang et al.

link and peering link, EdgeCross effectively assigns performance-sensitive flows to optimal peering
links. Cloud providers also use traffic engineering at the edge of their networks to allocate traffic
between the cloud and ISPs [14, 20, 21, 23, 32, 33] [10, 25]. TIPSY [22] and PAINTER [17] focuses
on ingress traffic engineering. Espresso[32] and Edge Fabric[23] are SDN-based systems designed
by Google and Facebook respectively. For example, Espresso prioritizes traffic based on the service
class, ensuring superior performance for high-priority traffic. Edge Fabric identifies a flow by the
destination prefix. However, they do not explicitly address backbone network capacity limitations,
which is a challenge faced by EdgeCross. From the perspective of the controller, Espresso and
EdgeCross use a global controller for route table update, while Edge Fabric employs distributed
controllers for each PoP.
Unifying inter-domain TE and intra-domain TE. A group of works [4, 9, 19, 33] focus on the
dynamic path selection and load balancing of traffic given the traffic matrix among the peering edge
and data center. OneWAN [19] is a recent work that unifies inter-datacenter TE and Internet TE.
OneWAN faces the primary challenge of selecting the optimal path within the cloud network using
a unified single controller. EdgeCross and other works [2, 8, 14, 21, 23, 25, 28, 32, 33] focus on the
inter-domain traffic routing between cloud and Internet through the PoP. EdgeCross chooses the
optimal peering links, where WAN controllers and Internet controllers are independent. EdgeCross
implements traffic engineering within the Internet controller, but considers backbone network link
capacity as a constraint for flow scheduling. Table 6 shows the clear difference between EdgeCross
and other network frameworks.
Routing Table Lookup. Google RadixTree is a 15-year-old longest-prefix-match implementation,
which is widely used and stable in product environment. The limitation of memory resources can
significantly impede system performance and usability. Therefore, the optimization of memory
consumption, particularly in terms of the compression ratio of RIB, is regarded as a primary design
objective in the original version. Notice that the LPM in DPDK can not be applied in our system
because it consumes large memory for performance. We have reviewed multiple works such as Tree
BitMap[7], SAIL[31], and Poptrie[1]. ForestBitmap outperforms these results, e.g. ForestBitmap
achieves 39% faster than Poptrie.

8 Conclusion
We report our effort to realize traffic management of peering edges from the perspective of modern
cloud providers. We optimize both cost and performance for large-scale flow scheduling. EdgeCross
optimizes approximately 32% of the cost and reduces the average flow latency by 2 milliseconds.
The network slicing schemes and routing compression algorithms allow EdgeCross to have the
potential to complete the scheduling task for 1 billion flows within 10 seconds. After deploying
EdgeCross, it successfully attracted and satisfied the demands of new customers.

Acknowledgments
We would like to thank our shepherd, the anonymous reviewers for their insightful comments
and suggestions on this paper. This work has been partially supported by Jiangsu Key R&D
BK20243053, NSFC (No. 62172204, 62325205, 62072228). The Fundamental Research Funds for
the Central Universities, the Collaborative Innovation Center of Novel Software Technology and
Industrialization, and the Jiangsu Innovation and Entrepreneurship (Shuangchuang) Program.

References
[1] Hirochika Asai and Yasuhiro Ohara. 2015. Poptrie: A Compressed Trie with Population Count for Fast and Scalable

Software IP Routing Table Lookup. In Proceedings of ACM SIGCOMM.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

EdgeCross: Cloud Scale Traffic Management at Peering Edges 24:17

[2] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh, and Jacobus Van Der Merwe. 2005.
Design and implementation of a routing control platform. In Proceedings of USENIX NSDI.

[3] Martin Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian. 2012. Fabric: a retrospective on evolving
SDN. In Proceedings of ACM SIGCOMM.

[4] Fangfei Chen, Ramesh K Sitaraman, and Marcelo Torres. 2015. End-User Mapping: Next Generation Request Routing
for Content Delivery. Proceedings of ACM SIGCOMM.

[5] Yunfei Cui, Zhiqiang Geng, Qunxiong Zhu, and Yongming Han. 2017. Multi-objective optimization methods and
application in energy saving. Energy 125 (2017), 681–704.

[6] Tansel Dokeroglu and Ahmet Cosar. 2014. Optimization of one-dimensional bin packing problem with island parallel
grouping genetic algorithms. Computers & Industrial Engineering 75 (2014), 176–186.

[7] Will Eatherton, George Varghese, and Zubin Dittia. 2004. Tree bitmap: hardware/software IP lookups with incremental
updates. ACM SIGCOMM Computer Communication Review 34, 2 (2004), 97–122.

[8] Nick Feamster, Jay Borkenhagen, and Jennifer Rexford. 2003. Guidelines for interdomain traffic engineering. ACM
SIGCOMM Computer Communication Review 33, 5 (2003), 19–30.

[9] Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick Holt, Jie Liu, Yingying Chen, and Oleg Surmachev. 2015.
FastRoute: A Scalable Load-Aware Anycast Routing Architecture for Modern CDNs. In Proceedings of USENIX NSDI.

[10] David K Goldenberg, Lili Qiuy, Haiyong Xie, Yang Richard Yang, and Yin Zhang. 2004. Optimizing cost and performance
for multihoming. Proceedings of ACM SIGCOMM.

[11] Google. [n. d.]. OR-Tools. https://github.com/google/or-tools.
[12] Google. [n. d.]. Radix Tree. https://code.google.com/archive/p/radixtree/.
[13] Nyoman Gunantara. 2018. A review of multi-objective optimization: Methods and its applications. Cogent Engineering

5, 1 (2018), 1502242.
[14] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P Donovan, Brandon Schlinker, Nick Feamster, Jennifer

Rexford, Scott Shenker, Russ Clark, and Ethan Katz-Bassett. 2014. SDX: A Software Defined Internet Exchange.
Proceedings of ACM SIGCOMM.

[15] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nanduri, and Roger Wattenhofer.
2013. Achieving high utilization with software-driven WAN. In Proceedings of ACM SIGCOMM.

[16] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Alimi, Chandan Bhagat, Sourabh Jain, Jay
Kaimal, Shiyu Liang, Kirill Mendelev, et al. 2018. B4 and After: Managing Hierarchy, Partitioning, and Asymmetry for
Availability and Scale in Google’s Software-Defined WAN. In Proceedings of ACM SIGCOMM.

[17] Thomas Koch, Shuyue Yu, Sharad Agarwal, Ethan Katz-Bassett, and Ryan Beckett. 2023. PAINTER: Ingress Traffic
Engineering and Routing for Enterprise Cloud Networks. In Proceedings of ACM SIGCOMM.

[18] Abdullah Konak, David W Coit, and Alice E Smith. 2006. Multi-objective optimization using genetic algorithms: A
tutorial. Reliability engineering & system safety 91, 9 (2006), 992–1007.

[19] Umesh Krishnaswamy, Rachee Singh, Paul Mattes, Paul-Andre C Bissonnette, Nikolaj Bjørner, Zahira Nasrin, Sonal
Kothari, Prabhakar Reddy, John Abeln, Srikanth Kandula, et al. 2023. OneWAN is better than two: Unifying a split
WAN architecture. In Proceedings of USENIX NSDI.

[20] Raul Landa, Lorenzo Saino, Lennert Buytenhek, and João Taveira Araújo. 2021. Staying alive: Connection path
reselection at the edge. In Proceedings of USENIX NSDI.

[21] Hongqiang Harry Liu, Raajay Viswanathan, Matt Calder, Aditya Akella, Ratul Mahajan, Jitendra Padhye, and Ming
Zhang. 2016. Efficiently delivering online services over integrated infrastructure. In Proceedings of USENIX NSDI.

[22] Michael Markovitch, Sharad Agarwal, Rodrigo Fonseca, Ryan Beckett, Chuanji Zhang, Irena Atov, and Somesh
Chaturmohta. 2022. TIPSY: predicting where traffic will ingress a WAN. In Proceedings of ACM SIGCOMM.

[23] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V Madhyastha, Italo Cunha, James Quinn,
Saif Hasan, Petr Lapukhov, and Hongyi Zeng. 2017. Engineering egress with Edge Fabric: Steering oceans of content
to the world. In Proceedings of ACM SIGCOMM.

[24] David B Shmoys and Éva Tardos. 1993. An approximation algorithm for the generalized assignment problem.
Mathematical programming 62, 1-3 (1993), 461–474.

[25] Rachee Singh, Sharad Agarwal, Matt Calder, and Paramvir Bahl. 2021. Cost-effective cloud edge traffic engineering
with Cascara. In Proceedings of USENIX NSDI.

[26] Keith Sklower. 1991. A tree-based packet routing table for Berkeley unix.. In USENIX Winter, Vol. 1991. 93–99.
[27] Wojciech Szpankowski. 1990. Patricia tries again revisited. Journal of the ACM (JACM) 37, 4 (1990), 691–711.
[28] Vytautas Valancius, Bharath Ravi, Nick Feamster, and Alex C Snoeren. 2013. Quantifying the Benefits of Joint Content

and Network Routing. In Proceedings of ACM SIGMETRICS.
[29] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner. 1997. Scalable high speed IP routing lookups.

In Proceedings of ACM SIGCOMM.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

https://github.com/google/or-tools
https://code.google.com/archive/p/radixtree/

24:18 Xiaoliang Wang et al.

[30] Kaicheng Yang, Yuanpeng Li, Sheng Long, Tong Yang, Ruijie Miao, Yikai Zhao, Chaoyang Ji, Penghui Mi, Guodong
Yang, Qiong Xie, Hao Wang, Yinhua Wang, Bo Deng, Zhiqiang Liao, Chengqiang Huang, Yongqiang Yang, Xiang
Huang, Wei Sun, and Xiaoping Zhu. 2023. AAsclepius: Monitoring, Diagnosing, and Detouring at the Internet Peering
Edge. In 2023 USENIX Annual Technical Conference (ATC).

[31] Tong Yang, Gaogang Xie, YanBiao Li, Qiaobin Fu, Alex X. Liu, Qi Li, and Laurent Mathy. 2014. Guarantee IP lookup
performance with FIB explosion. In Proceedings of ACM SIGCOMM.

[32] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holliman, Gary Baldus, Marcus Hines,
Taeeun Kim, Ashok Narayanan, Ankur Jain, et al. 2017. Taking the Edge off with Espresso: Scale, Reliability and
Programmability for Global Internet Peering. In Proceedings of ACM SIGCOMM.

[33] Zheng Zhang, Ming Zhang, Albert G Greenberg, Y Charlie Hu, Ratul Mahajan, and Blaine Christian. 2010. Optimizing
Cost and Performance in Online Service Provider Networks. In Proceedings of USENIX NSDI.

A Appendix
A.1 Estimating 95𝑡ℎ Percentile Billable Bandwidth Algorithm
In this section, we show in detail the algorithm for estimating the 95𝑡ℎ percentile billable bandwidth
formalization problem as mentioned in §3.3. The purpose of this algorithm is to give an estimated
billable bandwidth 𝑝𝑖 for each peering link 𝑙𝑖 based on the bandwidth forecast within each PoP for
the next month. The formulation is depicted in Algorithm 1.

Decision variables. Peering link bursting is the maximum available bandwidth to be allocated
to the peering link, which avoids congestion. Specifically, when 𝑘

𝑗

𝑖
is 1, the bandwidth allocation

of egress 𝑙𝑖 can be extended to 𝐶𝑖 , and we refer to this as bursting. When 𝑘
𝑗

𝑖
is 0, the bandwidth

allocation of egress 𝑙𝑖 can only be extended to 𝑝𝑖 , and we refer to this as not bursting.

Constraints. The constraint 1a states that 5% of the total time slots in a month should be reserved
for peering link bursting. The constraint 1b specifies that the estimated billable bandwidth of
peering links should be greater than the guaranteed bandwidth. The constraint 1c establishes that
the bandwidth along the backbone link must be within its capacity constraint. The constraint
1d ensures that the total bandwidth demand during a specific time slot doesn’t exceed the total
capacity of all peering links. The constraints 1e and 1f dictate that the remaining bandwidth at the
PoP after scheduling - accounting for both incoming and outgoing bandwidth - must not be greater
than the total available capacities of peering links at the PoP and not be less than zero. The last
four constraints 1g, 1h, 1i and 1j imply that if the peering link 𝑙𝑖 bursts in time slot 𝑡 𝑗 , then the
maximum available capacity 𝑦 𝑗

𝑖
is between 0 and 𝐶𝑖 ; otherwise, it is between 0 and 𝑝𝑖 . The large

constant𝑀 is used to convert nonlinear constraints into linear constraints.

A.2 Flow Scheduling
In this section, we show in detail the algorithm for the flow scheduling formalization problem
as mentioned in §3.4. The algorithm schedules flows online based on the set of 𝑝𝑖 given by Algo-
rithm 1. It considers multiple optimization objectives scheduling, including performance and cost
optimization. The formulation is depicted in Algorithm 2.

Decision variables. The flow scheduling scheme assigns network flow to peering links in 𝐿 in the
current time slot, 𝑡 ∈ [1, .., 𝑛]. We introduce the decision variable 𝑏 (𝑢,𝑣) to represent the bandwidth
allocation on backbone link (𝑢, 𝑣) from PoP 𝑢 to PoP 𝑣 in the current time slot. 𝑦𝑖 is the maximal
available bandwidth in the current time slot. The binary decision variable 𝑥 𝑓

𝑖
indicates whether flow

𝑓 egresses through peering link 𝑙𝑖 within the current time slot, and the binary decision variable
𝑥
𝑓

(𝑢,𝑣) indicates whether it traverses backbone link (𝑢, 𝑣) within the current time slot.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

EdgeCross: Cloud Scale Traffic Management at Peering Edges 24:19

Algorithm 1 Estimating 95𝑡ℎ Percentile Billable Bandwidth Algorithm
Inputs:
Table 2: Common input parameters
𝑏
𝑗
𝑢 : Total traffic of PoP 𝑢 in time slot 𝑡 𝑗
𝑑 𝑗 : Egress demand from the WAN in time slot 𝑡 𝑗

Outputs:
𝑏
𝑗

(𝑢,𝑣) : Bandwidth of backbone link from PoP 𝑢 to PoP 𝑣 in time slot 𝑡 𝑗
𝑝𝑖 : Estimated 95th-percentile billable bandwidth of peering link 𝑙𝑖
𝑘
𝑗

𝑖
: Whether peering link 𝑙𝑖 bursts in time slot 𝑡 𝑗

𝑦
𝑗

𝑖
: Maximal available bandwidth of peering link 𝑙𝑖 in time slot 𝑡 𝑗 . When 𝑘 𝑗

𝑖
equals 1, 𝑦 𝑗

𝑖
takes the

value of 𝑝𝑖 ; conversely, when 𝑘
𝑗

𝑖
equals 0, 𝑦 𝑗

𝑖
assumes the value of 𝐶𝑖

Minimize: ∑︁
𝑙𝑖 ∈𝐿

𝑐𝑖𝑝𝑖

Subject to:

∀𝑙𝑖 ∈ 𝐿 :
∑︁
𝑡 𝑗 ∈𝑇

𝑘
𝑗

𝑖
=

𝑛

20 (1a)

∀𝑙𝑖 ∈ 𝐿 : 𝑢𝑏𝑖 ≤ 𝑝𝑖 (1b)

∀(𝑢, 𝑣) ∈ 𝐸,∀𝑡 𝑗 ∈ 𝑇 : 𝑏 𝑗

(𝑢,𝑣) ≤ 𝐶 (𝑢,𝑣) (1c)

∀𝑡 𝑗 ∈ 𝑇 : 𝑑 𝑗 ≤
∑︁
𝑙𝑖 ∈𝐿

𝑦
𝑗

𝑖
(1d)

∀𝑢 ∈ 𝑉 ,∀𝑡 𝑗 ∈ 𝑇 :
∑︁

(𝑣,𝑢) ∈𝐸𝐷
𝑢

𝑏
𝑗

(𝑣,𝑢) −
∑︁

(𝑢,𝑣) ∈𝐸𝑆
𝑢

𝑏
𝑗

(𝑢,𝑣) + 𝑏
𝑗
𝑢 ≤

∑︁
𝑙𝑖 ∈𝐿𝑢

𝑦
𝑗

𝑖
(1e)

∀𝑢 ∈ 𝑉 ,∀𝑡 𝑗 ∈ 𝑇 :
∑︁

(𝑢,𝑣) ∈𝐸𝐷
𝑢

𝑏
𝑗

(𝑢,𝑣) −
∑︁

(𝑢,𝑣) ∈𝐸𝑆
𝑢

𝑏
𝑗

(𝑢,𝑣) + 𝑏
𝑗
𝑢 ≥ 0 (1f)

∀𝑡 𝑗 ∈ 𝑇,∀𝑙𝑖 ∈ 𝐿 : 𝑦 𝑗

𝑖
≤ 𝑝𝑖 +𝑀𝑘

𝑗

𝑖
(1g)

∀𝑡 𝑗 ∈ 𝑇,∀𝑙𝑖 ∈ 𝐿 : 𝑦 𝑗

𝑖
≥ 𝑝𝑖 −𝑀𝑘

𝑗

𝑖
(1h)

∀𝑡 𝑗 ∈ 𝑇,∀𝑙𝑖 ∈ 𝐿 : 𝑦 𝑗

𝑖
≤ 𝐶𝑖 +𝑀

(
1 − 𝑘

𝑗

𝑖

)
(1i)

∀𝑡 𝑗 ∈ 𝑇,∀𝑙𝑖 ∈ 𝐿 : 𝑦 𝑗

𝑖
≥ 𝐶𝑖 −𝑀

(
1 − 𝑘

𝑗

𝑖

)
(1j)

Constraints. The constraint 2a ensures that each flow needs to be scheduled to exact one peering
link. The constraint 2b restricts that the sum of the bandwidth of flows scheduled to each peering
link cannot exceed the available capacity of that peering link. The constraint 2c specifies that the
utilization capacity of each backbone link should not exceed its maximum available capacity. The
constraints 2d and 2e signify that for each flow 𝑓 , if it’s scheduled to PoP 𝑢, then a unique egressing
peering link for this flow can be found within PoP𝑢. For other PoPs, this flow might transit through,
utilizing an equal amount of inbound and outbound backbone network links for that PoP. The
constraints 2f and 2g ensure that the sum of the bandwidth for flows within each PoP should be
non-negative and not exceed the aggregate available capacity of the peering links within the PoP
after scheduling. The last five constraints 2h, 2i, 2j, 2k and 2l describe the relationship between the

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

24:20 Xiaoliang Wang et al.

maximum available capacity of each peering link. If peering link 𝑙𝑖 bursts, the maximum available
capacity is 𝐶𝑖 ; otherwise, it is 𝑝𝑖 .

A.3 Bandwidth Allocation Formulation
We model the bandwidth allocation problem, which is depicted in Algorithm 3.

Input parameters. In addition to the common inputs listed in Table 2, the algorithm requires only
the current time slot and the total traffic in each PoP in the current time slot.

Variables. We set two variables. 𝑏 (𝑢,𝑣) denotes the usage of the backbone link from PoP 𝑢 to PoP 𝑣

in the current time slot. This variable will be used to indicate the utilized capacity of each physical
backbone link. 𝑘𝑖 is a binary variable indicating if peering link 𝑖 needs to burst in the current time
slot. This variable will be used to determine the maximum available capacity for each peering link.

Objective function. To minimize the cost, the objective function is set to minimize the sum of
unused capacity at each peering link.

Constraints. Constraints mainly stem from limited peering link capacity and backbone link
capacity. The first and second constraints ensure that the bandwidth allocated to each peering
link does not exceed the maximum available capacity of that peering link. The third constraint
ensures that the usage of each backbone link does not exceed its maximum capacity. The last two
constraints imply that the sum of the bandwidth of the remaining traffic within each PoP after
scheduling cannot be negative and cannot exceed the sum of the available capacity of all the peering
links within that PoP.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

EdgeCross: Cloud Scale Traffic Management at Peering Edges 24:21

Algorithm 2 Flow Scheduling Algorithm
Inputs:
Table 2: Common input parameters
𝑏𝑢 : Total traffic bandwidth of PoP 𝑢 in the current time slot
𝛽 : A hyperparameter adjusts the trade-off between cost and performance

Outputs:
𝑏 (𝑢,𝑣) : Bandwidth of backbone link from PoP 𝑢 to PoP 𝑣 in the current time slot
𝑝𝑖 : Estimated 95𝑡ℎ percentile billable bandwidth of peering link 𝑖
𝑘𝑖 : Whether peering link 𝑖 bursts in the current time slot
𝑦𝑖 : Maximal available bandwidth of peering link 𝑖 in the current time slot
𝑥
𝑓

𝑖
: Whether 𝑓 egress via peering link 𝑖 in the current time slot

𝑥
𝑓

(𝑢,𝑣)) : Whether 𝑓 go through backbone link (𝑢, 𝑣) in the current time slot
Minimize:

min 𝛽

|𝐹𝑠 |
∑︁
𝑓 ∈𝐹𝑠

∑︁
𝑙𝑖 ∈𝐿

𝑤1 (𝑓)𝑥 𝑓

𝑖
𝑝𝑒𝑟 𝑓 (𝑖, 𝑓) + (1 − 𝛽)

∑
𝑙𝑖 ∈𝐿 𝑦𝑖∑
𝑙𝑖 ∈𝐿𝐶𝑖

Subject to:

∀𝑓 ∈ 𝐹 :
∑︁
𝑙𝑖 ∈𝐿𝑓

𝑥
𝑓

𝑖
= 1 (2a)

∀𝑙𝑖 ∈ 𝐿 :
∑︁
𝑓 ∈𝐹

𝑉𝑓 𝑥
𝑓

𝑖
≤ 𝑦𝑖 (2b)

∀(𝑢, 𝑣) ∈ 𝐸 :
∑︁
𝑓 ∈𝐹

𝑉𝑓 𝑥
𝑓

(𝑢,𝑣) ≤ 𝐶 (𝑢,𝑣) (2c)

∀𝑓 ,∀𝑢 where 𝑆 (𝑓) = 𝑢 :
∑︁
𝑓 ∈𝐹

𝑥
𝑓

(𝑢,𝑣) +
∑︁
𝑙𝑖 ∈𝐿𝑢

𝑥
𝑓

𝑖
= 1 (2d)

∀𝑓 ,∀𝑢 where 𝑆 (𝑓) ≠ 𝑢 :
∑︁
𝑓 ∈𝐹

𝑥
𝑓

(𝑢,𝑣) +
∑︁
𝑙𝑖 ∈𝐿𝑢

𝑥
𝑓

𝑖
=
∑︁
𝑓 ∈𝐹

𝑥
𝑓

(𝑣,𝑢) (2e)

∀𝑢 ∈ 𝑉 :
∑︁
𝑓 ∈𝐹

∑︁
(𝑣,𝑢) ∈𝐸𝐷

𝑢

𝑉𝑓 𝑥
𝑓

(𝑣,𝑢) −
∑︁
𝑓 ∈𝐹

∑︁
(𝑢,𝑣) ∈𝐸𝑆

𝑢

𝑉𝑓 𝑥
𝑓

(𝑢,𝑣)

+ 𝑏𝑢 ≤
∑︁
𝑙𝑖 ∈𝐿𝑢

𝑦𝑖 (2f)

∀𝑢 ∈ 𝑉 :
∑︁
𝑓 ∈𝐹

∑︁
(𝑣,𝑢) ∈𝐸𝐷

𝑢

𝑉𝑓 𝑥
𝑓

(𝑣,𝑢) −
∑︁
𝑓 ∈𝐹

∑︁
(𝑢,𝑣) ∈𝐸𝑆

𝑢

𝑉𝑓 𝑥
𝑓

(𝑢,𝑣)

+ 𝑏𝑢 ≥ 0 (2g)
∀𝑙𝑖 without free slots : 𝑦𝑖 = 𝑝𝑖 (2h)
∀𝑙𝑖 with free slots : 𝑦𝑖 ≤ 𝑝𝑖 +𝑀𝑘𝑖 (2i)
∀𝑙𝑖 with free slots : 𝑦𝑖 ≥ 𝑝𝑖 −𝑀𝑘𝑖 (2j)
∀𝑙𝑖 with free slots : 𝑦𝑖 ≤ 𝐶𝑖 +𝑀 (1 − 𝑘𝑖) (2k)
∀𝑙𝑖 with free slots : 𝑦𝑖 ≥ 𝐶𝑖 −𝑀 (1 − 𝑘𝑖) (2l)

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

24:22 Xiaoliang Wang et al.

Algorithm 3 Bandwidth Allocation Formulation
Inputs:
Table 2: Common input parameters
𝑏𝑢 : Total traffic bandwidth of PoP 𝑢 in the current time slot.

Outputs:
𝑏 (𝑢,𝑣) : Bandwidth of backbone link from PoP 𝑢 to PoP 𝑣 in the current time slot.
𝑘𝑖 : Whether peering link 𝑖 bursts in the current time slot.

Minimize: ∑︁
𝑙𝑖 ∈𝐿

𝑦𝑖

Subject to:
∀𝑙𝑖 without free slots : 𝑦𝑖 = 𝑝𝑖
∀𝑙𝑖 with free slots : 𝑦𝑖 = 𝑝𝑖 (1 − 𝑘𝑖) +𝐶𝑖𝑘𝑖∑

𝑢∈𝑉 𝑏𝑢 ≤ ∑
𝑙𝑖 ∈𝐿 𝑦𝑖

∀(𝑢, 𝑣) ∈ 𝐸 : 𝑏 (𝑢,𝑣) ≤ 𝐶 (𝑢,𝑣)
∀𝑢 ∈ 𝑉 :

∑
(𝑢,𝑣) ∈𝐸𝐷

𝑢
𝑏 (𝑢,𝑣) −

∑
(𝑢,𝑣) ∈𝐸𝑆

𝑢
𝑏 (𝑢,𝑣)

+𝑏𝑢 ≤ ∑
𝑙𝑖 ∈𝐿𝑢 𝑦𝑖

∀𝑢 ∈ 𝑉 :
∑

(𝑢,𝑣) ∈𝐸𝐷
𝑢
𝑏 (𝑢,𝑣) −

∑
(𝑢,𝑣) ∈𝐸𝑆

𝑢
𝑏 (𝑢,𝑣)

+𝑏𝑢 ≥ 0

A.4 Heuristic Time Slot Flow Scheduling Algorithm
The heuristic time slot flow scheduling algorithm is introduced in Algorithm 4.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

EdgeCross: Cloud Scale Traffic Management at Peering Edges 24:23

Algorithm 4 Flow Scheduling to Destination PoP
Require: Set of PoPs 𝑉 ,

recommended physical link capacity usage 𝑟 (𝑢,𝑣) between each PoP 𝑢 and PoP 𝑣 ,
set of flows 𝐹

Ensure: Destination PoP 𝑑𝑒𝑠𝑡𝑓 for each flow 𝑓 ∈ 𝐹

1: Initialize virtual link capacity 𝐵(𝑢, 𝑣) = 0 for all 𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑉

2: for each pair of PoP nodes (𝑢, 𝑣), where 𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑉 ,𝑢 ≠ 𝑣 do
3: while an augmenting path exists within all 𝑟 on the path from 𝑢 to 𝑣 do
4: Let the capacity of the augmenting path be 𝑥
5: Update virtual link capacity: 𝐵 (𝑢,𝑣) += 𝑥

6: end while
7: end for
8: Sort flows in 𝐹 by bandwidth in descending order
9: for each flow 𝑓 ∈ 𝐹 do
10: if 𝑓 is performance-sensitive then
11: Find the peering link 𝑙𝑖 that minimizes the performance function 𝑝𝑒𝑟 𝑓 (𝑖, 𝑓)
12: Set 𝑑𝑒𝑠𝑡𝑓 = 𝑣 where 𝑣 is the PoP associated with 𝑙𝑖
13: Update 𝐵(𝑢, 𝑣) −= bandwidth of flow 𝑓

14: end if
15: end for
16: for each flow 𝑓 ∈ 𝐹 do
17: Let 𝑢 be the PoP flow 𝑓 is outbound from
18: for each PoP 𝑣 ∈ 𝑉 , where 𝑣 ≠ 𝑢 do
19: if 𝑓 is not performance-sensitive AND 𝐵(𝑢, 𝑣) ≥ bandwidth of flow 𝑓 then
20: Set 𝑑𝑒𝑠𝑡𝑓 = 𝑣

21: Update 𝐵(𝑢, 𝑣) −= bandwidth of flow 𝑓

22: break
23: end if
24: end for
25: if 𝑡𝑎𝑟𝑔𝑒𝑡𝑓 is 𝑁𝑈𝐿𝐿 then
26: Set 𝑑𝑒𝑠𝑡𝑓 = 𝑢

27: end if
28: end for
29: return 𝑑𝑒𝑠𝑡

Received June 2024; revised September 2024; accepted October 2024

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 24. Publication date: December 2024.

	Abstract
	1 Introduction
	2 EdgeCross Overview
	2.1 Background
	2.2 Motivation
	2.3 EdgeCross Controller

	3 Traffic Management at EdgeCross
	3.1 Objective
	3.2 Problem Decomposition
	3.3 Estimation of 95th Percentile Billable Bandwidth
	3.4 Flow Scheduling per Time Slot

	4 Optimization
	4.1 Accelerating the Estimation of 95th Percentile Billable Bandwidth
	4.2 Accelerating Flow Scheduling

	5 Routing Table Compression
	6 Evaluations
	6.1 Cost Optimization
	6.2 Performance Optimization
	6.3 Scalability
	6.4 Efficient Routing Table Compression

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Estimating 95th Percentile Billable Bandwidth Algorithm
	A.2 Flow Scheduling
	A.3 Bandwidth Allocation Formulation
	A.4 Heuristic Time Slot Flow Scheduling Algorithm

