
Variable-length Encoding Framework: A Generic
Framework for Enhancing the Accuracy of

Approximate Membership Queries

Haipeng Dai, Hancheng Wang, Zhipeng Chen, Jiaqi Zheng, Meng Li, Rong Gu, Chen Tian, Wanchun Dou
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, Jiangsu 210023, CHINA

haipengdai@nju.edu.cn, {hanchengwang, zhipengchen}@smail.nju.edu.cn,

{jzheng, meng, gurong, tianchen, douwc}@nju.edu.cn

Abstract—Approximate membership query (AMQ) data struc-
tures can efficiently indicate whether an element exists in a data set.
Therefore, they are widely used in data mining applications such as
IoT streaming data mining, anomaly detection, duplicate detection,
record linkage, and community discovery. The data amount to
be processed in real-world applications often changes frequently
and dynamically. Thus, before using the AMQ data structures, it
is necessary to configure their capacity to the maximum number
of elements that will be stored during runtime. We observe that
when the number of elements stored in an AMQ data structure
is lower than its capacity, a significant amount of space is wasted,
making the false positive rate much higher than expected. To
tackle this problem, we propose the variable-length encoding
framework. It dynamically adjusts the encoding length of each
element according to the number of elements stored in the AMQ
data structure. Based on this design, the variable-length encoding
framework can make full use of the memory space allocated
to AMQ data structures, thereby improving the space efficiency
and reducing the false positive rate. In addition, as a general
encoding scheme, the variable-length encoding framework can be
widely used in different types of AMQ data structures. Theoretical
analysis and evaluation results show that AMQ data structures
using the variable-length encoding framework have significantly
lower false positive rates compared with state-of-the-art AMQ
data structures. For example, when the load factor is 25%, the
variable-length encoding framework can reduce the false positive
rate of AMQ data structures by 88.15% on average (up to
99.40%).

Index Terms—probabilistic data structure, approximate mem-
bership query, false positive rate, cuckoo filter

I. INTRODUCTION

A. Motivation and Problem Statement
AMQ data structures are ubiquitous. Approximate mem-

bership query (AMQ) data structures (e.g., Bloom filters [1],

cuckoo filters [2], quotient filters [3], and their variants [4]–

[16]) are a type of compact probabilistic data structures. AMQ

data structures can approximately indicate whether an element

exists in a set. Specifically, if the element e exists in the set, the

lookup operation of the AMQ data structures always returns

that the element e exists. Conversely, if element e does not

exist in the set, AMQ data structures’ lookup operations return

with probability ε that element e exists. By allowing one-sided

errors (i.e., only false positives and no false negatives), AMQ

data structures store the encoding of the partial information

(e.g., fingerprints) instead of the raw value of the element.

This approach can achieve a trade-off between the space

consumption and the false positive rate, that is, the average

space consumption per element is O(log(1/ε)) bits. In this

sense, compared with directly storing original data, AMQ

data structures are more space-saving. Therefore, AMQ data

structures are widely used in applications that need to process

massive data, such as anomaly detection [17], [18], duplicate

detection [19], [20], record linkage [21], community discovery

[22], entity linking [23], streaming data mining [19], [24]–

[27], web data mining [28], big data mining [29]–[31], and

spatio-temporal data mining [21], [32], [33].

Problem statement. We observe that for the above applica-

tions, the data amount that needs to be processed by applications

often changes dynamically. Therefore, before using the AMQ

data structures, it is necessary to configure their capacity to

the maximum number of elements that will be stored during

runtime. This inevitably results in much space unused in the

AMQ data structure when the number of stored elements is less

than the capacity. Specifically, assuming that the space allocated

to an AMQ data structure is M , when the number of inserted

elements n is much smaller than the capacity of the AMQ

data structure, the space occupied by each element (denoted as

l1) is much smaller than its allocated space l2 =M/n. This

problem leads to the underutilization of the allocated space,

making the false positive rate of AMQ data structures much

higher than that when the l2 bits are fully utilized for each

element. In summary, when the number of elements stored in

the AMQ data structure is less than the capacity, the space

efficiency is low, resulting in a high false positive rate.

Tackling this problem is important. Tackling this problem

can reduce the false positive rate of AMQ data structures

and make approximate membership queries more accurate.

Furthermore, tackling this problem can reduce the overhead of

eliminating false positives in systems using AMQ data struc-

tures, which is very important for improving the performance

of data mining systems using AMQ data structures [12], [16],

[30], [32], [34]–[36].

B. Limitations of Prior Art
The existing AMQ data structures mainly use a fixed-length

encoding scheme to store partial information. For example,

cuckoo filters encode each element as an lf -bit fingerprint.

61

2023 IEEE International Conference on Data Mining (ICDM)

DOI 10.1109/ICDM58522.2023.00015

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

M
in

in
g

(I
C

D
M

) |
 9

79
-8

-3
50

3-
07

88
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
D

M
58

52
2.

20
23

.0
00

15

979-8-3503-0788-7/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2024 at 02:18:35 UTC from IEEE Xplore. Restrictions apply.

Bloom filters generate k hash values for each element. Such

AMQ data structures gradually consume the memory space

allocated to them as the elements are inserted. Obviously, for

an AMQ data structure using a fixed-length encoding scheme,

when the number of elements stored in the data structure is

significantly lower than its capacity, a large amount of space

is unutilized in the data structure. Note that although we can

use resizing technique to avoid allocating too much space for

AMQ data structures at one time and improve space efficiency,

frequent expansion and contraction will reduce the throughput

and increase the false positive rate. To alleviate this problem, we

propose a light-weight solution, i.e., by adjusting the encoding

length of each element according to the number of inserted

elements, the AMQ data structures can make full use of all

the memory space allocated.

C. Proposed Approach
We propose a framework that can improve the space

efficiency and reduce the false positive rate of AMQ data

structures. This encoding framework stores as much encoding

of the partial information as possible for each element by

making full use of all the memory space allocated. This design

enhances the space efficiency and reduces the false positive rate

of AMQ data structures. We name this encoding framework

as the variable-length encoding framework. For AMQ data

structures with a dynamic number of elements, using this

framework can significantly enhance their accuracy.

Specifically, the core mechanism for reducing the false

positive rate of AMQ data structures by using the variable-

length encoding framework is as follows: (i) When the number

of elements stored in the AMQ data structure is small, the

variable-length encoding framework stores additional encoding

of the partial information for each element by using an encoding

length longer than that used in the fixed-length encoding

scheme. Therefore, even when the AMQ data structure contains

a small number of elements, the variable-length encoding

framework can fully utilize the allocated memory space.

(ii) As the number of elements in the AMQ data structure

increases, to accommodate newly added elements, the variable-

length encoding framework can gradually compress previously

inserted elements by shortening them to the encoding length

used in the fixed-length encoding scheme. This design can

reduce the false positive rate without reducing the total capacity

of the AMQ data structure.

The encoding length for each element stored in AMQ data

structures using the variable-length encoding framework is

always not less than that in AMQ data structures using the

fixed-length encoding scheme. Therefore, the variable-length

encoding framework can store the encoding of additional

partial information for each element, thereby reducing the false

positive rate of the AMQ data structure. We will theoretically

analyze the impact of the variable-length encoding framework

on reducing the false positive rate in Section V.

D. Key Technical Challenges
The first technical challenge is how to implement the variable-

length encoding framework without incurring a large computa-

tional overhead. AMQ data structures are a type of lightweight

data structures. Usually, AMQ data structures perform millions

to tens of millions of insertion, lookup, and deletion operations

per second [2], [37]. For such high-throughput data structures,

the additional computational overhead will significantly affect

their throughput. Thus, it is difficult for the variable-length

encoding framework to reduce the false positive rate of AMQ

data structures without affecting the throughput. We mitigate

the impact of the variable-length encoding framework on the

throughput of AMQ data structures by using bit manipulation

instructions to accelerate the variable-length encoding and

decoding process.

The second technical challenge is how to extend the variable-

length encoding framework to various AMQ data structures.

Different AMQ data structures have different designs. Thus,

it is challenging to propose a framework that can commonly

improve the performance of different AMQ data structures. The

design of the variable-length encoding framework can be widely

applied to various AMQ data structures because it is based on

the common mechanism of different AMQ data structures. In

Section II, we divide existing AMQ data structures into two

categories and illustrate how these two categories of AMQ

data structures use the variable-length encoding framework.

E. Key Contributions
We have four main contributions:

(1) We have an observation that when the number of inserted

elements in the AMQ data structure is lower than its capacity,

there is a lot of space waste, which in turn increases the false

positive rate. Furthermore, we also analyze the constraints of

the existing work.

(2) We propose a variable-length encoding framework that

can commonly improve the space efficiency of different types

of AMQ data structures, reducing the false positive rate of

AMQ data structures. The variable-length encoding framework

adjusts the encoding length according to the number of inserted

elements in the AMQ data structures, making full use of the

memory space allocated to the AMQ data structures.

(3) We theoretically analyze the false positive rate of AMQ

data structures using the variable-length encoding framework.

Furthermore, we set the parameters of the variable-length

encoding framework by using the conclusions drawn from

the theoretical analysis.

(4) Experimental results show that the AMQ data structures

using the variable-length encoding framework have significantly

lower false positive rates compared with state-of-the-art AMQ

data structures. For example, when the load factor is 25%,

the variable-length encoding framework can reduce the false

positive rate of AMQ data structures by 88.15% on average

(up to 99.40%).

62

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2024 at 02:18:35 UTC from IEEE Xplore. Restrictions apply.

111
e

(a) Gathered approach-based
AMQ data structure

1 1

e

1
(b) Scattered approach-based
AMQ data structure

Fig. 1. Example of inserting element e using two different types of AMQ
data structures.

II. VARIABLE-LENGTH ENCODING FRAMEWORK

In this section, we introduce the overall scheme of the

variable-length encoding framework and describe how to apply

it to different types of AMQ data structures.

The variable-length encoding framework is a generic frame-

work that can improve space efficiency and reduce the false

positive rate of AMQ data structures. By adjusting the encoding

length of elements based on the number of inserted elements,

the variable-length encoding framework can better utilize the

allocated memory space to reduce the false positive rate.

Specifically, (i) When the number of elements stored in the

AMQ data structure is small, the variable-length encoding

framework stores additional encoding of the partial information

for each element by using a longer encoding length for

each element. Therefore, the allocated memory space can be

effectively utilized even if only a small number of elements

are inserted. (ii) As the number of elements in the AMQ data

structure increases, the variable-length encoding framework

compresses previously inserted elements to accommodate newly

added elements. This design avoids reducing the total capacity

of the AMQ data structure.

We will describe how to apply the variable-length encoding

framework to different types of AMQ data structures in Sections

III and IV in detail. Specifically, as shown in Figure 1, the

existing AMQ data structures can be divided into two categories

according to how partial information is stored: gathered

approach-based AMQ data structures and scattered approach-

based AMQ data structures. (i) The gathered approach-based

AMQ data structures (e.g., cuckoo filters and their variants)

encode elements into fingerprints. The partial information

for each element is gathered in memory. (ii) The scattered

approach-based AMQ data structures (e.g., Bloom filters) map

each element to k different memory addresses. The partial

information for each element is scattered in memory. The two

types of AMQ data structures have different ways of storing

the encoding information. Therefore, they have differences

in how the variable-length encoding framework is used. The

variable-length encoding framework can be employed in both

types of the above AMQ data structures, because the variable-

length encoding framework leverages the common features of

the AMQ data structures to reduce their false positive rate.

III. GATHERED APPROACH-BASED AMQ DATA STRUCTURES

Gathered approach-based AMQ data structures mainly in-

clude cuckoo filters and their variants. This type of AMQ

data structures approximately represents elements by encoding

0001000000000

1000000000001

1000001000002

1001000000003

0000000000004

Number of inserted
elements

Bits highlighted in gray
are flag bits for indicating
the number of elements
in the bucket; bits in
white are used to store
the fingerprint.

Fig. 2. An example of the encoding scheme when inserting a varying number
of elements into a bucket. Each bucket has four slots, and each slot has three
bits. The highest bit (highlighted in gray) of the first three buckets is used to
indicate the number of elements in the current bucket, and the other bits (white
part) are used to store the fingerprints of inserted elements. For example, when
there is only one element in the bucket, a 9-bit fingerprint can be stored. In
addition, when there are four elements in the bucket, the first three fingerprints
are arranged in an increasing order to avoid encoding conflicts when the
number of elements in the bucket is less than 4.

elements into fixed-length fingerprints and storing them in a

hash table. As shown in Figure 1, unlike Bloom filters, which

store each element in k different locations, this type of AMQ

data structures stores each element in a slot. Therefore, we

name this type of AMQ data structures gathered approach-based

AMQ data structures.

Gathered approach-based AMQ data structures have a three-

level storage structure of hash tables, buckets, and slots. A hash

table consists of a series of buckets, where elements sharing

the same hash index are stored in the same bucket. A bucket

consists of a series of slots, and each slot can store a fingerprint.

For gathered approach-based AMQ data structures, when the

number of fingerprints stored in the bucket is less than the

bucket capacity, there are unutilized empty slots within the

bucket. After using the variable-length encoding framework

for this type of AMQ data structures, even if only one element

is inserted to the bucket, all the slots in the bucket will be

occupied. Therefore, the variable-length encoding framework

makes full use of the space in the bucket to store more

information for each element. To achieve the above goals,

firstly, the variable-length encoding framework needs to support

encoding and decoding fingerprints with different lengths. Then,

the variable-length encoding framework needs to employ the

above encoding and decoding schemes in the insertion, lookup,

and deletion operations of AMQ data structures. Next, we will

introduce the above designs in turn.

Encoding and decoding schemes. For gathered approach-

based AMQ data structures, if there are b slots in each bucket

and each slot has lf bits, each bucket has b · lf bits. For

simplicity, we will take four slots per bucket as an example to

illustrate our design (Figure 2). Note that the variable-length

encoding framework also works for buckets with a different

number of slots. We use four slots per bucket as an example

because four slots per bucket is a typical setup for such AMQ

data structures [2], [37], [38]. Next, we illustrate the encoding

and decoding schemes when inserting different numbers of

elements into buckets with four slots.

(1) When there is no fingerprint inserted to the bucket, we set

the highest bit of the first three slots to 0, 1, and 0. Therefore,

if the highest bit of the first three slots are 0, 1, and 0 during

decoding, it means that there is no fingerprint in the bucket.

(2) When there is one fingerprint inserted to the bucket, we

63

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2024 at 02:18:35 UTC from IEEE Xplore. Restrictions apply.

set the highest bit of the first three slots to 1, 0, and 0. The

remaining bf − 3 bits in the bucket can be used to store this

fingerprint. Therefore, if the highest bit of the first three slots

are 1, 0, and 0 during decoding, it means that there is one

fingerprint inserted to the bucket, and this fingerprint is stored

in the remaining bf − 3 bits in the bucket.

(3) When there are two fingerprints inserted to the bucket,

we set the highest bit of the first three slots to 1, 0, and 1. The

two fingerprints in the bucket are sequentially stored in the

remaining bf − 3 bits in the bucket, that is, each fingerprint

occupies (bf − 3)/2 bits. Therefore, if the highest bit of the

first three slots are 1, 0, and 1 during decoding, it means that

there are two fingerprints inserted to the bucket, and each

fingerprint occupies (bf − 3)/2 bits.

(4) When there are three fingerprints inserted to the bucket,

we set the highest bit of the first three slots to 1, 1, and 0. The

three fingerprints in the bucket are sequentially stored in the

remaining bf − 3 bits in the bucket, that is, each fingerprint

occupies (bf − 3)/3 bits. Therefore, if the highest bit of the

first three slots are 1, 1, and 0 during decoding, it means that

there are three fingerprints inserted to the bucket, and each

fingerprint occupies (bf − 3)/3 bits.

(5) When there are four fingerprints inserted to the bucket,

the number of fingerprints in the bucket reaches its capacity.

We store the four fingerprints in the four slots respectively, and

then adjust the order of the fingerprints in the first three slots

according to the fingerprint value to ensure that the fingerprints

in the three slots are arranged in ascending order. Obviously,

the highest bit of the first three slots can only be 000, 001, 011,

or 111. These four values do not conflict with any previous

encodings. Therefore, if the highest bit of the first three slots

is one of 000, 001, 011, and 111 during decoding, it means

that there are four fingerprints inserted to the bucket, and each

slot is an lf -bit fingerprint.

To sum up, when the number of elements in the bucket is

less than 4, we set the highest bit of the first three slots to

special values to identify the number of fingerprints in the

current bucket. When the number of elements in the bucket

is 4, by adjusting the order of the fingerprints, we ensure that

the highest bit of the first three slots do not conflict with the

special values when the number of elements is less than 4. The

above encoding scheme only uses the bits in the buckets, and

can distinguish buckets with different numbers of fingerprints

without requiring additional memory space. Furthermore, the

above encoding scheme can be extended to cases where the

number of slots in each bucket is not four. Specifically, we set

the highest bit of a slot to a special value when the number

of fingerprints in the bucket is less than the number of slots.

When the number of fingerprints is equal to the number of

slots, we can obtain the number of fingerprints in the bucket

by adjusting the order of the fingerprints to ensure that they do

not conflict with the above special values. Note that using the

above encoding and decoding schemes to improve accuracy

will incur additional computational overhead. We use PEDP

and PEXT bit manipulation instructions to speed up the reading

and writing of fingerprints, avoiding excessive performance

degradation (Section VI).

Next, we will take cuckoo filters as an example to illustrate

how to apply the above design to the existing AMQ data

structures. Note that our encoding-decoding scheme is orthog-

onal to cuckoo filters. Therefore, the variable-length encoding

framework can also be applied to other gathered approach-

based AMQ data structures. In addition, the variable-length

encoding framework does not require modifications to the

insertion, lookup, and deletion mechanisms of the AMQ data

structures. Therefore, the variable-length encoding framework

can be easily applied to existing AMQ data structures.

Insertion. For standard cuckoo filters, each element has two

candidate buckets, i.e., i1 and i2. For an element e, if the bit

length of its fingerprint is lf , the fingerprint of the element

(denoted as f) and two candidate buckets (denoted as i1 and

i2) can be calculated as follows.

f = fingerprint (e) mod 2lf . (1)

i1 = hash (e) ; i2 = i1 ⊕ hash (f) . (2)

In the cuckoo filters using the variable-length encoding frame-

work, the bit length of the fingerprints changes dynamically.

To ensure that the two candidate bucket indexes of an element

do not change with the bit length of the fingerprint, we use the

low lf bits of the variable-length fingerprint when calculating

the candidate bucket indexes. Note that lf is the shortest bit

length to which variable-length fingerprints can be compressed.

Therefore, for an element e, if its variable-length fingerprint is

f ′, and the bit length of f ′ is lf ′ (lf ≤ lf ′), then the element’s

fingerprint (denoted as f ′) and two candidate buckets (denoted

as i′1 and i′2) can be calculated as follows.

f ′ = fingerprint (e) mod 2lf′ . (3)

i′1 = hash (e) ; i′2 = i′1 ⊕ hash
(
f ′ mod 2lf

)
. (4)

The subsequent insertion operations of the cuckoo filters

using the variable-length encoding framework are the same as

the standard cuckoo filters at the bucket level. They both insert

fingerprints using the cuckoo eviction mechanism. Specifically,

if the two candidate buckets are not full yet, we use the

encoding and decoding scheme mentioned above to insert the

fingerprint f ′ into a candidate bucket. Otherwise, we randomly

kick a fingerprint f ′′ from the candidate bucket to store the

fingerprint f ′. If the other candidate bucket of the kicked out

fingerprint f ′′ is not yet full, we store the kicked out fingerprint

f ′′ in another candidate bucket, and return the insertion success.

Otherwise, we kick a fingerprint again from another candidate

bucket and repeat the above process. If the number of repetitions

reaches a certain threshold (typically 500), the insertion fails.

The variable-length encoding framework does not change

the insertion mechanism of cuckoo filters. Therefore, cuckoo

filters using the variable-length encoding framework have the

same time complexity as standard cuckoo filters.

Lookup. The lookup operation of cuckoo filters using

the variable-length encoding framework is similar to that of

standard cuckoo filters. The lookup operation of cuckoo filters

64

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2024 at 02:18:35 UTC from IEEE Xplore. Restrictions apply.

using the variable-length encoding framework first calculates

the indexes of two candidate buckets according to Equation

(4). Then, the variable-length encoding framework decodes the

fingerprints in the two candidate buckets and checks whether

there is a fingerprint matching the query element e. If there

is a fingerprint matching the element e, it indicates that the

element e exists, otherwise, it does not exist. As the lookup

operation of cuckoo filters using the variable-length encoding

framework only needs to access two candidate buckets, the

time complexity of the lookup operation is O(1).
Deletion. The deletion of cuckoo filters using the variable-

length encoding framework first calculates the indexes of two

candidate buckets according to Equation (4). Then, unlike

standard cuckoo filters that delete any fingerprint that matches

element e, cuckoo filters using the variable-length encoding

framework delete the longest fingerprint that matches element e
in the candidate buckets. This design can avoid false negatives.

For example, for two elements e1 and e2 that have been

inserted to the data structure. If e1 matches fingerprints f1
and f2 and the bit length of f1 is longer than f2. e2 only

matches fingerprint f2 and does not match fingerprint f1. If

the fingerprint f2 is removed when performing the deletion

on element e1, it will cause a false negative when querying

element e2. Therefore, cuckoo filters using the variable-length

encoding framework delete the longest fingerprint matching

element e when performing the deletion operation. In addition,

as the deletion operation of cuckoo filters using the variable-

length encoding framework only needs to access two candidate

buckets, the time complexity of the deletion operation is O(1).
Analysis of computational overhead. Using the variable-

length encoding framework to reduce the false positive rate

brings additional computational overhead. However, the addi-

tional overhead is acceptable:

(i) The computational overhead brought by the variable-

length encoding framework is limited. We speed up the

process of variable-length encoding and decoding by using

two bit manipulation instructions including PDEP and PEXT.

The above two instructions are now widely supported by

a large number of processors including the Intel Haswell

line of processors, AMD Excavator, and their subsequent

generations [39]. Therefore, it is a generic way to use the above

instructions to speed up variable-length encoding and decoding

processes. Based on our evaluation, cuckoo filters using the

aforementioned instructions exhibit a mere 7.01% reduction

in insertion throughput compared with standard cuckoo filters.

Thus, the computational overhead brought by the variable-

length encoding and decoding process is acceptable.

(ii) It is meaningful to reduce the false positive rate of AMQ

data structures, even if it may bring higher computational

overhead. Specifically, when false positives occur in the AMQ

data structure, applications using this structure may incur

even higher computational overheads to eliminate these false

positives. For example, log-structured merge-trees use AMQ

data structures to determine whether an element is stored on a

certain disk block to avoid unnecessary disk block accesses.

Log-structured merge-trees can avoid accessing the disk block

if the AMQ data structure correctly reports that the element

does not exist in the disk block. However, if the AMQ data

structure incorrectly reports that the element exists in a certain

disk block (i.e., a false positive during the lookup operation),

log-structured merge-trees will access a useless disk block,

leading to additional overhead. By reducing the false positive

rate, the variable-length encoding framework can effectively

reduce the additional overhead of the application caused by

the false positives of the AMQ data structure. Therefore, it

is worthwhile to reduce the false positive rate of AMQ data

structures at the cost of increasing the computational overhead.

IV. SCATTERED APPROACH-BASED AMQ DATA STRUCTURES

Scattered approach-based AMQ data structures mainly

include Bloom filters and their variants. The insertion operation

of this type of AMQ data structures obtains k storage positions

corresponding to elements in the array by calculating k different

hash functions. Note that the optimal number of hash functions

kopt is not a fixed value. Taking a Bloom filter as an example,

if the length of the array is m, when the number of inserted

elements in the Bloom filter is n, the optimal number of hash

functions for the insertion operation is kopt =
m
n ln 2. In other

words, with a fixed array length m, the number of optimal

hash functions for Bloom filters’ insertion operations decreases

as the number of inserted elements increases. However, the

insertion operation of Bloom filters always uses a fixed number

of k hash functions. k does not change dynamically based on

the number of inserted elements during insertion.

The variable-length encoding framework can dynamically

adjust the number of hash functions according to the number

of inserted elements during insertion. Specifically, for an

AMQ data structure with a capacity of N , when the number

of elements in the AMQ data structure is less than α · N
(0 < α < 1), the variable-length encoding framework uses

k′ hash functions (k′ > k). Because the above design stores

additional information for each element, the accuracy of the

AMQ data structure can be enhanced. In Section V, we

analyze the effect of the variable-length encoding framework

on enhancing accuracy and have a discussion on how to set

the values of α and k′. When the number of elements exceeds

the predefined threshold α ·N , the variable-length encoding

framework deletes the additional information stored for each

element to accommodate newly inserted elements. Then, the

variable-length encoding framework reduces the number of hash

functions used in the insertion operation to k. Therefore, the

variable-length encoding framework can improve the accuracy

of the AMQ data structure only when the number of elements

is less than the threshold. Because Bloom filters do not support

deletion operations, we take counting Bloom filters as an

example to introduce the above design in more detail from the

three aspects, including insertion, lookup, and deletion.

Insertion. Standard counting Bloom filters consist of an array

of length m. Each element in the array is a c-bit counter. We

use C to denote the array of counters. In the insertion operation

of standard counting Bloom filters, when inserting an element

e, the operation increments the counters corresponding to the

65

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2024 at 02:18:35 UTC from IEEE Xplore. Restrictions apply.

e

+1+1 +1

hash0(e) hash1(e) hash2(e)

The variable-length encoding framework divides
each counter C of the counting Bloom filter into

two small counters, C1 and C2.

C1 C2
C

Fig. 3. An example of enhancing a counting Bloom filter using the variable-
length encoding framework. In this example, the counting Bloom filter
originally uses two hash functions (i.e., hash0 and hash1). An additional
hash function, hash2, is added when the variable-length encoding framework
is used. When inserting an element to the counting Bloom filter using the
variable-length encoding framework, the filter first calculates the index of
C1 counter by using hash functions hash0 and hash1 and increases the
value of C1[hash0] and C1[hash1] counters; then the filter calculates the
index of C2 counter by using hash function hash2 and increases the value
of C2[hash2] counter. With this design, we can remove all additional hash
function increments by directly zeroing out the C2 of all counters.

k hash functions by one, following Equation (5).

C [hashi (e)] = C [hashi (e)] + 1, i ∈ [0, k) . (5)

Counting Bloom filters using the variable-length encoding

framework also consist of an array of length m. The difference

lies in the design of the counters in the array. Specifically, the

insertion operation can be divided into two phases:

(i) When the number of inserted elements is less than the

threshold α ·N , each c-bit counter is divided into two separate

c/2-bit counters with a smaller size, denoted as C1 and C2.

The C1 counters store the basic encoding information of the

inserted elements (i.e., the encoding information generated by

the k hash functions). The C2 counters store the additional

encoding information of the inserted elements (i.e., the en-

coding information generated by the k′ − k hash functions).

Specifically, for the element e to be inserted, the counting

Bloom filters using the variable-length encoding framework

first increase the values of k C1 counters corresponding to

the k hash functions by one according to Equation (6). Then,

according to Equation (7), the values of (k′ − k) C2 counters

corresponding to the k′ − k hash functions are increased by

one. Figure 3 shows an example of the above process.

C1 [hashi (e)] = C1 [hashi (e)] + 1, i ∈ [0, k) . (6)

C2 [hashi (e)] = C2 [hashi (e)] + 1, i ∈ [k, k′) . (7)

(ii) Once the number of inserted elements is greater than

the threshold α ·N , to accommodate newly inserted elements,

we first delete the additional encoding information stored for

the previously inserted elements by clearing the values of the

C2 counters. Afterwards, the c/2 bits of each C2 counter are

merged into the corresponding C1 counter to form a c-bit large

counter. For newly inserted elements, Equation (5) is used to

calculate k counters corresponding to k hash functions. The

values of these counters are increased by one. Obviously, when

the number of elements exceeds the threshold, the counting

Bloom filters using the variable-length encoding framework are

converted to standard counting Bloom filters. The accuracy can

no longer be improved. Furthermore, this conversion process is

irreversible. This is because the values of C2 counters cannot

be recovered after being cleared. Therefore, even if the number

of inserted elements is less than the threshold after a number

of deletion operations, the counters cannot be split into two

counters with a smaller size again.

Lookup. The lookup operation of counting Bloom filters

using the variable-length encoding framework can be divided

into two phases: (i) When the number of inserted elements is

less than the threshold, if the values of k C1 counters and the

values of (k′ − k) C2 counters corresponding to the element

e are not 0, the element exists, otherwise the element does

not exist. (ii) Once the number of inserted elements is greater

than the threshold, if the values of k counters corresponding to

element e are not 0, the element exists, otherwise the element

does not exist. Obviously, the time complexity of the lookup

operation of counting Bloom filters using the variable-length

encoding framework is O(1).
Deletion. The deletion operation of counting Bloom filters

using the variable-length encoding framework can also be

divided into two phases: (i) When the number of inserted

elements is less than the threshold, the delete operation reduces

the values of k C1 counters and the values of (k′ − k)
C2 counters corresponding to the element e by one; (ii)

When the number of inserted elements is greater than the

threshold, the deletion operation reduces the values of k
counters corresponding to element e by one, just like the

standard counting Bloom filter.

V. THEORETICAL ANALYSIS

We analyze the false positive rate of two types of AMQ

data structures using the variable-length encoding framework.

A. Gathered approach-based AMQ data structures
We take the cuckoo filters as an example to analyze the

improvement of the false positive rate.

Theorem 5.1: For cuckoo filters using the variable-length

encoding framework with m buckets, the expected false positive

rate after inserting n elements is given by

ε = 2
∑b

s=1
P (X = s)

s

2ls
, (8)

where b represents the number of slots in each bucket, s
represents the number of elements stored in each bucket, ls
represents the bit length of the variable-length fingerprint

of each element when s elements are stored in the bucket,

P (X = s) =

{
eλλs

/
s!, s < b,

1−∑b−1
s=0 P (X = s) , s = b,

represents

the probability of storing s elements in the bucket, and

λ = n/m represents the expectation of storing s elements

in the bucket.

Proof: For cuckoo filters using the variable-length en-

coding framework with m buckets, when n elements are

inserted, the number of elements inserted in each bucket

approximately follows a Poisson distribution with parameter

λ = n/m. Note that although the cuckoo eviction mechanism

of cuckoo filters (Section III) makes the number of elements in

each bucket slightly deviate from the Poisson distribution. But

cuckoo evictions mainly occur at high load factors (>75%).

66

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2024 at 02:18:35 UTC from IEEE Xplore. Restrictions apply.

Therefore, in most cases, the number of elements in each bucket

follows the Poisson distribution. In addition, our verification

experiments also show that it is accurate to use Poisson

distribution to calculate the number of elements in each bucket.

Therefore, for a bucket that can store b elements, the probability

of storing s elements in the bucket is given by

P (X = s) =

{
eλλs

/
s!, s < b,

1−∑b−1
s=0 P (X = s) , s = b,

(9)

where λ = n/m represents the expected number of elements

stored in each bucket. For a bucket that stores s elements, if the

length of the variable-length fingerprint of each element is ls,

when the lookup operation checks the bucket, the probability of

matching a wrong fingerprint and thus causing a false positive

is 1 − (
1− 1/2ls)s ≈ s

/
2ls . Therefore, the expected false

positive rate caused by each bucket is
∑b

s=1 P (X = s) s
2ls

.
Because the lookup of cuckoo filters needs to check the

fingerprints in two buckets, the expected false positive rate of

cuckoo filters using the variable-length encoding framework is

given by

ε = 2
∑b

s=1
P (X = s)

s

2ls
. (10)

This completes the proof.

B. Scattered approach-based AMQ data structures
We take the counting Bloom filters as an example to analyze

the improvement of the false positive rate.

Theorem 5.2: For counting Bloom filters using the variable-

length encoding framework with m c-bit counters, the expected

false positive rate after inserting n elements is given by

ε =

{ (
1− e−k1n/m

)k1
, 0 ≤ n ≤ αN,(

1− e−k2n/m
)k2

, n > αN,
(11)

where k1 =
m
αN ln 2 represents the number of hash functions

used in the first phase of the insertion, k2 =
m
N ln 2 represents

the number of hash functions used in the second phase of

the insertion, N represents the capacity of the data structure,

and the insertion enters the second phase when the number of

elements inserted is greater than αN .

We omit the experimental verification of Theorems 5.1, 5.2,

and the proof of Theorem 5.2 due to space limitation. We

define the average false positive rate of the data structure as∑n
i=0 ε (i). According to Theorem 5.2, we can calculate the

threshold α that minimizes the average false positive rate.

VI. EVALUATION

A. Experimental Setup
1) Implementation and Platform: We apply the variable-

length encoding framework to five state-of-the-art AMQ data

structures and evaluate their performance. We implement all

algorithms in C++ and make them publicly available1. We

perform all experiments on a server equipped with Intel(R)

Xeon(R) Gold 5218R CPU (2.10GHz, 27.50MB L3 cache),

64GB RAM, and 1TB SSD running Linux 4.18.0. In addition,

all algorithms are compiled with g++ 11.3.0.

1https://github.com/wanghanchengchn/variable-encoding-framework

2) Comparison Algorithms: We apply variable-length en-

coding framework to the Cuckoo Filter (CF) [2], the Tagged

Cuckoo Filter (TCF) [40], the Counting Bloom Filter (CBF)

[5], the variable-Increment Counting Bloom Filter (ICBF)

[41], and the Tandem Counting Bloom Filter (TCBF) [42].

We named the above algorithms using the variable-length

encoding framework as Variable-length encoding Cuckoo

Filter (VCF), Variable-length encoding Tagged Cuckoo Filter

(VTCF), Variable-length encoding Counting Bloom Filter

(VCBF), Variable-length encoding variable-Increment Counting

Bloom Filter (VICBF), and Variable-length encoding Tandem

Counting Bloom Filter (VTCBF). The above algorithms include

two types of AMQ data structures based on the gathered

method and the scattered method. Specifically, CF and TCF

belong to gathered approach-based AMQ data structures. CBF,

VCBF, and TCBF belong to scattered approach-based AMQ

data structures. As far as we know, they are the latest AMQ

data structures that reduce the false positive rate of AMQ data

structures whose number of elements changes dynamically.

Note that adaptive filters and learning filters also claim that

they can reduce the false positive rate of AMQ data structures.

However, these works are mainly aimed at application scenarios

where the number of elements does not change frequently

or with some prior knowledge. The variable-length encoding

framework proposed in this paper is orthogonal to these

algorithms, so we did not compare with them.

3) Metrics: We use the following four metrics in evaluations.

False positive rate. The false positive rate can be obtained

by measuring the proportion of erroneous cases where non-

existent elements are mistakenly reported as present when

querying for elements that are not in the AMQ data structure.

Bits per element. The bits per element can be calculated

as the ratio between the number of bits occupied by the AMQ

data structure and the total number of inserted elements.

Load factor. Load factor can be calculated as the ratio

between the number of inserted elements and the capacity of

the AMQ data structure (the expected maximum number of

inserted elements).

Throughput. Throughput is measured by the number of

operations performed per second. The unit of throughput is

MOPS (Million Operations Per Second).

4) Datasets: The datasets are as follows:

Synthetic. We use BobHash [43] to randomly generate 134

million (227) distinct 64-bit integers for evaluation. Unless

otherwise stated, we use this dataset as the default dataset.

WIKI. The WIKI dataset records the timestamps of sub-

mission by Wikipedia editors. It contains 90437011 different

timestamps [44].

YCSB. We use the Yahoo! Cloud Serving Benchmark

(YCSB) generator [45] to generate 75 million distinct elements.

The above datasets (or generators) are all publicly available.

5) Parameter Settings: We compared the false positive rates

of different algorithms with the same bit per element. We

compared the throughput of different algorithms with the same

memory space. Other parameters are set by default and are

also publicly accessible. In addition, the performance of the

67

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2024 at 02:18:35 UTC from IEEE Xplore. Restrictions apply.

(a) The load factor is 25% (b) The load factor is 50%

(c) The load factor is 75% (d) The load factor is 90%

Fig. 4. Evaluation on false positive rate of gathered approach-based AMQ
data structures (lower is better).

variable-length encoding framework is mainly affected by the

threshold triggering encoding length change α and the encoding

length. Based on the theoretical analysis, we set α to 0.5, and

the encoding length to twice the fixed encoding length used

by its modified algorithm. For example, for a counting Bloom

filter using 4 hash functions, 8 hash functions are used after

using the variable-length encoding framework.

B. False Positive Rate
Our results show that the variable-length encoding frame-

work can significantly reduce the false positive rate. We

measure the false positive rate of different AMQ data structures

for a given load factor as the bits per element varies. In specific,

we configure all AMQ data structures to have the same space

consumption and capacity (227). We insert the same number of

elements into each AMQ data structure to ensure that the load

factor is the same for all of them. Then, we vary the fingerprint

length for gathered approach-based AMQ data structures and

the number of hash functions for scattered approach-based

AMQ data structures to change the bits per element. Then we

measure the false positive rate for different bits per element.

Figures 4 and 5 illustrate the false positive rates of different

AMQ data structures as the bits per element vary for load

factors of 25%, 50%, 75%, and 90%. As shown in Figures

4 and 5, the variable-length encoding framework can achieve

an average reduction of 44.98%, 45.53%, 24.94%, 49.41%,

49.73% in the false positive rates of CF, TCF, CBF, ICBF, and

TCBF, respectively. In addition, the variable-length encoding

framework can reduce the false positive rates by 88.15%,

68.10%, 11.05%, and 4.38% for load factors of 25%, 50%,

75%, and 90%, respectively.

Analysis. When the load factor of an AMQ data structure

is low, there is a significant amount of unused space that can

be leveraged by the variable-length encoding framework to

store longer encoding information for each element. Therefore,

when the load factor is low, the variable-length encoding

framework can significantly reduce the false positive rate of

existing AMQ data structures. As the load factor increases,

the amount of unused space in the AMQ data structure

(a) The load factor is 25% (b) The load factor is 50%

(c) The load factor is 75% (d) The load factor is 90%

Fig. 5. Evaluation on scattered approach-based AMQ data structures.

decreases, and the additional encoding information stored

for each element by the variable-length encoding framework

becomes shorter. Consequently, the false positive rate of

the AMQ data structure using the variable-length encoding

framework gradually approaches that of the original algorithm.

Taking cuckoo filters as an example, when the fingerprint length

of the standard cuckoo filters is 12 bits and the load factor

is 25%, the average length of each fingerprint in the cuckoo

filters using the variable-length encoding framework is 34.36

bits. Thus, for low load factors (such as 25% and 50%), the

variable-length encoding framework can significantly reduce

the false positive rate of AMQ data structures. When the load

factor is 90%, there are still 24.5% of buckets in the cuckoo

filter using a variable-length encoding framework where the

number of stored elements does not reach the capacity of the

bucket. These buckets store longer fingerprints than standard

cuckoo filters, so for higher load factors, the variable-length

encoding framework can still reduce the false positive rate of

cuckoo filters.

C. Throughput
Our results show that the variable-length encoding frame-

work reduces the false positive rate of AMQ data structures
at the cost of negligible computational overhead. We measure

the throughput of different AMQ data structures for insertion,

positive lookup (the queried elements all exist in the AMQ data

structure), negative lookup (the queried elements do not exist in

the AMQ data structure), and deletion. Specifically, we measure

the throughput of the AMQ data structures on the Synthetic,

WIKI, and YCSB datasets. We insert 90% of the elements

in the dataset into the AMQ data structures and measure the

insertion throughput. Then, we query all inserted elements and

measure the positive lookup throughput. Afterwards, we query

the remaining 10% of elements to measure the negative lookup

throughput. Finally, we delete all inserted elements and measure

the deletion throughput. As shown in Table I, the variable-length

encoding framework merely reduces the throughput of insertion,

positive lookup, negative lookup, and deletion operations by

19.94%, 2.68%, 11.15%, and 12.89%, respectively. The reason

why the variable-length encoding framework has such low

68

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2024 at 02:18:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EVALUATION OF THROUGHPUT.

Datasets Metrics VCF CF VTCF TCF VCBF CBF VICBF ICBF VTCBF TCBF

Synthetic insertion throughput 6.282 6.777 6.178 6.594 2.942 4.939 2.883 4.532 1.841 2.384
positive lookup throughput 18.830 30.881 18.641 17.883 5.584 5.735 5.232 5.262 2.535 2.532
negative lookup throughput 19.271 29.488 19.194 21.841 8.169 8.462 10.612 10.465 10.077 10.290
deletion throughput 11.320 14.972 10.072 14.724 4.354 4.952 4.511 4.482 2.554 2.562

WIKI insertion throughput 19.819 20.947 7.671 8.033 3.563 4.562 3.363 4.380 1.945 2.505
positive lookup throughput 22.951 30.514 18.661 19.239 6.639 5.416 6.052 5.061 3.013 3.003
negative lookup throughput 13.171 29.032 17.660 22.696 10.182 8.333 11.968 11.264 11.676 13.823
deletion throughput 11.761 27.465 10.682 17.037 5.220 4.679 5.265 4.348 3.047 3.079

YCSB insertion throughput 13.251 14.458 10.570 11.858 3.808 5.617 3.580 5.370 1.962 2.573
positive lookup throughput 23.129 35.497 21.971 21.579 7.093 6.685 6.561 6.197 2.942 2.830
negative lookup throughput 20.473 33.656 20.456 25.322 10.349 9.949 12.690 12.534 11.900 11.816
deletion throughput 12.819 20.019 11.807 17.972 5.566 5.732 5.644 5.277 2.982 2.884

overhead is that we use bit manipulation instructions to speed up

the variable-length encoding and decoding processes. Compared

with the variable-length encoding framework that does not use

bit manipulation instructions, the throughput after using bit

manipulation instructions is 1.17× that before optimization.

Thus, the variable-length encoding framework reduces the false

positive rate of AMQ data structures at the cost of negligible

computational overhead.

VII. RELATED WORK

The existing AMQ data structures can be divided into two

categories: gathered approach-based AMQ data structures and

scattered approach-based AMQ data structures. We review

studies closely related to our work in this section.

Scattered approach-based AMQ data structures. Scattered

approach-based AMQ data structures mainly include counting

Bloom filters [5], and their variants [11], [14], [41], [42].

For this type of AMQ data structures, existing studies mainly

focus on improving the space efficiency to reduce the false

positive rate. Take VCBF [41] as an example, when performing

insertion, different from CBF [5] which increases each counter

by one, VCBF increases each counter by a higher variable

value (e.g., 2 or 3). For lookup operations in VCBF, if the counter

value is less than the variable value added to each counter during

insertion, it means that the element does not exist. With this

approach, VCBF reduces the false positive rate by fully utilizing

the space of each counter. Another example is TCBF [42]. TCBF

is an extension of VCBF. If the space of adjacent counters is not

fully utilized, TCBF will borrow the space of adjacent counters

to further reduce the false positive rate.

Gathered approach-based AMQ data structures. Gathered

approach-based AMQ data structures mainly include cuckoo

filters, quotient filters, and their variants [40], [46]. For example,

CBCF [46] uses a flag bit for each bucket to indicate the type

of bucket (i.e., a bucket with three slots or a bucket with four

slots). When the number of elements in a bucket is three, the

elements can be stored in a bucket with a smaller capacity. For

TCF [40], the number of buckets can be a value that is not

a power of 2. This design reduces the number of redundant

buckets. Therefore, TCF can reduce memory consumption

without increasing the false positive rate.

The variable-length encoding framework improves the space

efficiency by adjusting the encoding length based on the number

of elements stored in the AMQ data structure, thereby achieving

a lower false positive rate. Thus, the variable-length encoding

framework is orthogonal to the above work and can further

reduce the false positive rate of the above work.

VIII. CONCLUSION

In this paper, we propose a general framework named

variable-length encoding framework to improve the space

efficiency and reduce the false positive rate of AMQ data

structures. The variable-length encoding framework can adjust

the encoding length of elements based on the number of

inserted elements in AMQ data structures. This approach can

make full use of the memory space allocated to AMQ data

structures to reduce the false positive rate. Then, we divide

the existing AMQ data structures into two categories and

illustrate how these two types of AMQ data structures use

the variable-length encoding framework to reduce the false

positive rate. In addition, we provide theoretical guarantees

for AMQ data structures using the variable-length encoding

framework. Furthermore, We evaluate the performance of AMQ

data structures using the proposed variable-length encoding

framework. Theoretical analysis and evaluation results show

that AMQ data structures using the variable-length encoding

framework have significantly lower false positive rates than

state-of-the-art AMQ data structures. For future work, we will

explore how to further improve the throughput of the variable-

length encoding framework by leveraging SIMD techniques.

ACKNOWLEDGMENT

This work was supported in part by the National Natural Sci-

ence Foundation of China under Grant No. 62272223, U22A2031,

61872178, 61832005, 62172206, 62072230, 62325205, 62072228,

and 92267104, in part by the Collaborative Innovation Center

of Novel Software Technology and Industrialization, Nanjing

University, and in part by the Jiangsu High-level Innovation

and Entrepreneurship (Shuangchuang) Program.

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[2] B. Fan, D. G. Andersen, M. Kaminsky, and M. Mitzenmacher, “Cuckoo
filter: Practically better than bloom,” in Proceedings of ACM International
Conference on Emerging Networking Experiments and Technologies.
ACM, 2014, pp. 75–88.

[3] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kuszmaul,
D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok, “Don’t

69

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2024 at 02:18:35 UTC from IEEE Xplore. Restrictions apply.

thrash: How to cache your hash on flash,” Proceedings of the VLDB
Endowment, vol. 5, no. 11, pp. 1627–1637, 2012.

[4] T. M. Graf and D. Lemire, “Xor filters: Faster and smaller than bloom
and cuckoo filters,” Journal of Experimental Algorithmics, vol. 25, no. 1,
pp. 1–16, 2020.

[5] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder, “Summary cache: A
scalable wide-area web cache sharing protocol,” IEEE/ACM Transactions
on Networking, vol. 8, no. 3, pp. 281–293, 2000.

[6] Y. Peng, J. Guo, F. Li, W. Qian, and A. Zhou, “Persistent Bloom filter:
Membership testing for the entire history,” in Proceedings of International
Conference on Management of Data. ACM, 2018, pp. 1037–1052.

[7] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “A general-purpose
counting filter: Making every bit count,” in Proceedings of International
Conference on Management of Data. ACM, 2017, pp. 775–787.

[8] F. Zhang, H. Chen, H. Jin, and P. Reviriego, “The logarithmic dynamic
cuckoo filter,” in Proceedings of IEEE International Conference on Data
Engineering. IEEE, 2021, pp. 948–959.

[9] P. Chen, D. Chen, L. Zheng, J. Li, and T. Yang, “Out of many we
are one: Measuring item batch with clock-sketch,” in Proceedings of
International Conference on Management of Data. ACM, 2021, pp.
261–273.

[10] J. Liu, H. Dai, R. Xia, M. Li, R. B. Basat, R. Li, and G. Chen, “DUET: A
generic framework for finding special quadratic elements in data streams,”
in Proceedings of International World Wide Web Conference. ACM,
2022, pp. 2989–2997.

[11] H. Dai, J. Yu, M. Li, W. Wang, A. X. Liu, J. Ma, L. Qi, and G. Chen,
“Bloom filter with noisy coding framework for multi-set membership
testing,” IEEE Transactions on Knowledge and Data Engineering, vol. 35,
no. 7, pp. 6710–6724, 2023.

[12] H. Wang, H. Dai, M. Li, J. Yu, R. Gu, J. Zheng, and G. Chen, “Bamboo
filters: Make resizing smooth,” in Proceedings of IEEE International
Conference on Data Engineering. IEEE, 2022, pp. 979–991.

[13] H. McCoy, S. A. Hofmeyr, K. A. Yelick, and P. Pandey, “High-
performance filters for GPUs,” in Proceedings of Annual Symposium
on Principles and Practice of Parallel Programming. ACM, 2023, pp.
160–173.

[14] Y. Li, Z. Wang, R. Yang, Y. Zhao, R. Zhou, and K. Zheng, “Learned
bloom filter for multi-key membership testing,” in Proceedings of
Database Systems for Advanced Applications. Springer, 2023, pp.
62–79.

[15] X. Wu, H. Huang, Y. Du, Y. Sun, and S. Chen, “Coupon filter: A
universal and lightweight filter framework for more accurate data stream
processing,” Comput. Networks, vol. 228, no. 1, pp. 1–13, 2023.

[16] R. Gu, S. Li, H. Dai, H. Wang, Y. Luo, B. Fan, R. B. Basat, K. Wang,
Z. Song, S. Chen, B. Wang, Y. Huang, and G. Chen, “Adaptive online
cache capacity optimization via lightweight working set size estimation
at scale,” in Proceedings of Annual Technical Conference. USENIX,
2023, pp. 467–484.

[17] Z. Zeng, R. Xiao, X. Lin, T. Luo, and J. Lin, “Double locality sensitive
hashing bloom filter for high-dimensional streaming anomaly detection,”
Information Processing and Management, vol. 60, no. 3, pp. 1–18, 2023.

[18] S. Garg, A. Singh, G. S. Aujla, S. Kaur, S. Batra, and N. Kumar,
“A probabilistic data structures-based anomaly detection scheme for
software-defined internet of vehicles,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 6, pp. 1–10, 2021.

[19] A. Singh and S. Batra, “Fingerprint based duplicate detection in streamed
data,” Computing and Informatics, vol. 37, no. 6, pp. 1313–1338, 2018.

[20] S. Che, W. Yang, and W. Wang, “Improved streaming quotient filter: A
duplicate detection approach for data streams,” The International Arab
Journal of Information Technology, vol. 17, no. 5, pp. 769–777, 2020.

[21] D. Karapiperis, A. Gkoulalas-Divanis, and V. S. Verykios, “Linkage of
spatio-temporal data and trajectories,” in Proceedings of International
Smart Cities Conference. IEEE, 2019, pp. 766–771.

[22] A. Singh and S. Batra, “Ensemble based spam detection in social Iot
using probabilistic data structures,” Future Generation Computer Systems,
vol. 81, no. 1, pp. 359–371, 2018.

[23] H. Dai, L. Meng, H. Wang, R. Gu, S. Chen, F. Chen, and W. Hu,
“Distantly supervised entity linking with selection consistency constraint,”
in Proceedings of Database Systems for Advanced Applications. Springer,
2023, pp. 784–799.

[24] S. Xiong, Y. Yao, M. W. Berry, H. Qi, and Q. Cao, “Frequent traffic
flow identification through probabilistic bloom filter and its GPU-based
acceleration,” Journal of Network and Computer Applications, vol. 87,
no. 1, pp. 60–72, 2017.

[25] H. Dai, M. Li, and A. X. Liu, “Finding persistent items in distributed
datasets,” in Proceedings of IEEE International Conference on Computer
Communications. IEEE, 2018, pp. 1403–1411.

[26] R. Xie, M. Li, Z. Miao, R. Gu, H. Huang, H. Dai, and G. Chen, “Hash
adaptive bloom filter,” in Proceedings of IEEE International Conference
on Data Engineering. IEEE, 2021, pp. 636–647.

[27] H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong, “Finding persistent items
in data streams,” Proceedings of the VLDB Endowment, vol. 10, no. 4,
pp. 289–300, 2016.

[28] A. Singh, S. Garg, S. Batra, N. Kumar, and J. J. P. C. Rodrigues,
“Bloom filter based optimization scheme for massive data handling in
IoT environment,” Future Generation Computer Systems, vol. 82, no. 1,
pp. 440–449, 2018.

[29] S. Yu, X. Li, H. Wang, X. Zhang, and S. Chen, “C CART: An instance
confidence-based decision tree algorithm for classification,” Intelligent
Data Analysis, vol. 25, no. 4, pp. 929–948, 2021.

[30] A. Singh, S. Garg, R. Kaur, S. Batra, N. Kumar, and A. Y. Zomaya,
“Probabilistic data structures for big data analytics: a comprehensive
review,” Knowledge-Based Systems, vol. 188, no. 1, pp. 1–21, 2020.

[31] S. Yu, X. Li, H. Wang, X. Zhang, and S. Chen, “BIDI: A classification
algorithm with instance difficulty invariance,” Expert Systems with
Applications, vol. 165, no. 1, pp. 1–13, 2021.

[32] M. Kumar and A. Singh, “Probabilistic data structures in smart city:
Survey, applications, challenges, and research directions,” Journal of
Ambient Intelligence and Smart Environments, vol. 14, no. 4, pp. 229–284,
2022.

[33] H. Cha, X. Hao, T. Wang, H. Zhang, A. Akella, and X. Yu, “Blink-
hash: An adaptive hybrid index for in-memory time-series databases,”
Proceedings of the VLDB Endowment, vol. 16, no. 6, pp. 1235–1248,
2023.

[34] C. Wang, X. Huang, J. Qiao, T. Jiang, L. Rui, J. Zhang, R. Kang,
J. Feinauer, K. Mcgrail, P. Wang, D. Luo, J. Yuan, J. Wang, and J. Sun,
“Apache IoTDB: Time-series database for internet of things,” Proceedings
of the VLDB Endowment, vol. 13, no. 12, pp. 2901–2904, 2020.

[35] J. Chen, Y. Ding, Y. Liu, F. Li, L. Zhang, M. Zhang, K. Wei, L. Cao,
D. Zou, Y. Liu, L. Zhang, R. Shi, W. Ding, K. Wu, S. Luo, J. Sun, and
Y. Liang, “Bytehtap: Bytedance’s HTAP system with high data freshness
and strong data consistency,” Proceedings of the VLDB Endowment,
vol. 15, no. 12, pp. 3411–3424, 2022.

[36] S. Rao, A. K. Verma, and T. Bhatia, “A review on social spam detection:
Challenges, open issues, and future directions,” Expert Systems with
Applications, vol. 186, no. 1, pp. 1–31, 2021.

[37] A. Breslow and N. Jayasena, “Morton filters: Faster, space-efficient
cuckoo filters via biasing, compression, and decoupled logical sparsity,”
Proceedings of the VLDB Endowment, vol. 11, no. 9, pp. 1041–1055,
2018.

[38] M. Wang, M. Zhou, S. Shi, and C. Qian, “Vacuum filters: More
space-efficient and faster replacement for bloom and cuckoo filters,”
Proceedings of the VLDB Endowment, vol. 13, no. 2, pp. 197–210, 2019.

[39] B. Koppelmann, P. Adelt, W. Mueller, and C. Scheytt, “RISC-V exten-
sions for bit manipulation instructions,” in Proceedings of International
Symposium on Power and Timing Modeling, Optimization and Simulation.
IEEE, 2019, pp. 41–48.

[40] K. Huang and T. Yang, “Tagged cuckoo filters,” in Proceedings of
International Conference on Computer Communications and Networks.
IEEE, 2021, pp. 1–10.

[41] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment
counting bloom filter,” IEEE/ACM Transactions on Networking, vol. 22,
no. 4, pp. 1092–1105, 2014.

[42] P. Reviriego and O. Rottenstreich, “The tandem counting bloom filter -
it takes two counters to tango,” IEEE/ACM Transactions on Networking,
vol. 27, no. 6, pp. 2252–2265, 2019.

[43] Bob Jenkins’ hash function web page. [Online]. Available:
http://burtleburtle.net/bob/hash/doobs.html

[44] R. Marcus, A. Kipf, A. van Renen, M. Stoian, S. Misra, A. Kemper,
T. Neumann, and T. Kraska, “Benchmarking learned indexes,” Proceed-
ings of the VLDB Endowment, vol. 14, no. 1, pp. 1–13, 2020.

[45] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of
ACM Symposium on Cloud Computing. ACM, 2010, pp. 143–154.

[46] P. Reviriego, J. Martı́nez, D. Larrabeiti, and S. Pontarelli, “Cuckoo filters
and bloom filters: Comparison and application to packet classification,”
IEEE Transactions on Network and Service Management, vol. 17, no. 4,
pp. 2690–2701, 2020.

70

Authorized licensed use limited to: Nanjing University. Downloaded on July 01,2024 at 02:18:35 UTC from IEEE Xplore. Restrictions apply.

