
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Flor: An Open High Performance RDMA Framework
Over Heterogeneous RNICs

Qiang Li, Alibaba Group; Yixiao Gao and Xiaoliang Wang, Nanjing University;
Haonan Qiu, Alibaba Group; Yanfang Le, AMD; Derui Liu, Alibaba Group;

Qiao Xiang, Xiamen University; Fei Feng, Peng Zhang, Bo Li, Jianbo Dong,
Lingbo Tang, Hongqiang Harry Liu, Shaozong Liu, Weijie Li, Rui Miao, Yaohui Wu,

Zhiwu Wu, Chao Han, Lei Yan, Zheng Cao, and Zhongjie Wu, Alibaba Group;
Chen Tian and Guihai Chen, Nanjing University; Dennis Cai, Jinbo Wu, Jiaji Zhu

and Jiesheng Wu, Alibaba Group; Jiwu Shu, Xiamen University

https://www.usenix.org/conference/osdi23/presentation/li-qiang

Flor: An Open High Performance RDMA Framework Over Heterogeneous RNICs

Qiang Li⋄, Yixiao Gao‡, Xiaoliang Wang‡, Haonan Qiu⋄, Yanfang Le♯, Derui Liu⋄, Qiao Xiang⋆,
Fei Feng⋄, Peng Zhang⋄, Bo Li⋄, Jianbo Dong⋄, Lingbo Tang⋄, Hongqiang Harry Liu⋄, Shaozong Liu⋄,

Weijie Li⋄, Rui Miao⋄, Yaohui Wu⋄, Zhiwu Wu⋄, Chao Han⋄, Lei Yan⋄, Zheng Cao⋄, Zhongjie Wu⋄,
Chen Tian‡, Guihai Chen‡, Dennis Cai⋄, Jinbo Wu⋄, Jiaji Zhu⋄, Jiesheng Wu⋄, Jiwu Shu⋆

⋄Alibaba Group, ‡Nanjing University, ♯AMD, ⋆Xiamen University

Abstract
Datacenter applications have been increasingly applying
RDMA for ultra-low latency and low CPU overhead. How-
ever, RDMA-capable NICs (RNICs) of different vendors or
different generations of the same vendor do not cooperate
well, which could cause bandwidth imbalance in the pro-
duction network and introduce new root causes of the PFC
storms. Our key observation is that although the data path
functions of heterogenous RNICs follow the same RoCEv2
specifications, their control path functions are vendor and
version specific. To this end, we propose Flor, an open
framework that provides a unified hardware data plane atop
heterogeneous RNICs and a flexible software control plane
running over host CPUs or NPU of RNICs and DPUs. The
hardware plane requires no changes to current specifications.
The software plane on-loads congestion control and reliability
management in the large-scale lossy Ethernet with no PFC
dependency. We implemented and evaluated Flor in both
testbed and production clusters over Intel E180, Mellanox CX-
4 and CX-5 and Broadcom RNICs. Experiments show that
Flor achieves comparable performance to vanilla RDMA in
many scenarios, including 1/4096 packet loss, 6000:1 incast,
and large-scale cross-pod communication. Flor mitigates the
performance gap of CX-4 and CX-5 RNICs from 24.3% to
1.3% when they are deployed together.

1 Introduction
Remote Direct Memory Access (RDMA) over Converged
Ethernet has been widely deployed in datacenters [3, 5, 11,
14, 30]. It provides low latency and high throughput for
many applications, e.g., key-value store [21, 35], distributed
transactions [8, 55], distributed memory [9, 56], remote pro-
cedure call (RPC) [20, 22, 47], storage systems [11], graph
computing [43] and machine-learning systems [29].

With the increasing deployment of RDMA, modern dat-
acenters adopted RDMA-capable NICs (RNICs) of differ-
ent generations and vendors, e.g., Mellanox ConnectX-(CX-
)4/5/6 [49,50,52], BlueField [51], Intel E810 [17], and cloud-
provider customized RNICs [10, 12, 42]. On the one hand,

adopting more than one vendor avoids vendor lock-in, i.e.,
relying on devices of a particular vendor, which is a serious
risk during global supply chain crises such as the COVID-
19 pandemic [18, 45]. On the other hand, the disaggregated
deployment of storage and computation systems separates the
back-end services from the front-end services into different
clusters, where each cluster can host different types of RNICs.

The coexistence of heterogeneous network devices in
datacenters introduces new challenges [11, 14, 25]. First,
devices may adopt different implementations of RDMA
engines. It happens among not only different vendors but
also different generations of devices of the same vendor.
We have investigated the impact of various devices in a
large-scale storage system that involves two generations of
Mellanox RNICs, which have different variants of DCQCN.
In a hybrid deployment of 16 50Gbps CX-4 and CX-5
NICs, we observed a severe bandwidth imbalance, where
the average throughput of CX-4 NICs degrades to 28Gbps
over a full-mesh traffic pattern. Furthermore, we test the
congestion control behaviors of NICs from different vendors.
Specifically, Mellanox RNICs set the same congestion control
rate for packets with the same destination IP, while Intel
E810 RNICs enforce congestion control based on flows
with the same five-tuple. In addition, Broadcom RNICs [7]
implement DCTCP [2, 6] as the congestion control algorithm,
while Intel E810 RNICs implement a window-based DCQCN
variant [19]. The different congestion control algorithms can
further amplify the bandwidth imbalance.

Second, RDMA requires Priority-based Flow Control
(PFC) to maintain a lossless network fabric. Diverse devices
increase the risk of generating PFC pause frames, which can
propagate to the whole network and cause the network to
stop forwarding traffic. In addition, the parameter tuning for
the PFC configuration is time-consuming on newly deployed
devices [25,57], which usually takes weeks or months in large-
scale networks with multiple vendors. During the long-term
operation of production networks, we have observed multiple
sources of PFC pause frame generation at both end-hosts and
switches. Specifically, we found that implementation bugs

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 931

of switches and RNICs are one important root cause of PFC
storms [11,14]. In our datacenter, we record that the high loss
rates occur due to diverse devices abnormality, system mis-
configuration, and congestion of burst traffic in the production
system, which has also been reported in prior work [58].

To cope with these issues, we need an open and unified
framework to address the growing diversity of datacenter
devices and give users the flexibility of RDMA programming
to reduce the operational complexity of large-scale datacenter
networks. Our key insight is that the RDMA data path, in-
cluding memory semantics, needs fast and high-performance
packet processing. In contrast, the control path including
congestion control algorithms and the reliable re-transmission
mechanisms, which are RTT-based operations, is relatively
slow but needs to guarantee efficiency. This inspires us to
rethink the functions division between hardware and software
by on-loading congestion control and reliability modules to
the software plane while strengthening the data path transport
by following the standard RoCEv2 specifications [3–5] in the
high-speed hardware.

We present Flor, an open, unified framework to support
applications over heterogeneous networking devices. Flor
separates the data-path and control-path of RDMA transport
with a hardware and software co-design [24, 28, 37, 45, 52].
The data-path functions, e.g., packet processing and bulk mem-
ory transfer semantics, remain on the hardware. Flor’s data-
path follows RDMA primitives without any modifications in
hardware to maintain high performance. Flor strengthens Re-
liable Connection (RC) transport through hardware/software
co-design to overcome the low-efficient hardware-based Go-
Back-N retransmission [14]. Furthermore, we leverage Un-
reliable Connection (UC) transport [4] as the first citizen for
out-of-order demands in datacenters [42,46] as it supports the
out-of-order delivery of messages between RDMA operations
without any requirements on the hardware change. We adopt
UD as a key element to enable selective retransmission [36]
for RoCEv2 and deliver messages to the applications in an
out-of-order manner [42].

The control-path includes a load-aware dynamic chunking
module, an RDMA-semantic-compatible reliability module,
and a congestion control module. The load-aware dynamic
chunking module balances between the performance and
the software control granularity. Flor proposes a software
selective retransmission scheme by leveraging UC to process
out-of-order delivery. Flor implements an RTT-based conges-
tion control algorithm similar to Swift [26] but improves the
RTT measurement accuracy of previous work [28] by 10×
on 99th percentile and 99.9th percentile RTT. By onloading
these functions to hosts or programmable devices [40] (e.g.,
IPU core [18], DPU core [51], CPU or even GPU [1]), the
software developers have the flexibility of customizing and
generalizing these functions across heterogeneous RNICs.
For example, Flor can also adopt emerging congestion control
schemes [26, 30] and optimization of transport protocols

(e.g. Swift, HPCC) instead of waiting for months or years
of hardware upgrades.

We evaluate Flor through extensive experiments in an RPC
benchmark and real production systems. We compare Flor
with a customized RDMA library, XRDMA [32]. XRDMA
implements the RPC interfaces with vanilla RDMA primitives.
Compared to XRDMA, which suffers significant performance
loss with 1/4096 packet loss ratio with lossy RoCE ac-
celerations [53], Flor maintains steadily high throughput.
Specifically, by deploying an RTT-based congestion control
algorithm, Flor can handle 6000:1 incast with no throughput
loss at run time. Flor achieves comparable performance
as XRDMA for intra-pod communication and better per-
formance than XRDMA for inter-pod communication. Our
evaluations show that Flor reduces the bandwidth gap from
21.8% to 1.3% in the hybrid CX-4 and CX-5 deployment
clusters and mitigates the performance gaps by 220% for
RNICs of different vendors. For the production systems
running big-data applications and cloud storage service,
compared with XRDMA, Flor improves the job completion
time of a big-data application job by 10% and achieves
comparable latency and IOPS on the latency-sensitive cloud
storage service. Specifically, the process of upgrading the
existing RDMA framework, i.e., XRDMA, to Flor has little
performance impact on the running applications. Our practical
experience with Flor shows that Flor provides a non-stop and
smooth upgrade from lossless RDMA to lossy Flor.

In summary, this paper makes the following contributions:
• The interoperability of devices in RDMA networks needs

be better addressed. We study the impact of heterogeneous
RNICs in the production network.

• We revitalize the RDMA support by introducing an open
unified framework accommodating primary RNICs in the
lossy datacenter networks.

• We implement the framework and verify its effectiveness
and low software overhead in both testbed and realistic
production systems.

• As far as we know, this is the first systematic work con-
sidering the operation with heterogeneous devices, which
innovates future RDMA system design from the perspective
of service providers.

2 Background & Motivation
2.1 RDMA Preliminaries
RDMA is a hardware transport that exposes network operation
through verbs API. User-space applications initiate data
transmission requests to RNICs by posting Work Queue
Elements (WQEs) into queue pairs (QPs). After transmitting
the data, the RNICs generate Completion Queue Elements
(CQEs) into Completion Queues (CQs) as the transmit
completion signals for users. RDMA supports three transport
types: Reliable Connection (RC), Unreliable Connection
(UC), and Unreliable Datagram (UD) [4]. Correspondingly, it

932 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1QP 64QP 512QP
Number of QP

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (G

bp
s) Mellanox

Broadcom

Figure 1: Throughput difference
of a Mellanox RNIC and a Broad-
com RNIC sending to an Intel
RNIC.

Mellanox Broadcom Intel
Receiver NIC Vendor

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (G

bp
s) Mellanox

Broadcom
Intel

Figure 2: Throughput difference
in a Mellanox-Broadcom-Intel hy-
brid deployment with a full mesh
traffic pattern.

provides two well-known primitives: SEND/RECV are two-
sided operations supported by all transports. WRITE is a one-
sided operation supported by RC and UC, but READ is only
supported by RC.

For connection-oriented services (UC and RC), QPs main-
tain Packet Sequence Number (PSN) and expected Packet
Sequence Number (ePSN), respectively, on the sender and
the receiver. RC QPs only receive packets with PSN correctly
matching ePSN and increase ePSN after successful receiving.
For RC, RNIC is responsible for retransmissions, where the
receiver RNICs send acknowledge (ACK) packets. Once a
packet is dropped, the sender must start retransmitting the
lost packet. For UC, the transport does not retry messages
with errors, and users must handle the error. Specifically, for
UC QPs, when a packet of a verb is lost, the RNICs drop the
whole verb, update ePSN, and continue to receive other verbs.
Thus, compared with RC, it is more flexible for users to deal
with out-of-order messages and potentially provide effective
upper-level RPC service through software-defined reliability.

2.2 Production Experience
We present our production experiences demonstrating the dif-
ficulties of deploying the RDMA NICs of various generations
and vendors in the same datacenter.
Interoperability of heterogeneous RNICs. We first in-
vestigate the performance gap between RNICs of different
generations belonging to the same vendor. We run IB Perftest1

in a cluster where 8 servers are equipped with CX-4 and
another 8 servers are equipped with CX-5 RNICs. Given
a full-mesh traffic pattern, i.e., all servers send requests to
each other, the throughput of CX-4 and CX-5 is 28Gbps and
41Gbps respectively. The throughput gap is 13Gbps (46.4%).

We then investigate the performance gaps among RNICs
of different vendors. As shown in Figure 1, when a Mellanox
RNIC [51] and a Broadcom RNIC [7] send traffic to an Intel
RNIC [17] simultaneously. The configurations of the RNICs
are depicted in §7.5. The Mellanox NIC gets 66Gbps, and the
Broadcom NIC gets 20Gbps (220% of the performance gap)
when each initiates one connection, i.e.. 1 QP. The Mellanox
NIC gains less bandwidth, e.g., 3Gbps, than the Broadcom

1IB Perftest is a benchmark tool for measuring the throughput and latency
of RDMA operations [13].

NIC when the number of connections increases, i.e., 64 QPs
and 512 QPs. This causes unfair bandwidth share between
applications hosted atop different RNICs. Figure 2 shows the
throughput of each NIC with a full mesh traffic test (i.e., all-
to-all traffic) among the three NICs. We stack the throughput
of each RNIC to the same receiver RNIC. For example, when
a Broadcom NIC and an Intel NIC send traffic to a Mellanox
NIC, the Broadcom NIC and the Intel NIC get the throughput
of 43Gbps and 15Gbps, respectively (left bar). We can observe
a similar performance variation when any two of the RNICs
are competing with each other.

The difference in RNICs throughput is significant and leads
to the computing tasks load imbalance on the nodes. We find
that the root cause is the congestion control implementation
difference or the congestion control algorithm difference
among these heterogeneous RNICs. After we apply a unified
congestion control algorithm, the performance gaps are
eliminated (§7.5).
Operational challenges caused by PFC storming. PFC
storm is a well-known problem [14,15,54,57] that threats the
system’s availability if the pause frames are sent to the whole
cluster [14]. RDMA systems in production adopt multiple
mechanisms to mitigate the impact of these risks, such as PFC
monitoring and watchdog, limiting the scale of PFC in a pod.

However, the PFC risk is not thoroughly eliminated and
happens repeatedly with new causes. In addition to the known
reasons of PFC storms, e.g., the slow receiver [14] and switch
hardware bug [11], we found that Machine Check Errors
(MCE) caused by memory Error Correcting Code (ECC) and
the lack of memory bandwidth can lead to the PFC storm
when we introduce new RNICs in the datacenter. When MCE
occurs on a server, RNIC receives data but can not DMA
the data to the server memory. Thus, it sends excessive PFC
pause frames to the neighbour switches and then spreads to
the network. The occurrence frequency of MEC can be up to
1% [34], which leads to operational difficulty.

The lack of memory bandwidth also leads to PFC storms
because CPUs and RNICs share the memory bandwidth on
a server. When the CPU running applications preempts too
much memory bandwidth, the memory bandwidth left for
the RNIC is less than the network bandwidth [41]. Then the
RNICs send PFC frames to prevent packet loss due to the
RNIC buffer overflow. It is difficult to guard against every
possible cause of the PFC storm. We expect to eliminate PFC
from our production system while achieving performance
compatible with a lossless network.

2.3 Motivation
These practical issues prompt us to rethink the usage of
RDMA from the perspective of service providers. We aim to
design an open and unified RDMA framework, which meets
the following objectives:
• Compatibility. The open framework needs to be backward

compatible with the legacy devices configured in the cluster.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 933

App

RNICRNIC
ACK ACK

ACK QP

WQEs

Data QP

ACK
CQE

Logical connection CQ/ACK QPs

Connection

Backup QP

ACK
CQE

ACK CQ

Congestion Control
Module

chunk chunk

Chunking
Module

Reliability
Module

RTT Measurement
Module

Connection
Management

Data
CQE

Data
CQE

DMA

Congestion
Control

Timestamp

Reliability

Data CQ

Poll CQ

Post
Send

Figure 3: The framework of Flor

To this end, we abstract common features of available
RNICs of main vendors and simplify the design by using
the minimum set of functionalities in the hardware, e.g.,
packetization, packet processing, message assembling, etc.

• Flexibility. To meet various application requirements
and dynamic deployment of disaggregated services, the
framework should support high feature velocity. It is
programmable to realize efficient user-defined control
mechanisms like new congestion control.

• Availability. The modern large-scale datacenters are built
on Ethernet, which is a lossy network with multiple paths.
Our framework is able to mitigate the impact of lossy
Ethernet but fully utilizes the available network resources
and maintains high performance [34, 42, 46].

3 Flor Design
3.1 Design Rationale
By investigating the RNICs of primary vendors, we notice
that they follow the same RoCEv2 specifications in data-path
but develop vendor-specific (even version-specific) control-
path. Our key insight is that the RDMA data-path should
be stable by following the standard specifications. At the
same time, control-path needs to guarantee flexibility and
availability. We can onload a subset of the transport functions
to the software to provide programmability to developers. The
design rationale is
Maintaining RDMA data-path specifications in hardware
layer. RDMA data-path, including packet processing and
memory semantics, is a per-packet-based operation which is
fast and high-performance. To maintain low latency and low
CPU utilization features of RDMA, Flor places the data-path
in hardware, which covers packetization, packet processing,
message assembling, and direct memory access between
RNICs and host memory. Therefore, Flor is compatible with
primary RNICs.
Onloading control-path to software layer. The most
flexible features in the control-path are congestion control
and transmission reliability with regard to the lossy Ethernet.

The corresponding algorithms rely on the signals of packet
latency, ECN notification, Inband Network Telemetry (INT),
etc., the response interval of which can be several RTTs.
Thus, Flor can onload the relatively slow control to the
software layer by leveraging its programmability but has little
influence on system efficiency. Notably, with the development
of programmable devices, we can realize functions of control-
path in not only hosts but the NPU [18] of RNICs or
DPUs [51].

3.2 Architecture
Flor is an open, unified, high performance RDMA framework
over lossy Ethernet in large-scale datacenters. The architec-
ture is shown in Figure 3.
Data path. Since the process details of RDMA operations
on QPs are dictated in the RDMA protocol [4], utilizing
standard RDMA operations, which are supported by all
RNICs, to transfer data among heterogeneous RNICs can
achieve comparable performance. Flor takes RDMA WRITE
and SEND as the base WQEs for the data transferring and
receiving because they both support RC and UC and maintain
high performance of RDMA. Notice that RDMA READ has
a known performance issue [21] and only supports RC. Flor
uses the RDMA SEND WQEs to transfer small messages
(e.g., ≤32KB) and WRITE to transmit large messages. For
large messages, Flor needs an extra round-trip to exchange
remote memory address and buffer size with remote servers.
Note that the memory information exchange requires once
for each large message. Flor prioritizes the SEND WQEs
over large messages to avoid that head-of-line blocking to the
small messages. On top of the RDMA verbs, Flor provides
a message-based communication interface to support RPCs
favoured by most datacenter applications [20].
Control path. The control-path of Flor consists of five flexi-
ble software modules: Connection Management, Chunking,
Reliability, Congestion Control, and RTT Measurement.
• Connection Management. This module establishes and

releases connections and manages backup QPs. Data are
transmitted through QP and backup QPs, which take over
the RDMA requests in place of the malfunctioned primary
QP. The data CQs provide data completion events. The
ACK QPs and CQs are used for sending and receiving
software ACKs when using software reliability. Through
QP management, Flor can abstract these backup QPs and
present them as one QP to upper-level applications.

• Chunking. The Chunking module splits large messages into
small RDMA requests, i.e., chunk. Flor takes the chunk
as the base unit of the selective repeat algorithm and
congestion control algorithm, instead of a packet at the
traditional transport [26,57]. A chunk is sent to the network
via a WRITE or SEND Work Queue Element (WQE).

• RTT Measurement. The RTT Measurement module collects
the NIC hardware timestamp, synchronizes the hardware
and software timestamp, and then updates RTT, which is

934 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

used as the signal of network congestion, retransmission
and link failure detection.

• Reliability. Each WQE is passed to the Reliability module,
which stores the transport information and maintains the
state for packet loss detection and RTT calculation. We
develop a software selective retransmission mechanism by
tracking every request sent to the network.

• Congestion Control. The Congestion Control module takes
the congestion signals, e.g., RTT, ECN, INT [39], and drop
events, to calculate the congestion window or sending rate
according to the congestion control algorithms. By default,
we apply an RTT-based congestion control algorithm to
eliminate the impact of complicated parameter tuning of
congestion control on diverse switches [26].

3.3 Optimization and Deployment.
The key challenge for Flor is to offer flexibility while
providing comparable performance to the vanilla RoCEv2
stack. We make the following optimizations:
• Maintaining RDMA performance using the soft-

ware/hardware co-design. The RMDA hardware solution
provides high throughput, low latency, and low CPU over-
head. To maintain these advanced properties, we adopt a
dynamic chunking mechanism to tune the size of messages
for slow control-path when tracking the software congestion
control and loss recovery. The overhead of the control-path
functions onloading to the software layer is low because
we apply large granularity of messages instead of packet
processing (§ 4).

• Enhanced UC with Selective Retransmission. The
packet loss rate in datacenters is actually low, which will
not trigger frequent re-transmission. Designing a correct
reliability mechanism while keeping the zero-copy memory
semantic is the main challenge that Flor handles. UC has
the property that RNICs can deliver the messages to the
host without waiting for the previous ones to complete.
Flor leverages this property to design a more efficient
retransmission scheme, i.e., selective retransmission [36]
without any hardware change to speed up the application
processing [42] (§ 5).

• Enhanced RC with Correctness. RC is one of the
data-path transport supported by Flor. Go-back-N, the
RC’s retransmission mechanism, is known to have low
efficiency [36]. Flor enhances the Go-back-N mechanism
by adding an additional software retransmission scheme.
We address the correctness issue introduced by the software
retransmission, where the retransmitted RDMA operators
may overwrite the memory region that has been submitted
to applications(§ 6).
Flor users can select a combination of these software

modules in different scenarios. The software congestion
control and reliability modules can be bypassed or replaced
by the hardware functionalities. Table 1 shows some recom-
mended configuration combinations for different deployment

Scenarios Chunking Reliability CC
Intra-pod, PFC-enabled No RC HW

Intra-pod, PFC- and ECN-disabled Yes RC or UC SW
Across-pod Applications Yes UC SW

CX-4/5 Hybrid Yes RC or UC SW

Table 1: Recommended choices of modules in some scenarios. CC
represents congestion control. HW indicates hardware-offloaded
modules, SW indicates software-implemented modules.

scenarios in our production. For example, in a PFC- and
ECN-disabled CX-4 cluster, Flor provides RDMA service
by enabling chunking and software congestion control
with hardware-based (RC) or software-based (UC) reliable
transport. For cross-pod applications, software-based (UC)
reliability is recommended to tolerant packet loss.

4 Dynamic Chunking
The chunking algorithm determines the granularity of RDMA
requests bursting into the network. A large chunk size may
result in a traffic burst that causes congestion and incurs
high recovery costs in case of packet loss, while a small one
leads to more CPU costs. Therefore, the key design point is
dynamically adapting chunking size according to the current
network status, which helps achieve both good performance
and fine-grained traffic control. More specifically, it tries to
adopt large chunk sizes with hardware SEND or WRITE
operations to reduce CPU cost when the loss rate is low. Once
packet loss occurs, it applies chunk-slicing and retransmission
of dropped chunks by software.

Flor uses the estimated RTT as the default feedback signal
of network status for the dynamic chunking strategy. The
estimated RTT is not only used as the feedback signal of the
dynamic chunking algorithm but also used as the congestion
control signal, as well as a timeout signal for reliability.

4.1 Accurate RTT Measurement
The accuracy of RTT measurement directly impacts the
performance of all these components. Different from the
approach [26] where measures RTT based on per-packet
timestamp, Flor measures RTT for the chunks with different
sizes. RoGUE [28] firstly devises a way of RTT measurement
for dynamic verb sizes on RNICs and utilizes the hardware
timestamp functionality of RNICs to get an accurate times-
tamp to calculate RTT. Flor takes the RoGUE’s methodology
to measure RTT for the RC transport and further improves
the RTT measurement accuracy for UC transport.

Figure 4 shows the RTT measurement method in Flor for
the UC transport. Note that leveraging hardware timestamp
to measure RTT requires synchronizing the software and
hardware clock (Appendix A.2.1). On the sender side, the
timestamps of the data WQE sending completion (T1) and
the corresponding ACK receiving completion (T4) can
be obtained from the hardware. On the receiver side, the
timestamp of the data WQE arrival (T2) is read from the
hardware and the timestamp of the corresponding ACK WQE

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 935

posting time (T′3) is accessible through software. (T′3 - T2)
is computed in the receiver and sent back to the sender by a
subsequent ACK packet. Thus RTT can be calculated with:

RT T = (T4−T1)− (T ′3−T2). (1)
However, the measurement is not absolutely accurate as T′3 is
the post time rather than the actual send completion time of
the ACK (T3) due to the queuing of sending requests in NICs.
In addition, under a heavy load, the ACK can be delayed up
to milliseconds upon receiving by the sender software due
to the head-of-line blocking by the data WQEs and the QP
scheduling policies. As a result, on the one hand, the measured
RTT can be increased by this overhead, which inaccurately
reflects the network congestion; On the other hand, this also
prolongs the congestion feedback loop such that the sender
can not respond to the network congestion in time.

Flor uses two optimization approaches to improve RTT
measurement accuracy and shorten the feedback loop delay.
First, Flor uses a high-priority UD QP to send and receive
ACKs to avoid head-of-line blocking and scheduling delays
on RNICs. Second, Flor uses a separate completion queue for
ACKs and polls it prior to the data completion queue in each
batch. Our measurement shows that the measured tail RTT
without optimization can be up to several milliseconds due to
QP scheduling (Figure 16 in Appendix A.2.2). The overesti-
mated RTT can cause an unnecessary window decrease. Using
a separate QP and completion queue for ACKs improves the
RTT measurement accuracy by 10× on tail RTTs.

4.2 Chunking Strategy
Flor extracts the chunking algorithm as a module such that
users can specify their own chunking algorithms. Here we
present the default algorithm used by Flor. The key idea is to
dynamically reduce the chunk size when the RTT of network
gets worse and increase the chunk size when its status gets
better. We initialize the chunk size by the minimum value of
the available congestion window (acwnd) or bandwidth-delay
product (BDP) (chunk_size←min{acwnd,BDP}). Then we
update the chunk size for each RTT.

As shown in Algorithm 1, we use estimated RTT, which
reflects network queuing, as the feedback signal of chunking
in Flor. We maintain two smoothed RTTs (rtts and rttl)
with Exponentially Weighted Moving Average (EWMA)
[31] using different indexes α (the parameter that controls
the weight of new feedback). The short-term RTT rtts
demonstrates the up-to-date congestion status, while the long-
term RTT rttl indicates the common status of the connection.

Generally, we define a span of expected RTT denoted by
(βmax ∗ rttl−βmin ∗ rttl). Here βmax and βmin are configurable
parameters to identify the upper and lower bounds. (βmax ∗
rttl−rtts) indicates the position of short-term RTT in the RTT
span. The Algorithm divides the RTT span linearly, as shown
in line 4 of Algorithm 1. sizemax is the maximal chunk size
2 For example, if the rtts reduces to the lower bound of RTT

2By default, sizemax is 64KB, which is a trade-off between the CPU

span (βmin ∗rttl), it indicates that the status of network is good
and the chunk size increases to the sizemax. On the contrary, if
the rtts increases to the upper bound of RTT span (βmax ∗ rttl),
it indicates that the load of the network is high and we should
reduce the chunk size to the UNIT _SIZE.

Algorithm 1 An RTT-based Chunking Algorithm
Input: RTT rtt, available congestion window acwnd
Output: chunk_size

1: update short-term RTT rtts with rtt, αs via EWMA
2: update long-term RTT rttl with rtt, αl via EWMA
3: sizet ← sizemax ∗ (βmax∗rttl−rtts

βmax∗rttl−βmin∗rttl
)

4: chunk_size←min{sizet ,acwnd}
5: return chunk_size

Note that the chunking module still applies to have a fine-
grained traffic control if Flor uses a rate-base congestion
control, e.g., DCQCN. To support the reliability design (§3.2),
Flor aligns the chunk_size to UNIT _SIZE (the minimal
chunk_size), i.e., chunk_size is exactly multiple times of
UNIT _SIZE. Note that to prevent deadlock of the congestion
window, the chunk_size is set to UNIT _SIZE when the
available congestion window is smaller than UNIT _SIZE.
The UNIT _SIZE can be equal to the value of the current
MTU. To mitigate the impact of packet loss, Flor adopts
different chunking mechanisms for RC or UC transport,
respectively. For RC transport, Flor directly reduces the large
chunk sizes to the minimum chunk size of one UNIT _SIZE
to reduce retransmission overhead and avoid the live lock of
retransmission. For UC transport, Flor relies on congestion
window, which will cut its size by a half upon a packet
loss. And finally, the chunk size becomes UNIT _SIZE when
continuous packet loss happens. In particular, Flor can adopt
Selective Retransmission with UC in Section 5 to reduce
chunk retransmission under high packet loss and achieve
better transmission efficiency than Go-Back-N.

5 Selective Retransmission with UC
UC transport only drops the verbs that have packets dropped
but does not drop the subsequent successfully-delivered verbs.
Thus, based on the chunking mechanism that splits RDMA
messages into varied sizes of WQEs, Flor is able to design
reliability mechanisms (sequence number, acknowledgement,
and retransmission) at the granularity of chunking WQEs.
The transmission of RDMA WRIT E operations does not need
any reordering buffer because WRIT Es are directly DMA-ed
into the host buffer. However, there are still some challenges
to implement reliability in software for one-sided RMDA
WRIT E operations:

• Challenge #1: Additional data copy. Since RDMA
WRITE writes an array of memory pieces to one continuous

efficiency to transmit large chunks and the retransmission overhead of packet
loss to transmit smaller ones.

936 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Sender NIC Receiver NICUser User

Sender NIC Receiver NICUser

Seq=1,
size=1000Seq=2,
size=500
Seq=3,
size=500Seq=4,
size=500

size=15
00

size=50
0

size=50
0

User

DROPPED

TX
completion
T1

RX
completion
T2

ACK RX
completion
T4

ACK TX
completion
T3

ACK
post
T3'

Figure 4: RTT measurement for
UC in Flor. T 1–T 4 are times-
tamps of events.

No coalescing0

2

4

IO
PS

106

30 us + 4 Chunks

120 us + 32 Chunks

Figure 5: Performance impact
of ACK coalescing.

remote address, Any extra content added to the chunks of a
large message, including information needed by reliability
mechanisms such as sequence numbers, can break the
original message, which then incurs a memory copy at
software to assemble the scattered memory into the original
message.

• Challenge #2: Software ACK. WRITE is a one-sided
RDMA operation that bypasses the CPU of the receiver.
The receiver can not know whether a WRITE succeeds or
fails, which is one of the main issues when the one-sided
operator is used in practice. Flor uses WQEs to encode
software ACK messages as UC does not generate hardware
ACK packets. Without careful design of the ACK message,
the high frequency of the software ACK will significantly
degrade the performance.

• Challenge #3: Repetitive memory access. The retrans-
mission of RDMA WRIT E operation may cause a data
integrity issue as RNICs can write to a piece of memory
already submitted to the application.

To solve these problems, some novel designs, including
sequence number space for WRITE_WITH_IMM, software
ACKs, and two-sided retransmission, are adopted in Flor’s
reliability mechanism.
Sequence number space for WRITE_WITH_IMM. To
assemble the chunks into the original message on the
receiver without the extra data copy (Challenge #1), Flor
uses WRITE_WITH_IMM to generate signals to software for
the arrival of chunks. One feature of WRITE_WITH_IMM
is that it can carry an extra 32-bit imm_data set by the
sender. With WRITE_WITH_IMM, the receiver can detect the
arrival of RDMA verbs and receive the chunk number without
polluting the application memory. For SEND-transported
small requests, Flor adds an additional header in the payload to
carry additional information, including the sequence numbers.

However, to reassemble the initial messages from the
chunks, we need another sequence number for the chunks.
Note that chunks of a large message are also not continuous
in the sending queue since some SENDs operations (e.g.,
retransmissions and the address-exchanging messages of
WRITE) are prioritized in Flor.

Similar to QUIC [27], Flor encodes two sets of sequence
numbers into each RDMA WQE: global sequence number

and reliability sequence number. The global sequence number
is a 64-bit value, and all the RDMA WQEs have a unique
global sequence number to identify the sequence within a
QP. The reliable sequence number is used to identify the
sequence within the same type of WQEs, i.e., WRITE WQEs
and SEND WQEs have separate reliable sequence number
space. These two sequence number spaces also allow Flor
to identify the original WQEs and the retransmitted WQEs
by different global numbers such that ACK information and
the timestamp carried in ACKs are clear. The retransmission
WQEs share the same reliable sequence number with the
original WQE. More details can be found in Appendix A.1.1.
Software ACK. Flor acknowledges every WQE, but
generating an ACK for each WQE can cause high overhead
for small-message traffic (Challenge #2). Flor puts multiple
sequence numbers into one software ACK to reduce the
CPU overhead. The detailed ACK format is explained in
Appendix A.1.2. However, ACKs should be sent timely since
ACKs carry RTT and WQE numbers used in the congestion
control and reliability mechanism. Thus, Flor sets these trigger
rules for receivers to send an ACK immediately: (1) the
cumulative number of WQEs; (2) the cumulative size of
WQEs; (3) the last WQE in the congestion window signed by
a hint bit in the header or IMM_DATA field; and (4) an out-of-
order reliable sequence number, whichever reaches first. Flor
also sets a timer as a trigger because the tail of a flow or small
bursts may not have enough data to trigger the cumulative
counters.

To show the impact of different ACK triggering frequencies,
we set up an experiment with a client and a server, and
each is equipped with a CX-4 dual-port NIC. There are 8
threads and 64 QPs on each node. Figure 5 shows the IOPS
in a 128-byte request and response RPC benchmark with
different ACK triggering mechanisms. The ACK coalescing
mechanism improves ∼40% IOPS compared to a per-WQE
ACK mechanism (No coalescing in Figure 5). In addition,
among different coalescing WQE sizes and timers, the setting
of 120µs timer and cumulative counter of 32 WQEs achieves
a satisfying IOPS, which is the default configuration of Flor.
Two-sided retransmission. When the sender detects an
out-of-order delivery from an ACK or a timeout event, it
retransmits the WQEs. Flor handles the retransmissions by
SEND, since spurious retransmissions of WRITE may cause a
data integrity issue (Challenge #3). The data integrity issue
can happen when WQEs are queued in the network for a long
time, which incurs timeout retransmission at the sender. In
this case, the original WQE is received by the receiver, and
the whole message is submitted to the upper-layer application.
The application can write the content of the message as it
needs. However, the subsequent retransmitted WRITE WQE
arrives at the receiver and overwrites the memory region
that the application has already changed without informing
the CPU of the receiver. Flor retransmits WQEs by SEND
through the same QP for the lost one to avoid uncontrolled

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 937

memory access from RNICs. In a SEND operation, the data
is written into a piece of pre-posted memory. Flor then
copies the data into its desired location if the message has
not been submitted to the application. If the retransmission
SEND arrives earlier on the receiver, the following original
WRITE_WITH_IMM will be dropped by the receiver RNIC
because its hardware packet sequence number is smaller than
the expected hardware packet sequence number, which is
updated because of the arrival of the SEND.

6 Enhance Hardware Retransmission
Flor is compatible with hardware reliability by using RC to
reduce software costs and achieve better performance. Note
that Flor supports both one-sided and two-sided RDMA oper-
ations on RC QPs. The hardware retransmission of RDMA
operations is out of the control of software congestion control.
This has potential risks of incurring network congestion since
the size of inflight data can be much larger than the software
congestion window. Flor improves the hardware reliability
by adding a software retransmission scheme. Flor sets short
retransmission retry times in RC QPs to limit the size of data
exceeding the software congestion control window.

If the retransmission fails for the retry times, the QP is
turned into error states by the RNIC hardware. Turning
the error states of the QPs into the working states takes a
long time, e.g., 5ms. Instead, Flor resubmits the uncompleted
inflight WQEs to another pre-connected QPs, called backup
QPs [28], and flips the backup QP to be the primary QP to
continue data transmission. At the same time, Flor re-connects
the original QP in the background. The inactive backup QPs
do not consume additional cache resources on RNICs and
thus have no side effect on performance [28]. Our practical
experience shows that using one retry time incurs too many
QP switches in some extreme cases e.g., large-scale incast.
By default, Flor uses two retry times and two backup QPs for
each connection. Compared to QP reconnecting, switching to
backup QPs costs less time, i.e., ∼60µs.

A racing issue occurs when QPs turn into the error state
occasionally: the sender may return a failure of a WQE
while the receiver successfully receives it. This case happens
when the QP at the sender turns into the error state with
successful inflight operations. In such a case, the sender posts
a duplicated WQE mistakenly on the backup QP of the logical
connection. Another corner case that causes the same problem
is that the sender times out when the hardware ACK is on
the flight. Flor retransmits the WQEs with RDMA SEND and
checks if the message has been submitted to the application
before the data are copied into the destination application’s
memory.

7 Evaluation
We evaluate Flor by answering the following questions:

1. The software overhead of Flor in the 100Gbps network
(§7.2) and its robustness against packet loss (§7.3)?

Cluster Nodes RNICs
A 100 CX-4 Lx 25Gbps dual-port

B 16
8 × CX-5 25Gbps dual-port

8 × CX-4 Lx 25Gbps dual-port
C 48 CX-5 100Gbps dual-port

D 3
Intel E810 100Gbps dual-port

Broadcom P2100G 100Gbps dual-port
Mellanox BlueField-2 100Gbps dual-port

Table 2: Clusters setups used in our evaluation.

2. The behaviour of Flor in both intra-pod and inter-pod
communications when PFC is disabled (§7.4)?

3. The effectiveness of Flor in a hybrid deployment with
heterogeneous RNICs (§7.5)?

4. The performance of Flor’s default Congestion Control
in large-scale incast scenario (§7.6)?

5. The impact on services when upgrading from the current
network to Flor in production systems (§7.7)?

7.1 Experiment Setup and Benchmarks
Cluster setup. Table 2 lists four clusters used in the
evaluation. The default RDMA configurations of our clusters
are that: (1) for CX-4 lossless RNICs, PFC is enabled on ToR
and Leaf switches but disabled on Spine switches; (2) for
CX-5 lossy RNICs, PFC is disabled on all switches, and the
lossy RoCE acceleration features [53] are enabled.
Baseline and workload. Our RPC system used in evaluation
supports XRDMA, Flor, user-space TCP, and kernel TCP.
XRDMA is a vanilla RoCEv2-based RPC library, which is
deployed in the clusters listed in Table 2 before upgrading to
Flor. The user-space TCP is based on DPDK. Two applica-
tions run on top of our RPC framework: a Map-Reduce-like
application and a distributed block storage service.
Configuration for Flor. In the clusters, we configure one
specific priority queue on both switches and RNICs. The PFC
and ECN are enabled on this priority queue (lossless queue).
Besides, we reserve another priority queue (lossy queue) for
Flor in which PFC and DCQCN are disabled. The coalescing
ACK parameters are 120µs timer, 32 WQEs and 32KB data at
most. The base RTT used in the software congestion control
is 50µs. The minimal and maximal chunk size is 1KB and
64KB, respectively.

7.2 Software Overhead.
Flor introduces additional CPU cost due to the software
implementation of reliability mechanism and chunking. To
evaluate its impact, we compare the single-core performance
of different network protocol stacks with our RPC benchmark,
including XRDMA, Flor (RC), Flor (UC), user-space TCP,
and kernel TCP. The I/O depth (i.e., the maximal number of
inflight RPC requests) is 8. We vary the RPC request size
from 4KB to 1MB and fix the response size at 128 bytes. The
servers are equipped with Intel CPUs (2.9GHz) which have
96 logic cores, and CX-6DX 100Gbps dual-port RNICs (not
listed in Table 2).

Figure 6(a) demonstrates the throughput of all the stacks
with different RPC sizes. The single-thread throughput of Flor

938 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

25

50

75

100

Th
ro

ug
hp

ut
 (G

bp
s)

User-sp
ace TCP TCP

XRDMA

Flor (R

C)
Flor (U

C)

(a) Single-thread throughput.

0
0.2
0.4
0.6
0.8

1

CP
U

 u
sa

ge

4KB
16KB

64KB
256KB

1MB

User-sp
ace TCP

TCP
XRDMA

 Flor (R

C)
Flor (U

C)

(b) CPU usage.

Figure 6: Single-thread throughput and CPU usage of Flor
and other different network stacks.

and XRDMA can reach to ~88Gbps while user-space TCP
and kernel TCP achieve up to ~30Gbps even with large RPC
size, i.e., 1MB. Notice that due to the hardware and RoCEv2
protocol overhead, such as headers of Ethernet, IP, UDP, and
IB with 1024B MTU, the standard RDMA benchmark, i.e.,
Perftest [13] achieves a maximum bandwidth of 88Gbps. This
shows that the Chunking mechanism does not hurt the single-
thread throughput of Flor. We observed that the performance
degradation of Flor (RC/UC) happens at 64KB due to extra
memory information exchanges for using RDMA WRITE
to transmit each large message and dismisses as message
sizes increase. The throughput of large requests in XRDMA
is lower than Flor because XRDMA uses RDMA READ
operation to transfer the large requests, and RDMA READ
operation has inflight bound on RNICs along with some well-
known performance issues [16, 23]. When using a chunk of
4KB, Flor can handle over 770K chunks per second with a
single thread. Flor is able to maintain high throughput as the
chunk size is usually larger than 4KB, and applications often
adopt multiple threads.

We then estimate the corresponding CPU usage. The CPU
usage is obtained from perf [38] tool since we use polling
mode for RDMA. Notice that in our production storage
system, it adopts a run-to-completion model based on a co-
routine IO framework [11], where the network polling for
disk read or write uses the same core with storage protocol
processing in concurrent execution. As shown in Figure 6(b),
Flor takes less than 0.3 CPU core for large data size of 1MB
message in 100 Gbps network. Most modern servers usually
have large numbers of cores (>96) and 0.3 CPU cores usage
(<0.4% usage) has little impact on the production system.

Flor maintains low CPU cost because it leverages zero-copy
features of RDMA and mainly deals with lightweight control
events for congestion control and reliability. In addition, Flor
is compatible with different platforms, which can further
reduce the host CPU cost by offloading Flor to SmartNICs,
and FPGA in computation-intensive hosts.

We also measure the single-core throughput of Flor at
200Gbps RNICs and show that Flor can achieve comparable
throughput as vanilla RDMA. Besides, we show that Flor out-
performs the other network stacks, i.e., SNAP [33], eRPC [20]

4 8
 16

(KB)

0

10

20

Th
ro

ug
hp

ut
 (G

bp
s)

lossless,1/4096
lossy,1/4096
Flor,1/4096

lossless,1/16384
lossy,1/16384
Flor,1/16384

 32
 64

 128
 256

 512

 1024

Message Size (KB)
(a) Low drop ratio. (KB)

0

10

20

Th
ro

ug
hp

ut
 (G

bp
s)

lossless,1/256
lossy,1/256
Flor,1/256

lossless,1/1024
lossy,1/1024
Flor,1/1024

4 8
 16 0

 64
 128

 256
 512

 1024
 32

Message Size (KB)
(b) High drop ratio.

Figure 7: The throughput of lossless, lossy XRDMA and Flor
under different packet drop ratio.

(as shown in Table 4).

7.3 Performance with Packet Loss.
To validate the effectiveness of the software Reliability
mechanism of Flor, we take two CX-5 RNICs from cluster B
in Table 2 and disable one port on each RNIC. We manually
configure packet drop ratios on the RNIC of the receiver. We
compare Flor against XRDMA using the lossless and lossy
configuration of CX-5. The congestion control is disabled to
avoid transmission rate back-off due to packet loss.

We use various request sizes (4KB~1MB) under four
packet drop ratios (two high ratios of 1/256 and 1/1024,
and two low ratios of 1/4096 and 1/16384). As shown in
Figure 7, Flor outperforms the lossy and lossless setup across
all the drop ratios. Due to software selective retransmission,
Flor is able to maintain a performance close to that of zero
packet drop at the low packet drop ratios. Its performance
decreases slower than the lossy and lossless setup at the high
drop ratios. We observe that the lossy acceleration feature
achieves higher throughput with the occurrence of packet loss
compared to the lossless setup, i.e., the lossy acceleration
features of CX-5 does improve the packet loss recovery
performance. However, the throughput of lossless and lossy
RDMA both decrease dramatically when the drop ratio is
larger than 1/4096. It indicated that the lossy acceleration
features of current hardwares still cannot maintain good
performance under high packet loss. Flor achieves similar
results by performing the same experiments through manually
configuring the random packet drop ratio on the port of the
ToR switch connecting to the live port of the RNIC at the
host.

7.4 Intra- and Inter-Pod Traffic
Flor uses an advanced congestion control to enable lossy
RDMA support, eliminating the PFC dependency while
maintaining high performance. We validate the performance
gain of Flor in large-scale intra- and inter- pod transmission
through cluster A (pod1) and B (pod2) (Table 2). We use the
default configuration in our clusters in the tests of XRDMA:
PFC for RoCE traffic is only enabled on ToR and Leaf
switches (i.e., intra-pod) and disabled on Spine switches

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 939

0 100 200 300
Time (Seconds)

0

20

40

XRDMA
Flor

Th
ro

ug
hp

ut
(G

bp
s)

(a) Intra-pod full-mesh test.

0 100 200 300
Time (Seconds)

0

20

40

Th
ro

ug
hp

ut
 (G

bp
s)

XRDMA in pod1
XRDMA in pod2

(b) XRDMA in inter-pod full-mesh test.

0 100 200 300
Time (Seconds)

0

20

40

Th
ro

ug
hp

ut
(G

bp
s)

Flor in pod1
Flor in pod2

(c) Flor in inter-pod full-mesh test.

Figure 8: The throughput of XRDMA and Flor in cross-pod scenarios.

(i.e.,inter-pod). Similarly, we configure the intra-pod traffic
of Flor (UC) on the lossless queue and the inter-pod traffic of
Flor (UC) on the lossy queue. For each node, a client sends
large RPC requests (512KB) to each server on other nodes
with IO depth of 8. The size of the RPC response is 128 bytes.
Each client and server uses 4 threads in the tests.

As shown in Figure 8(a), for intra-pod traffic, the average
throughput of Flor (UC) is comparable to XRDMA which
is stable at ∼35Gbps. For inter-pod traffic test, as shown in
Figure 8(b) and 8(c), the throughput of XRDMA in one
pod shakes fiercely between 35Gbps and 45Gbps, and the
throughput in the other pod oscillates between 35Gbps and
20Gbps. The unstable and unbalanced throughput of XRDMA
is caused by packet loss as PFC is disabled in inter-pod
switches, and DCQCN can not prevent packet loss. In contrast,
the throughput of Flor (UC) is stable and balanced between
the two pods. In summary, Flor can achieve higher and more
stable throughput than XRDMA for lossy inter-pod tests. The
clients in pod1 suffer more from throughput loss because they
send more cross-pod traffic and experience more packet loss
in this full-mesh traffic pattern.

7.5 Heterogeneous RNICs
To evaluate the effectiveness of Flor over heterogeneous
RNICs, we test with 8 CX-4 and 8 CX-5 RNICs in cluster
B (Table 2) with PFC and DCQCN enabled. We run the
RPC benchmark with a full-mesh traffic pattern atop of Flor
and XRDMA. When using XRDMA, the average throughput
of CX-4 and CX-5 RNICs is 33.2Gbps and 41.3Gbps,
respectively. The throughput gap between CX-4 and CX-
5 is 8.1Gbps (24.3%). When using Flor, the throughput of
CX-4 and CX-5 RNICs with Flor is 37.1Gbps and 36.6bps,
and the throughput gap is 0.5Gbps (1.3%). This indicates
that Flor eliminates the throughput gap between CX-4 and
CX-5 RNICs by replacing the hardware congestion control
with a unified software congestion control, which minimizes
the performance difference introduced by the control path of
heterogeneous hardware.

To verify the effectiveness of Flor over RNICs from
different vendors, we run perftest among 100Gbps RNICs, in-
cluding Mellanox BlueField-2 [51], Intel E810-C RNIC [17]
and Broadcom NetXtreme P2100G RNICs [7]. For congestion
control, BlueField-2 only supports DCQCN, P2100 only
supports DCTCP, and E810-C supports DCQCN, DCTCP and

Timely. To clarify the unmatched performance introduced
by different congestion control algorithms, we choose to
set DCQCN for BlueField-2 and E810-C, and DCTCP for
P2100G with PFC and ECN enabled on RNICs and the
connected switches. Each sender issues 512 QPs and sends
traffic with 64KB data blocks. Four Flor configurations,
i.e., PFC with hardware congestion control (CC) and Flor,
hardware CC and Flor, Flor, and Flor with fixed cwnd are
tested. Flor with fixed cwnd means the software congestion
control algorithm has a fixed congestion window and does not
change throughout the whole experiments. We set the fixed
congestion window size as one bandwidth-delay product in
this experiment.

Figure 9 shows the throughput of each NIC under the
full-mesh traffic pattern. BlueField-2 and P2100G get the
same bandwidth when they are competing with each other
to send traffic to E810-C. Compare with Figure 2, with the
configurations of PFC + hardware CC + Flor (1), hardware
CC + Flor (2) and Flor (3), and we see that Intel NIC gets
the same throughput, i.e., 18Gbps, when competing with
Mellanox NIC and Broadcom NIC. We see the performance
gap between Intel NIC and Mellanox NIC when they send
traffic to the Broadcom NIC, even if we only apply the Flor’s
congestion control (3), where the Intel NIC gets 19Gbps, and
the Mellanox NIC gets 56Gbps, 194% of the performance
gap.

The reason is that Flor’s congestion control takes the
RTT as the congestion signal. Intel NIC has a higher packet
processing time, which causes the estimated RTT between the
Intel NIC and the Broadcom NIC to be higher than the one
between the Mellanox NIC and the Broadcom NIC. Thus, the
RTT-based congestion control algorithm reduces window size
in Intel NIC and results in lower throughput. This indicates
Flor’s congestion control needs to be further improved by
taking the NIC processing delay into account. If we fixed
the congestion window, i.e., Flor with fixed cwnd (4), the
bandwidth is less-skewed shared between the Mellanox NIC
and the Intel NIC.

7.6 Large-scale Incast
We build a group of incast tests in cluster A (Table 2) to
evaluate the performance of Flor’s congestion control. We
measure the throughput and Out-of-Sequence (OOS) counter.
We configure Flor running on the lossy queue, i.e., disabling

940 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Mellanox Broadcom Intel
Receiver NIC Vendor

0

20

40

60

80

100

120

140
Th

ro
ug

hp
ut

 (G
bp

s) Mlnx-1
Bm-1
Intel-1

Mlnx-2
Bm-2
Intel-2

Mlnx-3
Bm-3
Intel-3

Mlnx-4
Bm-4
Intel-4

Figure 9: Bandwidth in a Mlnx-Broadcom-Intel
hybrid deployment with Flor. Configurations: 1 =
PFC+hardware CC+Flor, 2 = hardware CC+Flor, 3 =
Flor, 4 = Flor +fixed cwnd.

10 20 30 40 50 60 70 80
Incast Nodes

0

25

50

Th
ro

ug
hp

ut
 (G

bp
s)

0

2000

4000

O
O

S
Co

un
t (

/s
)

4KChunk Bw
1KChunk Bw

4KChunk OOS
1KChunk OOS

Figure 10: Flor performance in large-scale incast test.

XRDMA Flor
0

0.2
0.4
0.6
0.8

1

Ti
m

e
Co

st
 (N

or
m

.)

Run Time
Shuffle Time

Figure 11: Run time in big
data application.

PFC and DCQCN. For incast traffic, we install RPC clients on
N machines and RPC server on one remote server. Each client
has 8 threads connecting to the server, and each thread issues
32KB RPC requests with IO depth of 8. Thus, the number
of QPs on each client is 8×8 = 64, and the number of QPs
on the server is N×64. Thus, the maximum incast degree is
~6000 when the node number is 90 in this test.

Figure 10 shows the throughput and OOS counters with
different incast nodes of N and the minimal chunk sizes.
Given the minimal chunk size of 4KB or 1KB, the throughput
is consistent of 50Gbps with the increasing scale of incast.
However, given the minimal chunk size of 4KB, the number
of OOS increases when the incast nodes are larger than 50
(about 4000 : 1 incast). This is because the minimum chunk
size of 4KB is the minimal congestion window size for each
QP, and the volume of burst traffic is too large in such a large-
scale incast. Therefore, we apply the minimal chunk size of
1KB, which avoids the generation of OOS in the large-scale
incast. Notably, we set the minimal chunk size of 4KB in the
storage production network because we have optimized the
storage application to balance the load across nodes, which
avoids such large incast events in practice [11].

7.7 Evaluation in Production Network
Big-data applications. ServiceX is a Map-Reduce-like big-
data application that runs on top of the distributed storage
service. The completion time of the shuffle processing
influences the performance of the whole task, and it desires
fast and stable network transmission. To estimate the impact
of Flor in the production system, we run ServiceX atop of Flor
and XRDMA in cluster C (Table 2) with a lossless network.
We conduct the task of sorting 1TB of data. The number of
mapper tasks and reducer tasks are both 1K, and each mapper
processes data of 1GB. We apply two key metrics: the average
running time of a mapper and the average shuffle time, i.e.,
the time of transferring data in the network. As shown in
Figure 11, in comparison with XRDMA, Flor reduces the
average running time by 10% and accelerates the average
shuffle time by 16% due to an efficient congestion control
strategy.
Non-stop upgrade. Flor allows to upgrade online with
negligible down time of service, which is crucial to meet
service level requirements in modern datacenter. We measure
the impact of upgrading from XRDMA to Flor on applications

such as Pangu [11] through the measurements of normalized
throughput and latency and PFC counters. In the experiment,
the software upgrading takes place at the 0.5th minute. As
shown in Figure 12(a), the read and write throughput of the
application have a slight jitter (<2%) when switching to Flor.
Figure 12(b) shows that the latency increases by 10% at
0.5 minute, lasting less than 30s. Figure 12(c) shows the
generation of PFC pauses (packets per second, pps) and its
duration time (µs), which appears in a very short time period.
At the 5.5th minute, we then disable DCQCN and PFC. The
throughput is unaffected, and the latency decreases slightly
(~3%). This latency might be caused by the interference
between DCQCN and the software congestion control. When
running Flor with and without PFC and DCQCN, all the
metrics are healthy.
High-performance block storage service. Flor is applied
for latency-sensitive applications such as the Enhanced SSD
(ESSD) product of Elastic Block Storage (EBS). ESSD
provides block storage service (virtual disks) as local devices
through high performance network. We compare the latency
and requests per second (IOPS) of an EBS application running
with XRDMA or Flor in cluster C (Table 2). We adopt the
workload of a real ESSD storage application with an I/O size
of 4KB. XRDMA is tested with RoCE lossy accelerations
enabled. Flor is tested with these features disabled. There are
three kinds of configurations for Flor: (i) Flor with hardware
reliability and hardware congestion control (Flor HW R/C);
(ii) Flor with hardware reliability and software congestion
control (Flor HW R); and (iii) Flor with software reliability
and congestion control (Flor SW).

Figure 13 (a) shows the normalized single-operation
latency of XRDMA and Flor. Flor demonstrates compa-
rable average latency performance with XRDMA among
all the operation types. Although software-based modules
are involved, the latency of Flor is still slightly lower (1%–
8%) than XRDMA due to the optimized software stack of
Flor. Flor (HW R/C) has the lowest average latency through
hardware-based implementation. Flor (SW) and Flor (HW R)
have slightly higher latency (< 3%) due to the overhead of
software stack. Figure 13 (b) shows that Flor achieves the
comparable normalized IOPS as XRDMA for 4KB Read and
Write. In conclusion, in supporting block storage service, Flor
has comparable latency and IOPS with XRDMA.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 941

Time (Mins)

0

0.5

1

Th
ro

ug
hp

ut

Read
Write

0 1 2 3 4 5 6 7

0

8 9 10

(a) Application throughput.

0 1 2 3 4 5 6 7

Time (Mins)

0

0.5

1

La
te

nc
y

(N
or

m
.)

Read
Write

8 9 10

(b) Application latency.
Time (Mins)

0

0.5

1

Pa
us

e
(p

ps
/u

s)

Pause Count (pps)
Pause Duration (us)

0 1 2 3 4 5 6 7

0

8 9 10

(c) PFC counters.
Figure 12: The system performance of upgrading from XRDMA to Flor.

Read Write
0

0.5

1

La
te

nc
y

XRDMA
Flor (HW R/C)

Flor (HW R)
Flor (SW)

(a) Average latency of 4KB.
Read Write

0

0.5

1

IO
PS

XRDMA
Flor (HW R/C)

Flor (HW R)
Flor (SW)

(b) IOPS of 4KB operation.

Figure 13: Performance of Block Storage Service.

8 Discussion
Hybrid RDMA NICs’ deployment in datacenters. In the
production network with over 100K servers, new servers
and new NICs are incrementally deployed, which results
in the mix of the latest generation and earlier generations
(or different vendors) of RDMA NICs co-existing in the
same datacenter network. In addition, the malfunctioning
servers in the built-up clusters can be replaced by servers
configured with NICs of different generations or vendors. The
new generation of RNICs is released by the vendors every
2 or 3 years. From our experience in Block Storage Service,
we first deployed storage servers with CX-4 RDMA NICs
in 2016. In 2019, we started to deploy new servers of CX-5
RDMA NICs because of higher performance and price ratio.
As a result, there exists the hybrid deployment of both CX-4
and CX-5 RDMA NICs. The same deployment choice was
made when we introduced CX-6DX RDMA NICs in 2021.
Programmable control plane. Flor provides a new per-
spective of layered architecture to achieve high velocity
and performance with diverse hardware. Flor envisions the
"programmability" of reliability and CC modules of RDMA in
the control plane, which can be implemented in programmable
hardware, such as smartNICs with embedded CPU or NPU,
e.g., ConnectX-6, Bluefield, Intel IPU. In this way, we can
make use of the programmable hardware capability such as
hardware timestamp, rate-limiting, and packet drop detection
to further improve the efficiency of CC and reliability while
keeping the unified control policy among heterogeneous
RNICs with the same Flor architecture.
Concerns of implementation. Currently, not all NICs
support UC. First, this research work has demonstrated, for the
first time, the effectiveness of using UC for high-performance
out-of-order transmission in product networks. Second, UC
is a standard transport defined in the RoCE specification,
and its logic is simple and easy to implement by hardware.

Network Protocol MTU (B) Throughput 100/200 (Gbps)
Linux TCP 1500 22

SNAP 1500 39.1
SNAP (+I/OAT) 5000 67.5 (82.2)

eRPC on IB 3840 73
Perftest 1024 88/193

XRDMA 1024 88/174
Flor 1024 84/173

Table 3: The single-core bandwidth of different network
transport stacks in 100 and 200Gbps networks.

Therefore, this work provides a new choice for the community,
and we expect more vendors to support UC. In addition,
when migrating Flor to SmartNICs, e.g., Bluefield 2, which
has multiple ARM cores and sufficient DRAM memory,
thanks to Flor ’s architecture that clearly separates each
component, each individual component is easy to move to the
BlueField’s ARM cores. The main differences from the host
CPU implementation are that the ARM core is less performant
than the host CPU core, and the L3 cache size of Bluefield
2 is limited, requiring the developers to optimize the system
carefully. With the capability of directly operating data in the
host memory introduced by Bluefield 3, the limited L3 cache
size caused performance degradation can be resolved.

9 Related Work
Software solutions. We compare Flor with different
network protocols. Table 3 shows the single-thread throughput
between two nodes in the 100Gbps and 200Gbps network.
The throughput of SNAP [33] and eRPC [20] are from
the published papers. We can see that network protocols
with hardware-offloaded RDMA semantics, i.e., Perfest [13],
XRDMA and Flor, achieve higher throughput than other
network stacks. In addition, the throughput of XRDMA and
Flor are comparable with Perfest, which plays the raw IB
verbs without any overhead of RPC. The RDMA-based
protocols can also maintain high bandwidth utilization in
a 200Gbps network, where the throughput of Flor is the
same with XRDMA. Though the throughput of eRPC and
SNAP increases as the MTU size increases, using large
MTU sizes requires a unified and standard configuration,
which adds operation complexity in a complicated production
environment. Besides, software solutions suffer from higher
latency [33] and CPU overhead [20] without hardware

942 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Functionalities Lossless RDMA Lossy RDMA eRPC 1RMA Flor
Transport granularity Verbs Verbs MTU Op (4KB) Variable chunk (e.g., 4KB-64KB)

CPU Involvement One/Two-sided One/Two-sided Two-sided One-sided One/Two-sided
Congestion control &

Signal & Type
HW,

ECN, rate
programmable HW,

ECN+RTT, rate
SW,

credit, window
SW,

RTT, window
SW/HW,

RTT/ECN, window/rate

Reliability &
Retransmission

HW,
GBN

HW,
SR for RDMA Operation SW, GBN SW, unknown

SW/HW,
intra-chunk GB0 &

inter-chunk SR/GBN
PFC dependency &

Loss tolerance Yes, poor No, high No, poor No, unknown No, high

HW dependency All RNICs CX6-dx DPDK/all RNICs Customized NIC All RNICs
Datapath zero copy Yes Yes No Yes Yes

Table 4: Comparison on transport features of Flor and other network solutions.

acceleration.
Hardware solutions. To get rid of PFC, Mellanox brings
up Resilient RoCE [48] and Lossy RoCE Accelerations [53]
on lossless RNICs, i.e., Go-Back-N-based RNICs. Resilient
RoCE utilizes congestion control, i.e., DCQCN, to deal with
network congestion and avoid packet loss. A recent study [44]
shows that the Resilient RoCE can prevent packet loss in some
specific scales but still suffers unfairness from packet loss
in large-degree incast events. Hardware-based lossy RDMA
solutions such as Mellanox CX-5/6 [50,52] and IRN [36] rely
on strengthened hardware to run on a lossy network. They can
not be deployed with CX-4 RNICs, and also lack the flexibility
for users to customize each function as the implementation is
highly ingrained into the hardware.
Hardware & software co-design solutions. RoGUE [28]
designs a software congestion control for RDMA but relies
on hardware reliability mechanism to recover from packet
loss. It uses a large static chunk size, i.e., 64KB, which needs
to be revised to deal with the large-scale incast scenario.
1RMA [45] is a high-performance network system that
provides congestion control and reliability in software. 1RMA
also enables one-sided RDMA operations based on novel
hardware with RDMA READ-like operation. However, it
can not work on commodity RNICs, so it has little help for
existing RDMA systems. Table 4 shows the clear difference
between Flor and other network frameworks.

10 Conclusion
We present Flor, a flexible lossy RDMA framework for
heterogeneous RNICs that solves a set of problems raised
in production RoCEv2 clusters. These problems include
PFC dependency, the interconnectivity of heterogeneous
RNICs and hardware-bonded congestion control schemes.
Flor onloads the reliability and congestion control function
from RNICs to the software. Flor proposes a software
selective retransmission for the first time at the RoCEv2
network and uses a software RTT-based congestion control
to deal with the performance gap among the heterogeneous
RNICs. Our evaluation of the testbed and production clusters
shows that Flor achieves high performance and flexibility
in many scenarios, including packet loss, heterogeneous
hardware, large-scale incast, and distributed systems. Flor

also shows that the process of upgrading the existing RDMA
framework to Flor has little performance impact on the
running applications.
Acknowledgments. We are extremely grateful for our shep-
herd, Costin Raiciu, and the anonymous OSDI’23 reviewers
for their wonderful feedback. Xiaoliang Wang is supported
by NSFC No.62172204. Qiao Xiang is supported in part by
the National Key R&D Program of China 2022YFB2901502,
Alibaba Innovative Research Award, NSFC No.62172345,
Open Research Projects of Zhejiang Lab 2022QA0AB05,
MOE China Award 2021FNA02008, and NSF-Fujian-China
2022J01004. And we also appreciate for the help from Lei
Yan and Shanghai Yunsilicon Technology Co., Ltd.

References
[1] Introducing the gaudi2 processor for training deep

learning workloads. https://habana.ai/training/gaudi2/,
2022.

[2] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
TCP (DCTCP). In SIGCOMM. ACM, 2011.

[3] InfiniBand Trade Association. Infiniband architecture
specification release 1.2.1 annex a16: RoCE, 2010.

[4] InfiniBand Trade Association. Infiniband architecture
specification release 1.2.1, 2014.

[5] InfiniBand Trade Association. Infiniband architecture
specification release 1.2.1 annex a17: Rocev2, 2014.

[6] Broadcom. Changing congestion control mode set-
tings. https://techdocs.broadcom.com/us/e
n/storage-and-ethernet-connectivity/ethern
et-nic-controllers/bcm957xxx/adapters/Conf
iguration-adapter/RoCE/advanced-network-co
nfiguration/changing-congestion-control-mo
de-settings.html, 2022.

[7] Broadcom. Netxtreme®-e series. https://www.
broadcom.com/products/ethernet-connectivit
y/network-adapters/p2100g, 2022.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 943

https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/changing-congestion-control-mode-settings.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/changing-congestion-control-mode-settings.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/changing-congestion-control-mode-settings.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/changing-congestion-control-mode-settings.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/changing-congestion-control-mode-settings.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/changing-congestion-control-mode-settings.html
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/p2100g
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/p2100g
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/p2100g

[8] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and general distributed transactions
using RDMA and htm. In Proceedings of the Eleventh
European Conference on Computer Systems. ACM,
2016.

[9] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. FaRM: Fast remote
memory. In NSDI, 2014.

[10] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking: SmartNICs
in the public cloud. In NSDI, 2018.

[11] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng
Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. When cloud storage
meets RDMA. In NSDI, 2021.

[12] Dan Gibson, Hema Hariharan, Eric Lance, Moray
McLaren, Behnam Montazeri, Arjun Singh, Stephen
Wang, Hassan MG Wassel, Zhehua Wu, Sunghwan Yoo,
et al. Aquila: A unified, low-latency fabric for datacenter
networks. In NSDI, 2022.

[13] Github. Perftest. https://github.com/linux-r
dma/perftest, 2021.

[14] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over commodity Ethernet at scale. In SIGCOMM. ACM,
2016.

[15] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Tagger: Prac-
tical PFC deadlock prevention in data center networks.
In Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies.
ACM, 2017.

[16] Alibaba Inc. Pangu, the high performance distributed
file system by Alibaba cloud. https://www.alib
abacloud.com/blog/pangu-the-high-performan
ce-distributed-file-system-by-alibaba-clou
d_594059, 2018.

[17] Intel. Production brief for Intel® Ethernet Controller
E810-CAM2/CAM1/XXVAM2. https://cdrdv2
.intel.com/v1/dl/getContent/615503, 2020.

[18] Intel. Intel infrastructure processing unit (IPU).
https://www.intel.cn/content/www/cn/zh/pro
ducts/network-io/smartnic.html, 2021.

[19] Intel. Irdma readme. https://downloadmirror.i
ntel.com/738730/README_irdma.txt, 2022.

[20] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be general and fast. In USENIX
NSDI, 2019.

[21] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using RDMA efficiently for key-value services. In
ACM SIGCOMM Computer Communication Review,
volume 44, pages 295–306. ACM, 2014.

[22] Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: Fast, scalable and simple distributed transactions
with two-sided (RDMA) datagram RPCs. In OSDI,
2016.

[23] Anuj Kalia Michael Kaminsky and David G Andersen.
Design guidelines for high performance RDMA systems.
In USENIX Annual Technical Conference (ATC), 2016.

[24] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP acceleration as an OS
service. In Proceedings of the Fourteenth EuroSys
Conference, 2019.

[25] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding performance anomalies in RDMA subsystems.
In NSDI, Renton, WA, April 2022.

[26] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is simple and effective for congestion control in the
datacenter. SIGCOMM, 2020.

[27] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton,
Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. The
QUIC transport protocol: Design and internet-scale
deployment. In SIGCOMM, ACM, 2017.

[28] Yanfang Le, Brent Stephens, Arjun Singhvi, Aditya
Akella, and Michael M Swift. Rogue: RDMA over
generic unconverged Ethernet. In SoCC, 2018.

[29] Hao Li, Asim Kadav, Erik Kruus, and Cristian Ungure-
anu. Malt: distributed data-parallelism for existing ml
applications. In Proceedings of the Tenth European
Conference on Computer Systems. ACM, 2015.

944 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://www.alibabacloud.com/blog/pangu-the-high-performance-distributed-file -system-by-alibaba-cloud_594059
https://www.alibabacloud.com/blog/pangu-the-high-performance-distributed-file -system-by-alibaba-cloud_594059
https://www.alibabacloud.com/blog/pangu-the-high-performance-distributed-file -system-by-alibaba-cloud_594059
https://www.alibabacloud.com/blog/pangu-the-high-performance-distributed-file -system-by-alibaba-cloud_594059
https://cdrdv2.intel.com/v1/dl/getContent/615503
https://cdrdv2.intel.com/v1/dl/getContent/615503
https://www.intel.cn/content/www/cn/zh/products/network-io/smartnic.html
https://www.intel.cn/content/www/cn/zh/products/network-io/smartnic.html
https://www.intel.cn/content/www/cn/zh/products/network-io/smartnic.html
https://downloadmirror.intel.com/738730/README_irdma.txt
https://downloadmirror.intel.com/738730/README_irdma.txt

[30] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. HPCC:
high precision congestion control. In SIGCOMM. ACM,
2019.

[31] James M. Lucas and Michael S. Saccucci. Exponentially
weighted moving average control schemes: Properties
and enhancements. Technometrics, 32(1):1–12, 1990.

[32] Teng Ma, Tao Ma, Zhuo Song, Jingxuan Li, Huaixin
Chang, Kang Chen, Hai Jiang, and Yongwei Wu. X-
RDMA: Effective RDMA middleware in large-scale
production environments. In IEEE International Con-
ference on Cluster Computing (CLUSTER), 2019.

[33] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A micro-
kernel approach to host networking. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles, SOSP, 2019.

[34] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shu-
jun Zhuang, Bo Li, Shuguang Cheng, Jiaqi Gao,
Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi,
Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and
Hongqiang Harry Liu. From Luna to Solar: The evolu-
tions of the compute-to-storage networks in Alibaba
cloud. In SIGCOMM, New York, NY, USA, 2022.
Association for Computing Machinery.

[35] Christopher Mitchell, Yifeng Geng, and Jinyang Li.
Using one-sided RDMA reads to build a fast, CPU-
efficient key-value store. In USENIX Annual Technical
Conference (ATC), 2013.

[36] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting network support for RDMA.
In Proceedings of ACM Special Interest Group on Data
Communication. ACM, 2018.

[37] Akshay Narayan, Frank Cangialosi, Deepti Raghavan,
Prateesh Goyal, Srinivas Narayana, Radhika Mittal,
Mohammad Alizadeh, and Hari Balakrishnan. Restruc-
turing endpoint congestion control. In Proceedings of
the 2018 Conference of the ACM Special Interest Group
on Data Communication, 2018.

[38] Wiki of Linux perf command manpage. Perf wiki. ht
tps://perf.wiki.kernel.org/index.php/Main_P
age, 2021.

[39] OpenCompute. In-band network telemetry in Barefoot
Tofino. https://www.opencompute.org/files/
INT-In-Band-Network-Telemetry-A-PowerfulAn
alytics-Framework-for-your-Data-Center-OCP
-Final3.pdf, 2019.

[40] P4. P4. https://p4.org/, 2021.

[41] Behnam Montazeri Masoud Moshref Khaled Elmeleegy
Luigi Rizzo Marc de Kruijf Gautam Kumar Sylvia
Ratnasamy David Culler Amin Vahdat Saksham Agar-
wal, Rachit Agarwal. Understanding host interconnect
congestion. In in ACM HotNets. ACM, 2022.

[42] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez
Sabbag. Supercomputing on Nitro in AWS cloud. IEEE
Micro, 2020.

[43] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen,
and Feifei Li. Fast and concurrent rdf queries with
RDMA-based distributed graph exploration. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI). USENIX Association, 2016.

[44] Alexander Shpiner, Eitan Zahavi, Omar Dahley, Aviv
Barnea, Rotem Damsker, Gennady Yekelis, Michael Zus,
Eitan Kuta, and Dean Baram. RoCE rocks without PFC:
Detailed evaluation. KBNets, 2017.

[45] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F
Wenisch, Monica Wong-Chan, Sean Clark, Milo MK
Martin, Moray McLaren, Prashant Chandra, Rob Cauble,
et al. 1RMA: Re-envisioning remote memory access for
multi-tenant datacenters. In SIGCOMM, 2020.

[46] Stanford. Homasimulation. https://github.com
/PlatformLab/HomaSimulation, 2018.

[47] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu
Guo, and Yongwei Wu. RFP: When RPC is faster
than server-bypass with RDMA. In Proceedings of
the Twelfth European Conference on Computer Systems,
2017.

[48] NVIDIA Networking (Mellanox Technologies). Re-
silient roce. https://community.mellanox.c
om/s/article/introduction-to-resilient-roc
e---faq, 2018.

[49] NVIDIA Networking (Mellanox Technologies).
Connectx-4 lx en en card. https://www.mellanox
.com/files/doc-2020/pb-connectx-4-lx-en-ca
rd.pdf, 2020.

[50] NVIDIA Networking (Mellanox Technologies).
Connectx-5 en en card. https://www.mellanox.c
om/files/doc-2020/pb-connectx-5-en-card.pd
f, 2020.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 945

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.opencompute.org/files/INT-In-Band-Network-Telemetry-A-PowerfulAnalytics-Framework-for-your-Data-Center-OCP-Final3.pdf
https://www.opencompute.org/files/INT-In-Band-Network-Telemetry-A-PowerfulAnalytics-Framework-for-your-Data-Center-OCP-Final3.pdf
https://www.opencompute.org/files/INT-In-Band-Network-Telemetry-A-PowerfulAnalytics-Framework-for-your-Data-Center-OCP-Final3.pdf
https://www.opencompute.org/files/INT-In-Band-Network-Telemetry-A-PowerfulAnalytics-Framework-for-your-Data-Center-OCP-Final3.pdf
https://p4.org/
https://github.com/PlatformLab/HomaSimulation
https://github.com/PlatformLab/HomaSimulation
https://community.mellanox.com/s/article/introduction-to-resilient-roce---faq
https://community.mellanox.com/s/article/introduction-to-resilient-roce---faq
https://community.mellanox.com/s/article/introduction-to-resilient-roce---faq
https://www.mellanox.com/files/doc-2020/pb-connectx-4-lx-en-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-4-lx-en-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-4-lx-en-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-5-en-card.pdf

[51] NVIDIA Networking (Mellanox Technologies). Ac-
celerating data center security with bluefield-2 dpu.
https://developer.nvidia.com/blog/accelera
ting-data-center-security-with-bluefield-2
-dpu, 2021.

[52] NVIDIA Networking (Mellanox Technologies).
ConnectX-6 Dx Ethernet SmartNIC. https:
//nvdam.widen.net/s/qpszhmhpzt/networking-
overal-dpu-datasheet-connectx-6-dx-smartni
c-1991450, 2021.

[53] NVIDIA Networking (Mellanox Technologies). Mel-
lanox lossy RoCE accelerations. https://commun
ity.mellanox.com/s/article/How-to-Enable-D
isable-Lossy-RoCE-Accelerations, 2021.

[54] C. Tian, B. Li, L. Qin, J. Zheng, J. Yang, W. Wang,
G. Chen, and W. Dou. P-PFC: Reducing tail latency
with predictive PFC in lossless data center networks.
IEEE Transactions on Parallel and Distributed Systems,
31(6):1447–1459, 2020.

[55] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using RDMA and htm. In Proceedings of the 25th
Symposium on Operating Systems Principles. ACM,
2015.

[56] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Orion: A distributed file system for non-volatile main
memories and RDMA-capable networks. In 17th
USENIX Conference on File and Storage Technologies
(FAST). USENIX Association, 2019.

[57] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale RDMA
deployments. In SIGCOMM, 2015.

[58] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Förster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and mitigating packet corruption
in data center networks. SIGCOMM, 2017.

APPENDIX

A Design Details
A.1 Software Reliability
A.1.1 Chunk sequence number
Flor has two sequence number spaces, i.e. global sequence
number (GN in Figure 14) and reliable sequence number (RN
in Figure 14). The global sequence number is a 64-bit value
and all the RDMA WQEs have a unique global sequence
number to identify the sequence within a QP. The reliable

Global Num = 1
Reliable Num = 1

Chunks transported by WIRTE_WITH_IMM are
identified by Message Id + Offset

Global Num = 2
Message id = 1

Offeset = 1

Global Num = 3
Reliable Num = 1

Global Num = 4
Reliable Num = 2

WQEs transported by SEND are
identified by Reliable Numbers

All WQEs are numbered with
non-repetitive Global Numbers

Retransmissions have
different Global Numbers

8KB
MID=1
OFF=0

（GN=1）

32KB
MID=1
OFF=2

（GN=3）

1KB
GN=2
RN=1

4KB
GN=4
RN=2

MID=1
OFF=0

4KB
GN=5
RN=3

MID=1
OFF=1

Retransmit

WRITE WQEs SEND WQEs

1KB
GN=6
RN=1

Figure 14: An example of the numbering system of Flor. An
40KB of WRITE WQE is splited into a 8KB and a 32KB WRITE
WQE. The 8KB WRITE WQE and 1KB SEND WQE are lost and
get retransmitted. The retransmissions of 8KB WRITE WQE are
transmitted via two 4KB SENDs.

sequence number is used to identify the sequence within the
same type of WQEs, i.e., WRITE WQEs and SEND WQEs
have separate reliable sequence number space. Flor identifies
the original WQEs and the retransmitted WQEs with different
global numbers such that ACK information (and timestamp
information carried in ACKs) is not ambiguous. The global se-
quence numbers for WRITE WQEs are maintained only at the
senders and not transmitted to the receiver. The SEND WQEs
carry both the reliable numbers and the global sequence
numbers to the receiver. The retransmission WQEs share the
same reliable sequence number with the original WQE. Note
that Flor uses SEND WQE to retransmit WRITE WQE. This
SEND WQE that is used for WRITE retransmission carries
the original WRITE reliable sequence number, a new reliable
number and a new global sequence number to the receiver
such that this retransmission is able to be identified both by
the sender and receiver.

The reliable sequence number of WRITE WQEs consists
of 1-bit hint, 21-bit message id (MID in Figure 14) and 10-bit
chunk_o f f set (OFF in Figure 14). The hint bit is set when
the WQE is the last WQE in the congestion window. We align
the chunk_size to the chunk unit size (e.g., UNIT_SIZE). The
chunk_o f f set represents the offset of the memory address of
a chunk (addrc) from the staring memory address of the same
message (addrm), i.e.,

chunk_o f f set = (addrc−addrm)/UNIT _SIZE

The receiver can validate the integrity of the message by
checking whether it has received data of all chunk offsets
covered the message size and assemble the messages to notify
the application. If using UNIT _SIZE = 4KB, then 10-bit
chunk offset supports up to 4KB×210 = 4MB message. To
support larger message in applications, users can allocate
more bits for chunk offset field.

Figure 14 shows an example how this numbering system
works. Here a large message of 40KB is split into 2 WRITE
WQEs, i.e., 8KB and 32KB and a SEND message is sent
between these two WRITE WQEs. Each WQE has a unique
global sequence number (GN) and the WRITE WQEs do not
carry the GN to the receiver while the SEND does.

In the case that 8KB WRITE WQE and the 1KB SEND
WQE are retransmitted. The 8KB WRITE WQE is split into
two 4KB SEND WQEs, where the minimal chunk_size is

946 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://developer.nvidia.com/blog/accelerating-data-center-security-with-bluefield-2-dpu
https://developer.nvidia.com/blog/accelerating-data-center-security-with-bluefield-2-dpu
https://developer.nvidia.com/blog/accelerating-data-center-security-with-bluefield-2-dpu
https://developer.nvidia.com/blog/accelerating-data-center-security-with-bluefield-2-dpu
https://nvdam.widen.net/s/qpszhmhpzt/networking-overal-dpu-datasheet-connectx-6-dx-smartnic-1991450
https://nvdam.widen.net/s/qpszhmhpzt/networking-overal-dpu-datasheet-connectx-6-dx-smartnic-1991450
https://nvdam.widen.net/s/qpszhmhpzt/networking-overal-dpu-datasheet-connectx-6-dx-smartnic-1991450
https://nvdam.widen.net/s/qpszhmhpzt/networking-overal-dpu-datasheet-connectx-6-dx-smartnic-1991450
https://community.mellanox.com/s/article/How-to-Enable-Disable-Lossy-RoCE-Accelerations
https://community.mellanox.com/s/article/How-to-Enable-Disable-Lossy-RoCE-Accelerations
https://community.mellanox.com/s/article/How-to-Enable-Disable-Lossy-RoCE-Accelerations

4KB. Each SEND WQE for WRITE retransmission carries the
original reliable sequence number of the WRITE WQE and
has a new SEND reliable sequence number and a new global
sequence number. Each SEND WQE for SEND retransmission
carries the original SEND reliable sequence number and a new
global sequence number to the receiver.
A.1.2 ACK Format and CompressionMessage id

22bit
Chunk offset

10bit

Immediate data (32bit)

ACK packet format (32 acked number at most)

Least ACKed number
8B

ACK generate delay
8B

bitmap
4B

QP number
4B

Acked num
4B

Acked num
4B

…

Least ACKed number
8B

ACK generate delay
8B

bitmap
4B

QP number
4B

Acked num
4B

Acked num
4B

… Acked num
4B

Acked num
4B

Figure 15: Software ACK format.

Figure 15 shows the software ACK format. A 32-bit bitmap
(4B) in ACK packet indicates that each ACK packet signals
at most 32 WQEs. A ith bit set in the bitmap indicates that
the ith ACKed number is a global sequence number for a
SEND WQE, otherwise, the ith ACKed number is the reliable
sequence number for a WRITE WQE. It is possible that
the ACK packet contains the number of ACKed number is
less than 32. As Figure 15 shows that the first ACKed number
starts from 24thB and each ACKed number is 4B. The number
of ACKs carried in one packet is calculated as follows:

(ack_length−24B)/4B,

where ack_length is the packet length of the ACK packet.
For example, an ACK of packet length 40B carries (40B−
24B)/4B = 4 acked numbers. If the bitmap is 0XC0000000,
then the first 2 ACKed numbers acknowledge WRITE WQEs
and the 3th and 4th ACKed numbers acknowledge SEND
WQEs.

We limits the acked number to be 32-bit to shorten the
length of the ACK packets. The reliable sequence number
of a WRITE WQE and the global sequence number of a
SEND WQE will be ACKed back to the sender. Recall that
the reliable sequence number is 32-bit and the global sequence
number is 64-bit. Thus, we compress the 64-bit global
sequence number to a 32-bit ACKed number as follows:

acked_num = global_num− least_acked_global_num,

where the least_acked_global_num is the smallest global
sequence number in a ACK packet. The WQEs with global
sequence number larger than

least_acked_global_num+232−1

are dropped by Flor if received. This window size is large
enough in practice. The silently dropped WQEs, if there are,
are detected by timeout.

A.2 RTT measurement
A.2.1 HW/SW Clock Synchronization
The timestamps are generated by the NIC hardware clock.
Except from obtaining timestamps from completions events
to calculate, Flor may also need time for other usages, e.g.,
setting retransmission timers. However, querying current time
from RNICs is a time-consuming operation (e.g., costs 1µs in
CX-4). Thus Flor maintains a software clock based on rdtsc()
and synchronizes the clock with hardware clock. When Flor
sends or receives an operation and the clock is not corrected
for 100µs, then Flor queries a timestamp from RNIC and
update the offset when the error exceeds threshold 10µs.
According to our observation, the successfully correct ratio
(i.e., the ratio that the error exceeds 10µs) is less than 1%.
A.2.2 Improve RTT Measurement Accuracy

RTT (50th)

500

1000

Ti
m

e
(u

s)

ACK on shared QP
ACK on isolated QP

RTT (99th)
RTT (99.9th)

Figure 16: RTT accuracy with shared and isolated QP.

Figure 16 shows the measured RTT values with and without
Flor optimization, i.e., ACK on isolated QP and ACK on
shared QP, respectively. The experiment setup is the same as
Figure 5 except using a larger RPC request size, i.e., 1MB.
A.2.3 RTT Measurement for UC

RTT (99.9th)

ACK Delay (99th)

Local ACK Delay (99.9th)0

50

100

150

20
0

Ti
m

e
(u

s)

Immediate
30 s,4 WQEs

120 s,32 WQEs

Figure 17: Evaluation of optimizations on ACK designs.
Note that Flor ACKs coalescing mechanism can also cause

the ACKs being delayed. Thus, we measured the ACK delay
(i.e., T′3−T2) and local delay duration (the time between T4
and ACK processing time) with different acknowledgement
frequencies. Figure 17 reports the 99th percentile of these
delays as the acknowledgement frequencies changes. As
expected, the ACK delay increases as the number of WQEs’
ACKs coalescing increases, this is because the receiver needs
to wait more WQEs to finish or a timer to generate an ACK.
The local delay stays the same because Flor prioritizes to
poll the ACK completion queue and Flor processes one

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 947

ACK regardless the number of the number of WQEs’ ACKs
coalescing. Finally, the RTT measurement results show that
RTT measurement accuracy does not impact by the ACK
frequencies with this improvement.

948 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Background & Motivation
	RDMA Preliminaries
	Production Experience
	Motivation

	Flor Design
	Design Rationale
	Architecture
	Optimization and Deployment.

	Dynamic Chunking
	Accurate RTT Measurement
	Chunking Strategy

	Selective Retransmission with UC
	Enhance Hardware Retransmission
	Evaluation
	Experiment Setup and Benchmarks
	Software Overhead.
	Performance with Packet Loss.
	Intra- and Inter-Pod Traffic
	Heterogeneous RNICs
	Large-scale Incast
	Evaluation in Production Network

	Discussion
	Related Work
	Conclusion
	Design Details
	Software Reliability
	Chunk sequence number
	ACK Format and Compression

	RTT measurement
	HW/SW Clock Synchronization
	Improve RTT Measurement Accuracy
	RTT Measurement for UC

