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Abstract—Remote Procedure Call (RPC) is widely used in
distributed systems and it usually needs to serialize data before
transmission. Serialization accounts for a large proportion of
the overhead in RPC and becomes a bottleneck for RPC
communications. Because the size of the output serialized message
cannot be predicted in advance, there could be multiple memory
reallocations and copies in typical serialization libraries (e.g.,
FlatBuffers), which dominates the overhead. We propose the
novel serialization library, zFlatBuffers, to eliminate these avoid-
able copies during the serialization process and realize zero copy
during communication. Unlike the typical serialization library,
FlatBuffers, the message generated by zFlatBuffers consists of
multiple non-contiguous buffers due to its zero-copy nature.
Moreover, we integrate zFlatBuffers with RDMA-based RPC
systems. For RDMA Unreliable Datagram, we modify the mes-
sage buffer of eRPC to enable it to transmit messages composed
of multiple buffers. We also build the zRPC system based on
RDMA Reliable Connection, which transmits the zFlatBuffers
message by the scatter/gather function. Compared to the original
FlatBuffers, zFlatBuffers improves the throughput of eRPC and
zRPC by 11.2%-33.7% and 5.8%-53.6%, respectively.

Index Terms—RPC, Serialization, Zero Copy, RDMA

I. INTRODUCTION

Remote Procedure Call (RPC) [1] is a popular commu-

nication method for datacenter applications. For example,

Hadoop, HDFS, and HBase all use RPC to exchange metadata

information. The communication procedure of RPC is shown

in Fig. 1. Initially, the client calls the local client stub to

pack the parameters into a message and sends the message

to the remote server over the network. After receiving the

message sent by the client, the server stub unpacks the

message and sends the parameters to the corresponding server

procedure. When the corresponding procedure is executed,

the steps for the server to return the results back to the

client are similar to the sending process, but in the opposite

direction. The process of packing and unpacking messages

is called serialization (or marshalling) and deserialization (or

unmarshalling), respectively. RPC systems usually rely on

dedicated serialization libraries. For example, as an open-

source, high-performance and cross-platform RPC framework,

gRPC [2] uses Protobuf [3] or FlatBuffers [4] to serialize

messages.
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Fig. 1: RPC communication procedure.

Typically, serialization accounts for a large proportion of

the overhead for applications with RPC in datacenters. The

work in [5] indicated that serialization accounted for nearly

5% of total CPU cycles in Google datacenters. Moreover, the

measurements in [6] show that serialization and deserialization

account for nearly 30% of all execution time of Spark jobs.

With the advances in networking hardware, network speeds

continue to increase. Consequently, it is expected that the con-

tribution of serialization to the overall overhead will become

even higher, making it the main bottleneck in the RPC.

We observe that current mainstream serialization libraries

can have the multi-copy problem. Taking the typical serializa-

tion library, FlatBuffers, as an example, the size of the message

after serialization cannot be predicted in advance. Therefore,

the initial buffer size allocated by FlatBuffers may not be

enough to hold the serialized message. In this case, it needs

to reallocate a larger buffer, copy the original data to the new

buffer, and then release the previously allocated buffer. The

subsequent serialized data will be placed after the original data

in the new buffer. Hence, FlatBuffers suffers from multiple

memory reallocations and copies, which greatly increases the

overhead of serialization. We use cpp-serializer [7] to measure

the performance of FlatBuffers and count the proportion of

memory reallocation and copy in the total serialization time.

We demonstrate that when the serialized message sizes are

17,632B and 104,032B, memory reallocation and copy account

for 38.4% and 57.7% of the time, respectively. We also find

that, as the message size grows, memory reallocation and copy

dominate the overhead, so we should minimize the reallocation
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and copy.

The key idea of this paper is eliminating memory copies

during the serialization. When the buffer space is insufficient,

instead of copying the original data to the new buffer, we

reallocate a new buffer, write the subsequent serialized data

directly to it and splice these physically fragmented buffers

logically, achieving the zero copy in the serialization. We

implement this idea and name the optimized serialization

library as zFlatBuffers. However, there are two key challenges

when designing zFlatBuffers:

• The zero-copy serialization involves multiple non-

contiguous buffers, while the existing methods can only

handle a contiguous one. So to overcome this, we re-

designed the memory hierarchy of the serialization li-

brary.

• The output of zFlatBuffers consists of non-contiguous

buffers, but the data needs to be stored in continuous

memory when deserialized. In order to avoid the overhead

caused by copying these buffers together, we send these

non-contiguous buffers as one message directly.

We integrate zFlatBuffers with RDMA-based RPC systems.

However, the existing RPC systems generally only support the

transmission of messages composed of a single buffer and do

not support the zFlatBuffers messages composed of multiple

non-contiguous buffers.

To this end, we design methods to transmit zFlatBuffers

messages using Unreliable Datagram (UD) and Reliable Con-

nection (RC) transport modes of RDMA, respectively. For

UD, we extend the message buffer of the existing eRPC

system so that it can represent multiple buffers, thus supporting

zFlatBuffers messages. For RC, we build the zRPC system,

which uses the scatter/gather function of the NIC to directly

read multiple non-contiguous buffers and transmit them as

a message. With the novel design and implementation, we

successfully send zFlatBuffers messages to the contiguous

memory of the receiver.

In conclusion, our contributions are:

1) We observe that there are multiple memory reallocations

and copies in serialization libraries, which decreases the

performance of serialization.

2) We design zFlatBuffers to achieve zero copy during

serialization. zFlatBuffers reduces the serialization time

by 7.6% to 72% compared to the original FlatBuffers.

3) In order to transmit the messages generated by zFlat-

Buffers, we modify the UD-based eRPC system and build

the RC-based zRPC system. Then we integrate zFlat-

Buffers with eRPC and zRPC. Our experiments show

that compared to the original FlatBuffers, zFlatBuffers

improves the throughput of eRPC and zRPC by 11.2%-

33.7% and 5.8%-53.6% respectively.

II. RELATED WORK

NIC scatter/gather. The scatter/gather function is widely

used and well researched in high-performance computing [8].

One of our basic ideas is to take advantage of the NIC

scatter/gather function to optimize the serialization library.

The scatter/gather function is not free because the NIC needs

to read data from multiple buffers through PCIe requests

and merge them into a single packet. [9] explores the trade-

off between the scatter/gather function and memory copy on

CX-5. Scattering/Gathering a large number of small entries

hurts performance, so they recommend that the scatter/gather

operations should be applied to entries that are at least 512

Bytes large.

Memory reallocations and copies in serialization. Previous

work has also studied the problem of reallocation and copy in

serialization. RPCoIB [10] uses the locality of message size

to solve this problem. The message size of the same type of

RPC is similar, so they allocate the different sizes of the initial

buffer for different types of RPC, so as to reduce the number

of reallocations and copies. However, not all data have good

locality. As shown in [10], the size of the heartbeat RPC in

Hadoop JobTracker fluctuates, which may lead to reallocation

and copying of memory (if the initial buffer size is too small)

or waste of memory (if the initial buffer size is too large).

Protobuf [3] and Cap’n proto [11] adopted the arena

allocation to improve the efficiency of memory allocation,

which enhances performance by aggregating allocations into

larger blocks and freeing allocations all at once. However,

NIC cannot directly access the memory allocated by these

serialization libraries, so one additional copy is still required.

Completely zero-copy serialization during entire RPC. [12]

designed a hardware Zerializer and integrated it into NIC

to achieve zero-copy serialization and improve application

performance. [9] proposed building a zero-copy general se-

rialization library with NIC scatter/gather. A complete zero-

copy serialization is exciting, but it requires the application

memory to be registered on the NIC. It is impractical to

register all the memory of the application on the NIC, which

significantly increases the amount of memory footprint and

causes a big waste. The memory on the NIC is quite limited

and it’s like a cache of the host’s main memory. Registering too

many memory regions will increase the probability of cache

misses, thereby affecting performance. Our solution has a clear

boundary between application memory and registered memory

(between � and � in Figure 3(c)), so these issues do not exist

in our solution.

III. BACKGROUND

Remote Procedure Call. Remote Procedure Call (RPC) has

become an important part of distributed systems since the

1980s [1]. RPC is widely used in many distributed systems,

such as Hadoop, HDFS, and HBase. For instance, the recent

distributed file system, Pangu [13], [14] which was developed

by Alibaba, uses RPC for all its data communication.

With the large-scale deployment of high-performance

RDMA networks [15]–[19], many recent studies have focused

on improving the performance of data communication and

RPC systems in datacenter [20]–[29]. DaRPC [21] is an RPC

library optimized based on RDMA. FaSST [22] is an RPC-

based, fast, scalable distributed transaction system. eRPC [23]
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TABLE I: Performance of Protobuf and FlatBuffers

Serialization Library Message Size (Byte) Time (ms)
FlatBuffers 17,632 3,250

Protobuf 16,116 29,855

is a high-speed, general-purpose RPC library for datacenters.

eRPC can run on RDMA, DPDK and raw Ethernet.

However, all of these works did not take the serialization

process into consideration. In most cases, the application

needs to use a third-party serialization library to serialize the

message, and then write it into the RDMA-supported message

buffer allocated by the message transmission mechanism.

When combined with serialization, the performance of these

message transmission mechanisms will decrease due to the

need for additional memory copy operations.

Serialization Overhead. The overhead of serialization and de-

serialization operations occupies a large proportion of the end-

to-end data exchange, especially for systems that use RDMA.

A recent study [9] indicates that the serialization for a 1024-

byte string by Protobuf adds 43% overhead of eRPC. In the

industrial system [14], it has been observed that using Protobuf

for serialization/deserialization incurs 30% of CPU overhead.

According to Skyway [6], serialization/deserialization ac-

counts for 30% of the execution time in Spark jobs. Naos [30]

shows that when transferring an array of 1.28M objects on

1Gbps, 10Gbps and 100Gbps networks, the time spent on CPU

for serialization/deserialization accounts for 71.4%, 96.4%,

and 99.9% of the total transfer time, respectively. To make

matters worse, as the network becomes faster, the overhead

due to the serialization/deserialization process increases. A

report [5] in 2015 showed that Protobuf accounted for 5%

of total CPU cycles in Google datacenters and we believe

that this proportion is higher nowadays. As network capacity

continues to grow, serialization will easily become the main

bottleneck of RPC in datacenters.

Current Serialization Library. Both Protobuf [3] and Flat-

Buffers [4] are currently among the most commonly used

serialization libraries. For example, Google’s open-source RPC

framework gRPC supports these two serialization libraries. But

compared to FlatBuffers, Protobuf can cause higher perfor-

mance overhead. FlatBuffers stores the serialized data into a

flat binary buffer so that it can access the data without parsing

or unpacking and require no additional memory allocation. But

Protobuf requires converting the message to an object before

accessing the object, and it usually allocates memory for each

object during the deserialization. Therefore, the deserialization

performance gap between these two libraries is quite large.

To verify this, we use the benchmark cpp-serializer [7] to

measure the performance of both Protobuf and FlatBuffers.

The serialized source data is a struct Record made up of

a string vector and an integer vector. As shown in Table I,

although the data serialized by Protobuf is smaller, it costs

significantly more time (nearly 10×). Therefore, FlatBuffers is

a better choice for latency-sensitive applications in datacenters.

For the aforementioned reasons, in this work, we choose

FlatBuffers as a typical serialization library and propose novel

designs to improve its performance.

 When old buffer space is not enough

 Allocate a new buffer

 Copy old data to new buffer

 Free old buffer

Write subsequent data to new buffer

Old buffer New buffer

Fig. 2: FlatBuffers reallocation and copy.

FlatBuffers multi-copy problem. Despite being one of the

best-performing serialization libraries, FlatBuffers still have

some problems in the serialization process. Because Flat-

Buffers cannot predict the size of messages after serializa-

tion in advance, FlatBuffers may require multiple memory

reallocations and copies. When FlatBuffers serializes data, by

default, it will first allocate a 1024-byte buffer. If the serialized

message is larger than 1024-byte, it will reallocate a larger

buffer, copy the data from the old buffer to the new buffer, and

then deallocate the old buffer. If the newly allocated buffer

is still not large enough, it will repeat this process until it

finally meets the memory needs of the message. The process

of memory reallocation and copy is illustrated in Figure 2.

IV. ZFLATBUFFERS

Figure 3(a) shows the multiple memory copies occurring in

the RPC processing with the traditional network stack [12].

The data is first stored in the application’s memory (�), and

then the RPCLib (�) calls the serialization library to pack

the data into a message. Later, the message is copied to the

kernel socket buffers (�), and finally sent out by the NIC (�).

We also show the memory copies of an RPC on a network

that bypasses the kernel (such as RDMA) in Figure 3(b).

The process is similar to Figure 3(a). Although the kernel is

bypassed, the memory allocated by the serialization library is

usually not registered on the NIC, so an additional copy to a

DMA-capable buffer (such as the message buffer of eRPC) is

still required.

As mentioned earlier, in the serialization process of Flat-

Buffers, there are multiple memory reallocations and copies,

which will have a great impact on the performance of serial-

ization. Therefore, in this part, we elaborate on the design of

zFlatBuffers, which eliminates the memory copy during the

serialization process. It efficiently reduces the total amount

of memory allocation and realizes a zero-copy serialization

library.

A. The Key Idea

The key idea of zFlatBuffers is: when the size of the

object to be serialized is larger than the remaining size of

the buffer, we will still allocate a new buffer; but unlike other
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(a) RPC in Traditional Network

App RPCLib

① ② ③

④

DMA-capable Buffer

Network

(b) RPC in Kernel-Bypassing Network

App RPCLib

① ②

③

Network

(c) RPC using zFlatBuffers

Fig. 3: Memory copies in RPC.

         ...         ...Buffer 1 Buffer 2 Buffer N

...

 When buffer 1 space is not enough

 Allocate a new buffer

 Write subsequent data to buffer 2

...

Buffer 1 Buffer 2

Fig. 4: zFlatBuffers buffer reallocation.

existing serialization libraries, the newly allocated buffer does

not directly replace the current one. Instead, zFlatBuffers first

truncates the payload of the current buffer and then splices

the newly allocated buffer after the current buffer logically.

The subsequent serialized data will be written into the newly

allocated buffer. This process is shown in Figure 4. Since

the newly allocated buffer is an expansion rather than a

replacement for the current buffer, this avoids the overhead

of copying data from the old buffer to the new buffer during

the serialization process.

Therefore, unlike FlatBuffers which gets a continuous buffer

after serialization, the final output of zFlatBuffers is composed

of multiple non-contiguous buffers. During the deserialization

process, data needs to be stored in a continuous memory

space, so the non-contiguous output of zFlatBuffers needs to

be moved to a continuous buffer. To achieve this, these non-

contiguous buffers are sent as one message to a continuous

buffer of the receiver.

The memory copy in the RPC process using zFlatBuffers

as the serialization library is shown in Figure 3(c). It shows

that all unnecessary memory copies are eliminated and only

the single essential copy from application memory to RPCLib

is required.

B. Design

To realize the idea discussed above, we modify FlatBuffers

and redesign its buffer hierarchy. Specifically, we divide the

zFlatBuffers Message

Block1
[0,512)

Block3
[0,2048)

Slice1
[0,512)

Slice2
[0,512)

Slice3
[0,1024)

Block2
[0,1024)

Fig. 5: The buffer hierarchy.

buffer into three levels, i.e., Block, Slice and Message. Figure 5

depicts one example of buffer hierarchy.

The block is located at the bottom of the buffer hierarchy.

It is a direct encapsulation of the memory block allocated by

the memory allocator and is registered on the NIC. A block

is an abstraction of a fixed-length buffer.

The slice is located above the block. Since zFlatBuffers

needs to truncate the payload of the current buffer when

inserting a newly allocated buffer, the library must have

the flexibility of dynamically adjusting the length and first

address of the buffer. However, the block is a fixed-length

buffer and cannot be adjusted directly. Therefore, we introduce

slices as views of blocks. The slices are flexible since their

lengths and first addresses can be dynamically adjusted by the

Resize() function. The slice also manages the life cycle of the

underlying block through a smart pointer: the underlying block

will be released when no slice refers to this block. Therefore,

the slice is an abstraction of the variable-length buffer.

The message is located at the top of the buffer hierarchy, and

it is the final output of zFlatBuffers. The output message from

zFlatBuffers contains a list of slices, which combine multiple

non-contiguous variable-length buffers to form a complete

message.

The hierarchical relationship between block, slice and mes-

sage is shown in Figure 5. There are 3 blocks, 3 slices and

1 message. This message contains 3 slices, slice 1 refers to

all 512 bytes of block 1, slice 2 only refers to the first 512

bytes of block 2 and slice 3 refers to the first 1024 bytes of

block 3. Because slices may only use part of the block, there

is a waste of memory space allocated by zFlatBuffers. Yet, the

total memory allocation of zFlatBuffers is still less than the

original FlatBuffers. We discuss this in more detail in § VI-A.
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C. Implementation

FlatBuffers serializes data through the FlatBufferBuilder

class, and FlatBufferBuilder uses the vector downward class

as a buffer for storing data. vector downward implements the

basic function of std::vector, but vector downward expands

from high address to low address.

The next three functions in vector downward constitute

the key operations of the buffer: 1) make space() expands

the buffer by len bytes and returns a pointer to the first

address; 2) pop() shrinks bytes to remove bytes from the end

of the buffer; and 3) data at() returns the address of the

offset. vector downward will reallocate the buffer when the

remaining space in the buffer is insufficient, and then copy

the data to the newly allocated buffer.

FlatBufferBuilderFlatBufferBuilder
- buf_: vector_downward
...

vector_downwardvector_downward
- buf_: uint8_t *
...
+ make_space(size_t len): uint8_t *
+ pop(size_t bytes_to_remove): void
+ data_at(size_t offset): uint8_t *
...

FlatBufferBuilderFlatBufferBuilder
- buf_: vector_downward
...

vector_downwardvector_downward
- buf_: BackwardBufferBuilder
...
+ make_space(size_t len): uint8_t *
+ pop(size_t bytes_to_remove): void
+ data_at(size_t offset): uint8_t *
...

BackwardBufferBuilderBackwardBufferBuilder

- slices_: Slice[]
- offsets_: size_t[]
...
+ MakeSpace(size_t len): uint8_t *
+ Pop(size_t bytes_to_remove): void
+ DataAt(size_t offset): uint8_t *

Before After

Fig. 6: The class graph.

We need to re-implement the above functions to make sure

the serialization is zero-copy when constructing the message

buffer. We develop BackwardBufferBuilder class to build the

message buffer. The member variable of the BackwardBuffer-

Builder class contains an array of slices, which can represent

multiple pieces of non-contiguous memory. The Backward-

BufferBuilder class implements the above three functions on

multiple buffers. We use BackwardBufferBuilder to replace

the original continuous buffer in the vector downward and re-

implement the make space, pop and data at operations based

on it. The overall relationship is shown in Figure 6.

These three operations of BackwardBufferBuilder may in-

volve multiple buffers, so they are different from the original

implementation of vector downward.

Expand/Shrink Buffers. BackwardBufferBuilder member

function MakeSpace() implements the function of

make space() to expand buffers. MakeSpace() follows

the basic idea of zFlatBuffers. If the remaining space of the

current buffer is less than the number of bytes that needs

to be expanded, then MakeSpace() will truncate the current

buffer and expand the space on the newly allocated buffer.

BackwardBufferBuilder::Pop() shrinks buffers and is the

reverse process of MakeSpace(). If the current buffer is less

than the number of bytes that need to be removed, then Pop()
function will continue to pop the buffer from slices array

until enough bytes are removed.

Access Data. BackwardBufferBuilder::DataAt() implements

a modified version of data at() function. FlatBufferBuilder

sometimes needs to access the data in the buffer during the

serialization. Hence, it uses the offset to refer to the data

and data at() converts the offset to the actual address. The

data at of vector downward is an operation with a constant

time complexity because it only needs to do one calculation

according to the buffer address and the offset parameter.

However, the DataAt() of BackwardBufferBuilder involves

multiple buffers, which makes the management challenging.

To overcome this, we store the offset of the tail of each slice,

and then find the slice corresponding to the specified offset

through binary search. However, this increases the algorithm

complexity of the DataAt() operation from O(1) to O(logn),
where n is the number of slices in the message buffer.

Optimization for Accessing Data. The complexity of

DataAt() becomes O(logn), which will increase the serial-

ization overhead. We observe that the fundamental reason

why FlatBufferBuilder uses data at() to access the data is

that when there is memory reallocation, the pointer to the

data in the buffer may become invalid. On the contrary,

in BackwardBufferBuilder, the allocated buffer will not be

replaced by the newly allocated buffer, so the pointer to the

data in the buffer is not likely to be invalid and there is no need

to use offset. In FlatBufferBuilder, both vtables and shared

strings are referenced using offsets. We replace these indirect

references via offsets with direct accesses via pointers, which

significantly reduced the need for using the DataAt() operation.

V. SYSTEM INTEGRATION

In this section, we describe how we integrate zFlatBuffers

with the RPC systems. The key challenge is that the data

needs to be stored in a contiguous memory space during

deserialization while the output of zFlatBuffers consists of

multiple non-contiguous buffers. To overcome this, we need

to send the output of zFlatBuffers as one message to the con-

tiguous memory on the receiver. Currently, most common RPC

systems only support the transmission of messages containing

one buffer, which makes the integration with zFlatBuffers

rather challenging. In the following, we detail how we resolve

these issues. Note that Unreliable Datagram (UD) and Reliable

Connection (RC) are the two typical transport modes of

RDMA. We take eRPC [23] and zRPC (the RPC system we

built based on RC) as examples to introduce how to use UD

and RC to transmit zFlatBuffers messages, respectively.

A. eRPC

eRPC [23] is currently one of the best open-source RPC

frameworks in academia. eRPC uses UD to transmit messages

and the UD message size cannot exceed the MTU, so the CPU

needs to split the message into packets and send them to the

network. The receiver restores them in order accordingly.
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Packet1
1024B

Split message at sender Restore message at receiver

Packet3
1024B

Packet1
1024B

Packet2
1024B

Packet3
1024B

Message
3072B

Buffer
3072B

Message
3072B

Buffer
3072B

Packet2
1024B

(a) The original eRPC

Message
3072B

Buffer1
1536B

Packet1
1024B

Packet2
512B

Split message at sender Restore message at receiver

Buffer2
1536B

Packet3
1024B

Packet4
512B

Packet1
1024B

Packet2
512B

Packet3
1024B

Packet4
512B

Message
3072B

Buffer
3072B

(b) The modified eRPC

Fig. 7: The message transmission process of eRPC.

We try to reuse the transmission mechanism of eRPC, but

the problem is that the message buffer of eRPC contains only

one contiguous buffer, so the message sent by eRPC can only

have a contiguous buffer. Therefore, we modify the struct

msg buffer of eRPC and re-implement its member functions

to enable it to contain multiple buffers.

The eRPC transmission process before and after our modi-

fication is shown in Figure 7. We demonstrate the process of

transmitting a 3072B message, and the MTU is 1024 Bytes 1.

Originally, the message buffer of eRPC could only contain

one buffer, and eRPC divides this single buffer into three

packets, as shown in Figure 7(a). After our modifications, the

message buffer of eRPC can have multiple buffers. As shown

in Figure 7(b), the message buffer is composed of two non-

contiguous buffers of size 1536 Bytes each. The sender divides

the buffers one by one, and finally divides the message into

four packets and sends them. After receiving these network

packets, the receiver restores them to a message made up of

only one continuous buffer. We enable eRPC to send non-

contiguous buffers as one message through these modifications

so that zFlatBuffers can be combined with eRPC.

B. zRPC

zRPC is an RPC framework we built to cooperate with

zFlatBuffers. zRPC uses Boost Asio [31] to handle task

scheduling, which is a cross-platform C++ library for network

and low-level I/O programming. Different from eRPC, zRPC

is based on RC, as RC has the advantages of high throughput,

low latency and low CPU overhead. zRPC uses RDMA

SEND/RECV verbs to send messages. The message size of

RC is not limited by the network MTU, so the CPU does not

need to split the message into packets and then restore it.

1The message buffer of eRPC contains packet headers, here we ignore this
detail for brevity.

Message
3072B

Buffer1
1536B

Buffer2
1536B

Network Message
3072BNIC

Gather

Fig. 8: Message Gathering in zRPC.

RDMA has good support for the scatter/gather functions,

which enables the NIC to read data from multiple local buffers

and write the data to a single remote buffer, or read data from

a single local buffer and write the data to multiple remote

buffers. RDMA uses sge to represent scatter/gather elements,

which holds a pointer to a registered memory block. When

transmitting zFlatBuffers messages, zRPC will construct sges

based on the slices of the zFlatBuffers message, and then use

the scatter/gather function to directly transmit the message

composed of non-contiguous buffers. As shown in Figure 8,

when transmitting a message made up of two buffers, zRPC

gathers these two buffers together by the NIC and sends the

message to the network.

C. Memory Registration

The memory allocated by original serialization libraries

is not registered on the NIC, so the message needs to be

completely copied to the registered memory after the seri-

alization (i.e., the copy from � to � in Figure 3(b)). We

directly transmit the buffers of zFlatBuffers, which requires

the memory of zFlatBuffers to be registered on the NIC.

To overcome the time-consuming RDMA memory registra-

tion, RDMA-based RPC systems usually adopt some methods

to reduce the overhead. For instance, memory is registered in

batches to amortize the overhead and Linux HugePage [32]

is also used to reduce page table entries. Both eRPC and
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zRPC allocators use these approaches as well. The difference

is that eRPC’s HugeAlloc is just a rudimentary allocator, while

zRPC’s rmalloc is modified based on the general-purpose

allocator mimalloc [33]. We replace the memory allocator of

zFlatBuffers with the allocator used by the corresponding RPC

system so that the output messages of zFlatBuffers can be

directly transmitted through the RPC system.

VI. EVALUATION

Configuration. The machine we use in the experiments

is equipped with 2 Intel(R) Xeon(R) Silver 4110 CPU @

2.10GHz with 8 cores, 256GB of memory, and a Mellanox

ConnectX5 100Gbps NIC. The RDMA protocol in the exper-

iments is RoCEv2 and the MTU is set to 1024 Bytes.

Structure. § VI-A shows the performance of zFlatBuffers

and the details of the memory allocation of FlatBuffers and

zFlatBuffers. § VI-B shows the comparison between eRPC

with zFlatBuffers and eRPC with the original FlatBuffers.

§ VI-C compares zRPC with zFlatBuffers and zRPC with the

original FlatBuffers. § VI-D shows the performance of a real

application integrated with zFlatBuffers.

Summary of results. When the size of the message to

be serialized is large, the serialization performance of zFlat-

Buffers exceeds the original FlatBuffers by 7.6%-72%. After

combining with zFlatBuffers, the throughput of both eRPC

and zRPC has been improved. Specifically, the throughput of

eRPC has increased by 11.2%-33.7% while the throughput of

zRPC has increased by 5.8%-53.6%. For a real key-value store

application, eRPC reduces the median latency by 8% and the

99th-percentile latency by 5%.

A. zFlatBuffers

We use cpp-serializers [7] to test zFlatBuffers and Flat-

Buffers, which is a benchmark for comparing serialization

libraries. We set the number of iterations as 1,000,000. The

serialized source data is a struct Record containing a string

vector and an integer vector. The size of the string and integer

is equal, i.e., if the size of the source data is 1024 Bytes, the

sizes of the string and integer are both 512 Bytes.

As shown in Figure 9, the serialization time of zFlatBuffers

is obviously lower than that of FlatBuffers. As the message

size increases, the gap between these two libraries becomes

larger. This is because the overhead from memory reallocation

and copy of FlatBuffers becomes higher with the increase in

the message size. For instance, for the source data sizes of

1,024B, 16,384B and 65,536B, zFlatBuffers can decrease the

serialization time by 7.6%, 22.3% and 72%, respectively.

Later, we zoom into the memory allocation process. Specif-

ically, when the source data size is 16,384B and 65,536B,

Figure 10(a) and Figure 10(b) reveal the number of memory

allocations required during serialization. Note that we omit the

case when the source data size is 1,024B because it only needs

one or two allocations.

Finally, the statistics of allocation and copy are listed in

Table II. The total allocation size of FlatBuffers is twice that

of zFlatBuffers. The reason is the inefficient buffer usage

of FlatBuffers and it requires more allocations to meet the

memory requirements. When a new buffer is allocated, Flat-

Buffers needs to copy the old data to this new buffer before

the remaining space can be used. The data in the previously

allocated buffer becomes useless and needs to be released. In

contrast, with zFlatBuffers, all the space in the newly allocated

buffer can be used to write new data. It splices the newly

allocated buffer directly after the current buffer, without the

need to copy the old data into the new buffer. The experimental

results show that zFlatBuffers reduces the serialization time by

7.6%-72% according to different message sizes.

B. zFlatBuffers with eRPC

We combine zFlatBuffers and the original FlatBuffers with

the eRPC system, and compare the performance of these two

systems. We use two machines for the experiments, one as a

client and one as a server. The client will first serialize the

message and then send it as a request to the server. When

receiving the request, the server will respond with an ACK.

After the client receives the ACK, it will re-serialize the

message and send it again. This ping-pong process repeats

continuously.

We adjust the number of concurrent requests so that the

eRPC system achieves the maximum throughput or the mini-

mum latency. The results of throughput and latency are shown

in Figure 11(a) and Figure 11(b), respectively. Figure 11(a)

shows that the throughput of eRPC first increases and then

decreases. In theory, the throughput of eRPC should increase

monotonically with the increase of message size until it

encounters a network bottleneck. However, with the growing

message size, the overhead of serialization will also increase,

resulting in a decrease in throughput. Both zFlatBuffers and

FlatBuffers conform to this trend. Compared to FlatBuffers,

as the message size increases, the optimization effect of

zFlatBuffers on eRPC becomes increasingly significant. The

results show that when the message size is larger than 1K,

zFlatBuffers increases the throughput of eRPC by 11.2% to

33.7% and reduces the latency of eRPC by 3% to 18%.

C. zFlatBuffers with zRPC

We redo the above ping-pong experiment but with zRPC

system in this part. We give a detailed comparison of the

system performance with zFlatBuffers and FlatBuffers.

As shown in Figure 12(a), zFlatBuffers increases the

throughput of zRPC by 5.8% to 53.6% with different message

sizes. We also show the multi-threaded scenario of zRPC

when the message size is 131,072B, in Figure 12(b). The

results demonstrate that the RPC system with zFlatBuffers

can achieve better scalability. The throughput of zRPC with

zFlatBuffers reaches the peak, which is mainly constrained by

the NIC capacity, when the number of threads is 3. On the

contrary, zRPC with FlatBuffers can only achieve comparable

throughput when the number of threads is 7.

Later, we combine the normalized throughput of eRPC

and zRPC with zFlatBuffers, and the results are depicted in

Figure 13. We take the throughput of the RPC system with
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Fig. 10: Memory allocation during serialization.

TABLE II: Memory Allocation

Library Source Data Size Size after Serialization Allocations Number Total Allocation Size Total Copy Size
FlatBuffers 1,024B 1,152B 2 2,560B 1,024B
zFlatBuffers 1,024B 1,152B 1 1,280B 0B
FlatBuffers 16,384B 17,952B 8 52,800B 32,944B
zFlatBuffers 16,384B 17,952B 5 24,320B 0B
FlatBuffers 65,536B 71,712B 12 184,112B 116,064B
zFlatBuffers 65,536B 71,712B 8 98,048B 0B
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the original FlatBuffers as the baseline. For example, when the

message size is 256 Bytes, the normalized throughput of eRPC

with zFlatBuffers is 95.77%, indicating that the throughput of

eRPC with zFlatBuffers is 95.77% of the eRPC with the orig-

inal FlatBuffers. The performance improvement of eRPC with

a small message is negligible, mainly because the reallocation

and copy do not occur yet with such a small memory footprint.

As the message size increases, the improvement becomes more

significant. When the source data size is 65,536 Bytes, the

performance improvement on zRPC exceeds 50%. Moreover,

we also find that the performance of zRPC is generally better

than eRPC. We attribute it to the RC transport mode of RDMA

in zRPC. With RC mode, NIC packetizes the message and

reduces the CPU overhead compared to the UD transport of

RDMA. In contrast, eRPC with UD transport consumes more

CPU cycles during transmission and the CPU is apt to be

overwhelmed, which degrades the overall performance.

D. Full-system benchmark

We apply zFlatBuffers to the real key-value store in this part.

Raft [34] is an election-based distributed consensus protocol.

A leader is elected between candidates to handle requests from

clients. [23] combines eRPC with LibRaft [35](an open source

implementation of Raft on GitHub) and implements a 3-way

replicated in-memory key-value store [36]. We reproduce this

experiment and add a serialization step to the communication

between the client and server. A client randomly generates a

256 Bytes key and a 1024 Bytes value. Later, it serializes the

key and value, and sends them out as a PUT request to the

leader. After receiving the request, the leader deserializes it

and obtains the contents of the key and value.

Table III shows the request latency of the client with

no serialization, FlatBuffers, and zFlatBuffers. We set the
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TABLE III: Latency comparison for replicated PUTs

System Median 99%
eRPC with no serialization 15.47μs 21.53μs

eRPC with FlatBuffers 21.19μs 27.09μs
eRPC with zFlatBuffers 19.49μs 25.67μs

eRPC performance with no serialization as the baseline. The

latency with FlatBuffers and zFlatBuffers is increased by 37%

and 26%, respectively. Compared to FlatBuffers, zFlatBuffers

cuts the median and 99th-percentile latency by 8% and 5%,

respectively.

VII. CONCLUSION

The RPC serialization can dominate the communication

time in large-scale distributed systems. To mitigate the prob-

lem, we propose a simple and efficient message serialization

approach, zFlatBuffers, to eliminate expensive memory copies

and achieve an ideal zero-copy transmission. Specifically, we

redesign the buffer hierarchy in the RPC serialization library,

which utilizes the three-layer hierarchy to support multiple

non-contiguous buffers. Moreover, we propose and implement

a series of novel memory management approaches to achieve

fast memory allocation/deallocation/address location. We also

integrate zFlatBuffers into the existing UD-based eRPC system

and RC-based zRPC system. The experiments show that

zFlatBuffers improves eRPC and zRPC throughput by up to

33.7% and 53.6%, respectively.
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