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Abstract—Cloud network serves a large number of tenants and
a variety of applications. The continuously changing demands re-
quire a programmable data plane to achieve fast feature velocity.
However, the years-long release cycle of traditional function-fixed
switches can not meet this requirement. Emerging programmable
switches provide the flexibility of packet processing without
sacrificing hardware performance. Due to the trade-off between
performance and flexibility, the current programmable switches
make compromises in some aspects such as limited memory/com-
putation resources, and lack of the capacity to realize complicated
computation. The programmable switches can not satisfy the
demand for network services and applications in production
networks. We propose a framework that leverages host servers
to extend the capability of network switches quickly, accelerates
new feature deployment, and verifies new ideas in production
networks. Specifically, to build the unified programmable data
plane, we propose essential design and implementation challenges
including a programming abstraction that allows automatically
and effectively deploying network functions on switch and server
clusters, allocating traffic to fully utilize the server resources, and
supporting flexible scaling of the system. The quick deployment
of self-defined functions in a realistic system has verified the
feasibility and practicality of the proposed framework.

I. INTRODUCTION

With the rapid growth of diverse applications and users,
the cloud datacenter requires fast feature velocity to meet
the customers’ rising demands. Traditional high performance
networking devices such as switches and routers process
packets based on standardized protocols. However, the data
plane algorithms usually can not be changed after the device
has been built [1]. The update of these fixed-function devices
is provided only by vendors, which is hard to meet the newly
bloomed requirements with regard to the years-long release
cycle of switch ASICs.

Programmable data planes allow users to define their own
data plane algorithms, which offers great flexibility for net-
work customization [1]–[5]. Compared with the fixed-function
switches, the programmable switches allow parsing new fields
of packets and deploying customized protocols in a short
time. Cloud network operators have successfully deployed
the programmable switches to improve the capacity of cloud
network gateway [6]. However, it does not fill the gap between
customers’ increasing demands and limited hardware capa-
bilities, such as the fixed capacity of memory, computation
and processing resource, the inefficient computation capability
[6]–[9]. For example, in order to count packets belonging to
the same message on the switch, it is hard for the current
programmable switch to understand the content in the packet

headers (”send first, send middle, send last”) as well as other
application-aware measurements. On the other hand, we also
meet the requirement of verifying the effectiveness of new
network functions, such as in-network computing/aggregation
[10], in production networks. Therefore, in practice, we need
a solution for quickly implementing users’ requirements in
production networks and rapid prototyping of new protocols.

To this end, we propose and implement CLIP, a general
framework to overcome the limitation by on-loading parts of
the new network feature to servers in datacenters, which offers
scalable memory and computation capacity. Designing such a
heterogeneous platform is challenging due to the difference
between the technologies of devices. This difference is in
expressiveness, flexibility and performance. The switch ASIC
and server should interoperate and compensate each other
for performance and flexibility to make seamless network
functions deployment.

To address the challenges, we first propose a framework like
the simplified remote procedure call (RPC), enabling remote
processing through the switch data plane (§III-B). To simplify
the programming, we design a top framework including a
pre-processing module running on the switch, an on-loaded
request handler running on servers, and a post-processing
module running on the switch (§III-C). It helps users define
the network features with the co-operations of heterogeneous
devices. We implement a tool suit including a compiler and
a controller. The compiler generates the executable file for
the switch and remote processor by the user-defined program
(app.p4c). The controller manages the content of the table
using the remote runtime API [11]. We apply multiple servers
to balance the traffic to maintain high throughput across
concurrent high-speed channels/links. And a load balancer
runs at the programmable switch to relieve the burden of the
servers and maintain the scalability (§III-D).

We implement a prototype of CLIP and evaluate it in the
testbed consisting of a Tofino-based programmable switch and
servers (§V). We demonstrate the use of CLIP through the
practical requirements in the production network, including
the network function of state-heavy NAT and the new feature
of overlay network measurement through active TCP re-
transmission detection. For example, the considered overlay
network measurement requires identifying the retransmission
packets of specified flows to determine the root cause of
network delay jitter. The detection of retransmission packets
is not supported by the current programmable switches due
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Fig. 1. Network Function Deployment.

to the limited size of buffers and hard to maintain the state
of TCP connections. However, by using CLIP we successfully
deploy this feature in the experimental environment which has
demonstrated and verified the effectiveness of designs.

The contributions of this paper are summarized as follows:

• We address the gap between the growing demands of
customers and slow hardware function provision at the
data plane. CLIP combines the programmable switches
with a cluster of commodity servers to provide a flexible
programmable data plane.

• CLIP introduces the framework to ease the deployment
of new functions by effectively partitioning the network
functions to switch and servers. It provides the program-
ming interfaces to boost the deployment. It is scalable to
the dynamic traffic by balancing the load to servers and
maintaining the heavy tasks to switch.

• CLIP achieves fast feature velocity to satisfy the urgent
demand of customers in the production networks within
a short time. CLIP introduces a new approach to pro-
totyping the verification of new network functions in the
realistic system, which is important for the cloud network
service providers in practice.

II. BACKGROUND

In this section, we briefly summarize the hardware and
software design of the programmable network architecture.
And then we point out the motivation of this work, which
focuses on enabling remote processing. Finally, we explain
why the current solutions can not satisfy our requirements.

A. Software Network Function

Cloud providers have been deploying software-based net-
work functions due to the flexibility, e.g., disaggregated soft-
ware routers [12], [13] applied at the cloud gateway and
the basic architecture is shown in Figure 1(a). They leverage
software-based data plane programming models such as VPP
[14], Click [15], FastClick [16], and make effort to customize
network equipment without compromising performance.

Limitation. However, with regard to the switch device, the
general-purpose CPU have remained an order of magnitude
slower than switching chips (up to Tbps) without pipelining
and parallelism. And at the price of achieving the same
throughput, the commodity server has a relatively higher cost
[7] than the switch.

B. The Rise of Programmable Switch

The programmable switch consists of a software-based
control plane and a programmable data plane. The pipeline of
a programmable data plane is usually divided into three parts,
i.e. Parser, Match-Action and Deparser. The switch realizes
packet processing starting from extracting the header fields and
getting the metadata in the Parser. The header and its metadata
are sent to Match-Action Units to be processed by lookup logic
defined by users. At Deparser, the original packet body will be
appended to the new header to assemble the complete packet.
Domain-specific language: The data planes can be defined by
users through domain-specific language [2], [17], in a way that
is similar to software development. Programming protocol-
independent packet processors (P4) is currently the most
widespread model for data plane programming, supported
by various software- and hardware-based target platforms. It
defines the following two programmable functionalities [2].
Match-action processing: Packet processing is abstracted as
a generic pipeline consisting of match-action tables. When the
packet traverses the pipeline, it matches table entries by keys
and performs actions. The developer can define the packet
process logic and the match-action table elements.
Stateful packet processing: Stateful memory can maintain
state across packets, such as tables, registers, counters and
meters. The registers can be read and updated during packet
processing. Thus, the numerous novel in-network applications
leverage the registers to cache data or perform primitive
computations at data plane [9], [10], [18]–[20].

C. The Restrictions of Programmable Switch

In comparison with the traditional fixed-function switches,
the programmable switches allow flexible packet processing
in data plane, which means a shorter development cycle and
fewer costs to develop new functions. It is hard to deploy
the network function on the programmable switch in a large-
scale production environment [6]–[8]. The widely concerned
restrictions lie in limited memory, primitive computation, and
narrow control channel.

First, the limitation of on-chip memory makes large-
scale features hard to deploy. Stateful processing plays an
important role in network systems, allowing applications to
store and retrieve data across different packets. The packet
header vector (PHV) carries the information from headers and
metadata (temporary values or intermediate results) passing
through the pipeline. The size of PHV about 200 bytes is
enough for traditional protocol processing but becomes the
restriction for the functions requiring more values or operating
on the packet contents [8], [21]. The register arrays and match-
action tables are arranged into physical stages of the pipeline.
The amount of data stored in all stages is limited ranging
from tens to hundreds of megabytes. Furthermore, resources
are under-utilization for the placement constraints [8], [22].
The actual stored data is less than the specification.

Existing works [6], [7] make an effort to extend the pro-
grammable switch memory. As shown in Figure 1(b), TEA
[7] extends one match-action table by requesting processing



entries from remote memory and does the exact match-
action operation for all traffic at switch ASIC. They focus on
network functions that require large-scale match-action tables
but slightly concentrate on PHV, analyzable header length and
register capacity.

Second, the computation ability throttles the more novel
applications. A wide range of novel applications (e.g., stateful
load balancing [9], in-network caching [19], in-network ag-
gregation [10]) are enabled at the programmable networks to
improve performance and reduce cost by offloading specific
action from servers. However, the action execution supports
only a small set of simple ALU operations on integers but not
floating-point values. The supported operations are addition,
subtraction, bitwise operations and comparison, which is suf-
ficient for packet processing, but not enough for more novelty
applications. For example, the machine learning acceleration
[10], [18] uses the on-chip memory to aggregate (i.e., perform
addition on) the float-point gradients but scarifies the precision.
Besides the primitive operator limitation (same as action
execution), using a register has to strictly obey the template
of computation, stored value and arguments width, leading to
application deployment hindrances.

Last, the programmable model limits communication-
intensive functions. To guarantee the pipeline processing
within nanoseconds, the programmable model extracts the
match-action operations from network processing and leaves
the relatively complex processes to the control plane. The
communication between data plane and control plane is critical
for function deployment. Taking the network measurement
as an example, the more data collected and reported by the
data plane, the more precise the network status analysis can
be. However, the channel between ASIC and CPU processor
is designed to process occasional control plane traffic (L2
address learning, etc.). Its bandwidth is fixed and lower than
the ASIC’s per-port, which can not support higher traffic
rates without hardware modification [7]. The frequency of
interaction through the narrow channel must be considered
when deploying features.

D. Motivation

Though the programmable switch aims to network process-
ing flexibility, there are restrictions for function deployments.
We exploit hardware software co-design to achieve fast feature
velocity for the switch. As shown in Figure 1(c), our basic
prototype is a programmable switch connecting with a cluster
of commodity servers. The cluster of commodity servers rather
than a single server furnishes abundant memory and flexible
computation resources. To achieve this design, we address the
challenges as follows:

How cooperate heterogeneous processors to extend the
programmable switches? Though the P4 programmable
model can run at the servers [23], [24], it not only conducts
less performance than the hardware switch but also limits pro-
gramming flexibility. Different languages should be adopted
to express the functions flexibly. Writing distributed programs
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manually is tedious and laborious because the developers have
to explicitly define and manage the cooperation [24], [25].

How to access the memory and utilize the computation
resources of the server without hardware modification?
Existing switch ASICs lack abstractions for inter-program
communication mechanisms such as remote procedure call
(RPC) [26]. Requesting remote processing through the switch
control plane causes an unpredictable performance problem
due to limited channels. The request sending from switch
ASIC is feasible but requires considering many details, such as
intermediate value transmission, which affect the performance.

How do we partition the traffic among the switch
and servers to compensate for performance and support
scalability? There is a performance gap of multiple orders of
magnitude between the programmable switch and the general-
purposed processor for both latency and throughput. It must
guarantee that remote processing is not the bottleneck to
throttle the throughput of the switch. To address this problem,
the straightforward way is sending only partial packet data or
a fraction of packets to remote processing. Sending part of
packet data is infeasible because the switch ASIC is hard to
buffer large volume packets to wait for the remote processing.
Dispatching a fraction of packets to servers should guarantee
the consistency between flow and its state. The remote servers
as the supplement of the switch should be scalable.

In a nutshell, enabling remote processing is not only sending
and receiving packets between a switch and servers but also
the fine-grained function partition, state synchronization and
the trade-off between performance and flexibility.

III. CLIP DESIGN

To accelerate features deployed, we propose CLIP, a cross-
platform system to cooperate with the switch and commodity
servers. Based on CLIP, the application can be deployed at
the programmable switch with the help of remote servers.

A. System Overview

The CLIP architecture is illustrated in Figure 2. We uti-
lize the commodity servers (CS) directly connected to pro-
grammable switches (PS) as a basic topology. To simplify
cross-platform programming, users can define their network
function at a user-defined program (app.p4c) using the CLIP
framework. According to the user-defined program, the CLIP
compiler generates the executable files for switch ASIC



(app.bin) and remote processors (app.out), respectively. The
app.bin is installed through the switch control plane while the
app.out is installed into servers. The controller initializes the
device to prepare the runtime environment and monitor the
device status. At runtime, this controller manages the content
of the switch table using the remote P4Runtime API [11].

To minimize the cost of remote processing, CLIP enables
the switch to directly request processing like RPC through
its data plane without the involvement of the control plane.
Though the procedure is defined, cross-platform programming
is still hard for task orchestration such as route isolation
for normal traffic and request packets. The compiler further
generates the base control flow, request/response packet, and
the forwarding module deployed at the switch. Besides, to
prevent the server throttle the performance, we design a load
balancer deployed at switch to relieve the burden of servers.

B. Remote Resource Accessing

The current switch ASIC communicates with control plane
by redirecting packets to the switch CPU or reporting a digest
with little information. After receiving packets or digests, the
switch control plane can request remote processing using the
traditional RPC mechanism. It can draw support from the
remote resource while facing the following problems:

Unpredictable latency. The switch control plane does not
directly connect to a server for isolation demand: The switch
CPU and ASIC access the network through different links and
devices to isolate the control plane network from the data plane
network for device management and maintenance. The switch
control plane has a management port through which managers
can access this device remotely. For the control plane, only this
management port can send and receive the RPC messages.
However, the RPC message has to traverse multiple hops net-
work before arriving at the server. Furthermore, other control
messages that maintain the network running also share the
links with RPC messages. The path length and network status
are out of control leading to the latency being unpredictable.

Throughput bottleneck. Channels bandwidth (Switch-ASIC
to Switch-CPU and Switch-CPU to Server-CPU) limits the
processing efficiency. The channel between switch-ASIC and
switch-CPU is designed to process occasional control plane
traffic (L2 address learning, etc.). Its bandwidth is fixed at
about one hundred Gbps while the switch ASIC can process
several Tbps traffic. The channel bandwidth from Switch-
CPU to Server-CPU is also one hundred Gbps. Once the
traffic exceeds the capacity of the channel, it becomes the
bottleneck of remote processing. Furthermore, for packets
required to be processed by remote processors (e.g., the length
of requisite data exceeds the PHV capacity), the packet has to
be encapsulated into the RPC message as neither the control
plane nor the data plane of the switch can store a large number
of packets. The large RPC message transmission exacerbates
the throughput problem.

To address the above problems, CLIP enables the communi-
cation between switch ASIC and server from data plane chan-
nel. Inspired by RPC mechanism, the switch ASIC directly

sends the original packet with the request parameters (called
request packet) and receives the modified packet with the
returned value (called response packet). The switch data plane
takes over the request packet encapsulation, sending and the
response packet reception, parsing, etc. The request/response
packet goes through the data plane channel between switch-
ASIC and server-CPU. The overall procedure does not require
the involvement of switch control plane.

C. Network Features Definition and Deployment

Based on the above capability, we consider how to arrange
the new feature at heterogeneous devices. Several questions
arise like how to partition the NF, what parts of NF should
run at remote processor or local ASIC, and how to fully utilize
the resource at both PS and CS. It is hard to build a universal
model for diverse NFs [1], [8]. According to the performance
and flexibility of heterogeneous PS and CS frameworks, we
comprehend two principles: 1) PS is efficient at packet match-
action, and 2) CS has rich resources in terms of memory
and computation, which can realize complicated computation
and resource-consumption tasks. To this end, we can partition
the function into three parts, i.e., a pre-processing partition, a
request handler and a post-processing partition. To fully utilize
the capacity of hybrid devices, the top framework definition
is shown as follows.

1 /* Top layer control flow */
2 control pipeline(inout header hdr, inout metadata md){
3 pre_processing pre; post_processing post;
4 request req; response res;
5 bool flight;
6 apply {
7 pre.apply(hdr, flight, req);
8 /* Call the remote procedure */
9 if (flight) remote_handler(req, res);

10 post.apply(hdr, res); }}

The pipeline in line 2 defines the control flow of a packet
processing where the packet header and intermediate values
(metadata) as the input and output parameters. To make full
use of remote resource flexibility, we allow P4 language em-
bedding with C language to define the cross-platform program
with the suffix p4c. The pre processing and post processing
in line 3 are P4-defined parts running at the switch data
plane while the remote handler in line 9 is a C-defined part
at general-purposed processors. The request and response
defined in line 4 are two parameter lists that can be quoted
in remote handler and post processing, respectively. They
indicate the cross-platform communication data for packet
processing. To reduce the burden of the server, the flight flag
can be assigned at pre processing in line 7 to filter packets
requiring remote processing. An example of the state-heavy
SNAT [7] using this framework is shown in Appendix A.

The top framework implies the partitions of a program ex-
ecuting, i.e., the remote handler executed after pre-processing
and before post-processing. However, the switch ASIC can not
suspend and wait for the remote processing in the middle of
the pipeline. To make this framework work seamlessly, there
are three parts should be designed:
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• The control flow. The P4 program has to distinguish the
response packets from the original traffic, and then de-
cide that executes the pre-processing, post-processing, or
requesting remote process. The flight flag also influences
the control flow. If the control flow is defined carelessly,
it may form a path loop between the switch and servers.

• Parameters transmission. It generates request/response
packet headers that store and transmit the parameters and
intermediate values. The header format differs for diverse
network functions, affecting remote processing efficiency.

• The forwarding module. It provides network traffic rout-
ing and server selection, and isolates the routes between
the regular traffic and the request packets. In addition,
it should guarantee the consistency of flow and its state
when the server group scales.

Writing this cross-platform program manually is tedious and
error-prone, so we design a compiler to automatically generate
the executable programs under the top framework. The control
flow is shown in Figure 3. It distinguishes the original packets
and request/response packets and decides on incoming packet
processing. The flight flag and packet header type decide for
each packet which path it goes through. The fast path ( 1⃝∼ 5⃝)
is the packet path only for PS local processing, while the slow
path ( 1⃝, 2⃝, 6⃝∼11⃝, 4⃝, 5⃝) is for remote processing.

The parameters of the remote request are piggybacked by
the packet. The parameters are assembled as the Ethernet
packet payload like the IP header and are identified by the
Ether type field. The load type value is copied from the
original Ether type to identify the original Ethernet payload
when removing the request header. The request header also
carries the options to accelerate the handler processing. For
example, the ”parsed len” indicates the switch has parsed the
”parsed len” bytes, and the server can parse the header starting
from ”parsed len”-th byte. In addition, if the response header
length differs from the request header, the remote processing
has to do an extra packet copy to scale this packet buffer,
which slows down the processing. We align the request and
response header to avoid this extra packet copy.

The key design is the forwarding module. The regular traffic
out of CLIP may adopt L3 routing or L2 forwarding. And
it should select a server for the request packets. Therefore,
the request packet forwarding should be isolated from regu-

lar packets. We leverage the Equal-Cost Multi-Path (ECMP)
group of L3 Route and add the servers as members of a specific
ECMP group. For packets with the flight flag, we assign the
group id for them before routing so that the packet can be
processed at a CS. The scaling problem is explained in the
next section.

D. Auto-scaling of Server Group

To deal with the dynamic workloads, we use multiple
servers to improve the throughput of the platform. To effec-
tively utilize the server resources, we address two problems:
(1) How to relieve the processing burden of servers? (2) How
to deal with the traffic if current servers can not process it?

Strawman solution. The straightforward way is introducing
a load balancer at the switch to distribute the traffic to servers.
It should keep the affinity between packets and their states
if the server group member changes. Existing stateful load
balance mechanisms [9] enable connection consistency at
the programmable switch by recording the per <connection,
server ID> mapping, which offers effective load balance.
Other conventional distributed hashing schemes such as con-
sistent hashing [27] and rendezvous hashing [28] partition the
hash tables and maintain numerous <bucket range, server ID>
mappings, which consume non-negligible on-chip memory
space. Besides, though the flow-based traffic is distributed
evenly across servers (i.e., each server processes the same
number of flows), the skewing flows with a large number of
packets lead to server cores being unbalanced [6].

Relieving burden of servers by automatic flow re-
placement. Match-action table plays an essential role in the
P4-defined program and is the most precious resource. We
construct the mirrored table generated according to the switch
match-action table (called the original table) structure. The
mirrored table running at servers has the same function as the
original one to extend the capacity1. For the functions that
only require memory expansion (i.e., part traffic without the
requirement of remote processing), CLIP leverages the switch
capacity to evict the heavy-hitter traffic from servers to balance
the loads. All table entries are distributed among mirrored
tables by default. As all traffic goes through the switch, we
implement a small count-min sketch at the switch to count
packets for arrived flows and report the top-N flows regularly.
The top-N flows are the most resource-consuming for the
general-purposed processors, so we leverage the original table
running at the switch to handle them, reducing the burden on
the mirrored table. The corresponding table entries of selected
top-N flows are pushed from the mirrored table to the original
one to replace the aged flow entries.

Server group scaling without traffic halting. For the
increasing workloads requiring remote processing, the fixed-
size server group may not provide enough resources to process
all packets. We propose the dynamic adjustment of server

1The CLIP compiler automatically generates the mirrored table according
to the user-defined P4 table. The CLIP controller manages two tables using
the Runtime API as P4 defined and identifies which table entries are loaded
by the original or mirrored table, respectively.
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group membership to dynamically adjust the capacity. In
detail, we dispatch new flows into light-load servers while the
existing flows into their original server. With the requirement
fluctuation, we can increase or decrease the member of the CS
group to adjust system capacity without stopping traffic.

The pivotal problem is how to guarantee the consistency
of flow and its states when the group member changes. A
flow-based ECMP is implemented to dispatch traffic among
the server group and the flow states are produced and main-
tained by the server handling the first packet. Changing group
member leads to the flow re-dispatching and then the flow-
state mismatching. Recording the destination for each flow is
memory-consuming. And it is complex for state synchroniza-
tion through migrating states among servers, e.g., stopping or
buffering traffic until the states migrating finish. Notice that
if the subsequent packets of a flow can find their first packet
destination, we can avoid state synchronization. Therefore, we
use a small on-chip memory to maintain the group member for
flows arriving at different times like a snapshot. The cost of
creating a snapshot for each flow is non-trivial, so we picture
the group membership and the arriving flows before the group
updating. The procedure is illustrated as follows. We mark a
CS group with a version ID as the membership changes at
time point Ti. The newest group is called Gi and the previous
one is called Gi−1. The flows arrived during Ti and Ti−1 are
ECMPed into the one group of Gi−1 while flows arrived after
Ti are distributed into the newest group Gi.

The next problem is how to distinguish the new flows from
the arrived flows during Ti and Ti−1 with a little memory
consumption. We leverage the bloom filter (BM) to record
the existing flows and identify the new flows2. But only one
BM can not support flow identification for a period of time
as explained in Appendix B. We consider multiplexing the
BM0 and BM1 to alternately identify the flow arrived over a
period of time. As shown in Figure 4, before updating the new
group member Gcur, the control plane set a register cur(cur ∈
{0, 1}) to (cur+1)%2 that indicates the current group ID. We
define operations on BM for packet arrival to elaborate this
procedure:

• update: altering the flow corresponding bits as 1.
• lookup: looking up the flow corresponding bits to identify

whether a packet belongs to an existing flow. If does, it
returns y. Otherwise, it returns n.

2BM is a probabilistic data structure that indicates the element either
definitely is not or may be in the set. Its basic data structure is a multi-way
bit vector and can do read-check-write in one cycle.

When the packet misses the <Flow ID, CS ID> mapping
table, it checks the value of a register cur(cur ∈ {0, 1}). If
cur = 0, it updates the BM0 and lookup BM1. If the lookup
result is y, which indicates this packet belongs to an existing
flow, it selects a destination from G1. Otherwise, it selects a
CS from G0 as the destination. However, before updating the
cur from 0 to 1, BM1 should be cleared to record the arriving
flows for the next interval. And the destination of flows that
arrived before the last cur updating is lost if BM1 is cleared.
To solve that, for the traffic not to rely on remote processing,
we push them to switch by inserting corresponding entries into
the switch. For the non-offloaded traffic, we buffer the <Flow
ID, CS ID> at the switch data plane before the BM is cleared.
There is a time interval to record the unexpired entries so the
number of recorded items is reduced.

IV. APPLICATIONS

Through two examples we demonstrate the benefits of using
CLIP for the operation of cloud networks to quickly respond
to customers’ requests.

State-heavy Source Network Address Translation
(SNAT). It is a network function where the internal traffic
shares a public IP to access the external network. When
receiving internal traffic, SNAT allocates a source IP address
and port pair and rewrites the packet header. It remembers the
mapping of the existing connection to the pair and forwards
the subsequent packets using this mapping. This state-heavy
network function requires much memory to store the address
translation mapping. We leverage the CS memory to supply
sufficient space to store NAT mappings. Due to the match-
action table only can be updated by the control plane and the
CPU-ASIC channel bottleneck as mentioned in section §II, we
use the remote handler to perform address-port pair allocation.
Thus, the mappings are generated at CS and installed at CS
or PS according to the min-sketch selection.

Overlay Network TCP Retransmission Detection (TRD).
When network congestion occurs, the TCP packet may be
dropped, leading to retransmission. Thus, TCP retransmission
can signal that overlay network gray failure happens as it is
sensitive to the changing of the network environment. It is
hard for the switch data plane to maintain the states of TCP
connection, e.g., established or disconnected status. Besides,
the sequence number of TCP flow should be maintained and
updated at the data plane to probe the retransmission even
in time. The register array supports this operation but is
indexed by an integer rather than the connection id. The hash
computation can translate the connection id to an integer but
introduces mistakes as the hash collision leads to allocation
overlap of different connections.

We leverage CS to maintain the states and allocate a unique
register index for each connection. We assign or release the
register index and update the connection status by forwarding a
request that carries a packet with TCP control flags (SYN, FIN,
etc.) via the switch ASIC. The response takes the allocated
index and connection status back to the switch to update the
corresponding register.
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Fig. 5. Performance without application deployed. The ”Ideal” shows all
traffic traverse the switch.

V. EVALUATION

In this session, we evaluate CLIP on the testbed to answer
the following questions.

(1) What is the overhead of the remote processors? Do we
maintain throughput by the load balancing among multiple
servers? (§V-B)

(2) How to use the CLIP framework to deploy new features?
Compared with the software implementation, how much the
performance benefits of CLIP-based function? (§V-C)

(3) What is the ASIC on-chip resource consumption by
offloading forwarding modules through CLIP? (§V-D)

A. Experiment Setup.

Testbed setup. The testbed consists of a Wedge 100BF-
32X 32-ports programmable switch with a two-pipeline Bare-
foot Tofino P4 ASIC and three servers. The network interfaces
of the switch are configured to run at 40Gbps, by aggregating
four 10Gbps network channels. Each server has Intel Xeon Sil-
ver 4110 CPUs (2.10GHz, 8 cores) and a Mellanox ConnectX-
5 NIC. Servers run Ubuntu 18.04 with Linux kernel version
4.15. All three servers are connected by the switch via 40
Gbps links. We dedicate two servers to the remote servers and
run DPDK version 21.05. DPDK-pktgen [29] is deployed at
one server whose one port binds a core to generate the packets
and the other binds a core to receive.

Work loads. We use two public realistic packet traces
and synthetic traffic. One real trace is from an existing data
center network [30]. Though its IP addresses are anonymous
and payloads are removed, its flow distribution is available
for evaluation. And the other is the web search trace [31]
including PCAP files around 100G. Its payload is available
for trace replaying. The synthetic traces follow the Zipf
distribution regarding the number of packets per flow based on
the datacenter measurement works [30], [32]. We inject those
traces using DPDK-pktgen at the packet generator.

B. Microbenchmarks.

Forwarding Capacity. The general-purposed processors are
introduced to process part of traffic to improve flexibility.
Compared with traditional RPC through the control plane,
forwarding through the data path has predictable latency and
avoids being limited by the channel bandwidth between the
switch control plane and the data plane. Notice that the remote
processor introduces extra latency and lower throughput than
the switch. Multiple CSs are adopted to improve performance.
We evaluate the throughput and latency of the hardware-
software cooperation platform. We first force all packets to
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Fig. 6. Performance improvement with offloading under the randomly
selecting and count-min sketch.

traverse the switch only, which indicates the performance
upper bond or ideal situation (packet generating rate up to
upper bound). As shown in Figure 5(a), for packets from
512 to 1024 bytes, one CS can achieve performance near the
upper bound since software-based processing is packet-based.
It can process a fixed number of packets per second. With the
packet size increasing, we achieve higher throughput (Gbps).
For packets of large size, the bandwidth is the bottleneck
instead of the CPU. For smaller packets, the CPU becomes
the bottleneck that impacts the processing rate of both the
generator and remote servers. The parallel CSs can improve
the throughput of small packets.

Figure 5(b) demonstrates the latency distribution. We inject
10000 packets of random size to measure the forwarding
latency. With CSs involved, 90% packets can traverse the
platform within 16µs. The remote processing introduces an
extra latency of about 9µs for 90% packets. Prior work TEA
[7] costs about 2µs to expand ASIC memory. Compared with
it, the extra 9µs latency lets us expand not only the memory
but also the computation resource.

Flow selection efficiency. The heavy-hitter traffic rapidly
throttles the performance. CLIP automatically mitigates the
heavy traffic from servers to reduce the servers’ burden. We
evaluate the effectiveness of the operation by generating pack-
ets of 64B with different flow size distributions. α indicates
traffic skewness following the Zipf distribution.

Figure 6 indicates the throughput under two offloaded flow
selection schemes: random (w/ R) and count-min sketch (w/ S)
with different skewness. The baseline (non-offloading) shows
that more skewing traffic leads to lower throughput as the load
imbalance occurs frequently. The randomly selected offloading
helps to improve the performance at less skewing (α = 0.5
and α = 0.8). But it is hard to choose the accurate heavy
loads with regard to serious skewing traffic (α > 0.9). The
count-min sketch selects heavy loads more efficiently and is
able to improve the throughput by 2.38x - 3.39x.

Capacity adjustment. To validate that the CS group mem-
bership change would not disrupt the traffic processing, we
monitor the throughput of server-1, server-2 and the whole sys-
tem during the membership transition from one group (server-
1) to another (server-2). We inject four sets of flows with
different transmission rates, start and stop time to simulate
real-world traffic. As shown in Figure 7, we first send flow
set-1, set-2, and then set-3, set-4 at around 15 sec with the
same rate (about 1 million packets per flow set per second).
Finally, we stop sending set-1 at around 31 sec.
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TABLE I
THE AVERAGE LATENCY OF NETWORK FEATURE.

Network Feat. CLIP w/o offload CLIP w/ offload Software-based

SNAT 26.42 8.84 23.16

As shown in Figure 7, all traffic is initially routed to server-
1 until the group is changed to server-2 at around 15 sec. The
newly arrived flows (set-3 and set-4) are distributed to server-
2, while the flows reached before membership change (set-1
and set-2) are still sent to server-1. If another change happens,
it triggers the redirection of the remained flows on server-1
(set-2) to be offloaded to switch. The destination of flow set-3
and set-4 is still server-2. While the bottom figure indicates
that the overall throughput fluctuates very slightly during the
changes of backend server.

C. Network Features Deployment

CLIP can accelerate existing software middleboxes such as
NAT, Load Balancer, and Firewall. Those middleboxes have a
similar processing model: applying for entries from the control
plane and doing match-action with high speed for particular
flow ID, five-tuples, destination IP, etc. The main problem
with deploying them to programmable switches is the on-
chip memory limitation. We evaluate SNAT performance as a
representative and compare it with the current software design.

Feature performance. We run a SNAT implemented using
FastClick [16] at one CS. For a fair comparison, both SNATs
run at the same server and use one core. TCP retransmission
detection is a new feature without the public software real-
ization as we know. We evaluate network feature performance
in terms of throughput and latency. Table I shows the latency
of CLIP with and without count-min sketch offloading. Com-
pared to software-based SNAT, the latency of CLIP-based has
reduced near to 62% with offloading.

We replay two real packet traces from data center and
a websearch application with our best transmission rate to
evaluate the throughput. The payload and IP addresses of
the data center trace have been anonymized. We utilize the
traffic header and append payload for the packet to 64 bytes to
simulate the traffic distribution of data center. The websearch
trace has anonymous IP addresses but a valid payload, which
helps inject the actual packets for evaluation. And it has
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TABLE II
THE ADDITIONAL RESOURCE USAGE OF SYSTEM

Resource Selecting Scalability Forwarding

Match Crossbar 0.33% 0.59% 1.88%
SRAM 3.75% 0.83% 2.08%
TCAM 0 0 0.35%
VLIW Instruction 0.52% 2.08% 1.82%
Hash Bits 0.68% 1.37% 4.06%

greater throughput than one from data center for a bigger
packet size. As shown in Figure 8, CLIP achieves near to 2x
throughput with offloading. And it is the potential to realize
higher performance if the traffic generator does not limit the
sending rate.

D. Resource Consumption

We evaluate how much ASIC resource is consumed only by
CLIP based on the P4 compiler’s output. Table II shows the
resource consumption of throughput-intensive traffic selection
(count-min sketch), Scalability and Forwarding module. We
observe that there are plenty of resources remaining to imple-
ment other functionality on the ASIC along with CLIP. The
SRAM and Hash Bit consume the most in a short time for
the scale of entry. The selecting module is made of registers
that are deployed at SRAM. Thus, its SRAM space usage
depends on the total number of count-min size, and in this
evaluation, we set 1024 2-way count-min sketch. Besides, it
consumes some other amount of TCAM, VLIW instruction,
and hash bits, all less than 5%. The scalability module and
the forwarding module consume SRAM and hash bits to store
metadata and resolve the bucket. The forwarding module uses
the TCAM to support LPM lookup. As the Scalability module
shares the hash calculation with Forwarding, its occupation
about the hash bit is under 2%.

VI. LIMITATIONS AND DISCUSSION

Availability. The potential concerns are server failures or
link saturation that may lead to remote request loss. The
next step is studying a well-designed mechanism to maintain
availability. For example, the server triggers flow control and
back-pressure to guarantee a lossless network when the queues
are near saturation.

Cost of Remote Processing. The remote computation cost
comes from the latency and available port count. The latency
is irreparable as part of the packets traverse the extra two hops.
We argue the gained feature velocity is beneficial as the trade-
off of latency. The overall available port count decreases as
small portions connect the servers. We can scale in to leave
more ports by reducing the servers in section §III-D.



Plugging Various Remote Resources. Although the current
design of CLIP offers the programmable switch the ability
of remote processing at connecting servers, we can extend it
to support other remote programmable resources like FPGAs.
But more considerations in the production environment such
as runtime environment and hardware programming expertise
of FPGAs should be taken, which lost part of the agility and
generality of CLIP.

VII. RELATED WORKS

Network Function Offloading. Virtual Network functions
(VNFs) were originally proposed to enhance the scalability
and availability of traditionally standalone hardware appli-
ances like [33]–[35]. The hardware middleboxes were partially
or fully replaced by the server cluster [13], [36], [37]. To serve
the cloud-scale volume of traffic, NFs have been accelerated
using programmable switches, FPGAs, or smart NICs to
reduce the cost of CPU-based design [6]–[8], [38].
Programmable Dataplane Limitations. Improving the net-
work’s programmability is the cloud network trend. One
typical case is the introduction of a programmable switch
which enhance the adaptability of commodity switches [13],
[32]. However, the specific hardware makes a trade-off among
performance, resources and flexibility. It leads to restrictions
affecting the deployment of functions in the production net-
works. Some works [6], [7], [39] extend and excavate the
match-action tables but slightly concentrate on PHV, analyz-
able header length and register capacity. P4All [22] defines
elastic data structures and interprets them into the native P4
program to improve expressiveness. But primitive computation
limitations, such as float computation, exist. Other works con-
centrate on other restrictions. For example, IPSA [21] intends
to achieve online updating for the programmable switch by
rebuilding its architecture.
Heterogeneous platforms cooperation. Considering combin-
ing the strengths of different programmable hardware, some
works [8], [24], [25], [40] design the architecture, language,
compiler, or toolchains to help cross-platform cooperation.
Gallium [8] translates the existing C++/C-defined middleboxes
into separating programs running in the programmable switch
and the server. It focuses less on new feature deployment
limitations and the performance gap of heterogeneous plat-
forms. Flightplan [24] aims to automatically disaggregate a
P4 Program into ASIC, FPGA and CPU. Lyra [25] designs
the cross-platform language and compiler for heterogeneous
ASICs of the switch. Both limit the function expressiveness
in P4 or NLP [17] defined behaviors.

VIII. CONCLUSION

In this paper, we explain our practice to enable data plane
programmability. Motivated by the flexibility of software
network functions, we propose to use the common server
cluster to extend the capacity of network switches quickly.
Given the requirements of network customers, which can
not be processed by current commodity switches or pro-
grammable switches with limited resources, we forward the

packets to server clusters with packet processing functionality.
By so doing, the proposed framework is able to provide
a rich-resource environment. To meet the performance and
complexity challenges, we introduce balancing the traffic to
multiple servers and carefully dividing the network functions
to fully utilize the resource in both hardware switches and
software functions on servers. Finally, we demonstrate some
applications of leveraging a programmable data plane.
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APPENDIX

A. Example
We explain our design by taking SNAT as an example.

Some details are omitted for simplicity. The C/C++ defined
and CLIP-defined SNATs are shown as following, respectively.
1 void snat() {
2 FLOW_ID flow_id = pkt->get_flow_id();
3 VALUE *value = nat_table.lookup(flow_id);
4 if (value == NULL) {
5 value = allocation(flow_id);
6 nat_table.insert(flow_id, value); }
7 pkt->set_snat(value);
8 pkt->send(); }

1 /* Define parameters */
2 request {flow_id}; response {sub_addr; src_addr};
3 /* Define functions deployed at CS */
4 void remote_handler(request req, response res){
5 res = mirrored_flow_table(req.flow_id);
6 if (res == NULL){
7 res = allocation(req.flow_id); }}
8 /* Define P4 program deployed at PS */
9 control pre_processing(inout header hdr, out bool flight,

out request req) {
10 table nat_table = {
11 req.flow_id : exact;..}
12 apply {
13 req.flow_id = hdr.tuple5;
14 if (nat_table.apply().miss) flight = true; }}
15 control post_processing(inout header hdr, in response res)

{
16 hdr.src_addr = res.sub_addr; }
17 /* Top layer control flow is same as section III-C*/
18 control pipeline(inout header hdr, inout metadata md){ ..}

B. New Flows Identification
Suppose a sequence of packets < pa1 , p

b
2, p

a
3 , p

b
4, p

c
5..., p

m
s >

arrive at time t1, ..., ts, where pms indicates the arrival of s-
th packet in flow fm(m ∈ {a, b, c}). The group membership
changes at t′(t1 < t′ < t2). The BM executes update operation
at t1 and, therefore, records fa. At time t2 and t3 after t′, it
performs lookup operation that identifies the pb2 belongs to a
new flow while the pa3 belongs to an existing flow at t′. Notice
that from time t′, the BM should not execute update operation.
If does, a mistake is made, because the latter arrived pb4 will be
identified as a packet belonging to existing flow for time t′. If
the BM does not execute update operation after t′, the records
of new flows (f b and f c) are lost, leading to flow identification
being invalid when the next membership changes.
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