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ABSTRACT

With the continuously increasing scale of deep neural net-
work models, there is a clear trend towards distributed DNN
model training. State-of-the-art training frameworks sup-
port this approach using collective communication libraries
such as NCCL, MPI, Gloo, and Horovod. These libraries have
many parameters that can be adjusted to fit different hard-
ware environments, and these parameters can greatly impact
training performance. Therefore, careful tuning of param-
eters for each training environment is required. However,
given the large parameter space, manual exploration can be
time-consuming and laborious.

In this poster, we introduce AFNFA, which stands for Al
For Network For Al It is an automated program that utilizes
machine learning and simulated annealing to explore NCCL
parameters. Preliminary evaluation results demonstrate that
compared to the default configuration, the configuration
explored by AFNFA improves NCCL communication perfor-
mance by 22.90%.
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1 INTRODUCTION

In recent years, deep neural networks (DNNs) have been
increasingly used in various industries. As the number of
model parameters continues to increase, DNNs are capable
of achieving better performance. To satisfy the ever growing
computing power required for training increasingly large
models, distributed machine learning has become more com-
monly adopted.
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In distributed machine learning, communication is cru-
cial because it involves data transfer among multiple GPUs
or even multiple machines, which significantly impacts the
overall training time. To facilitate efficient communication,
current training frameworks rely on collective communica-
tion primitives, such as all-reduce and all-to-all, which are
implemented in communication libraries. Among different
communication libraries, NCCL[6] is the most widely used
one because of its support for advanced features, such as
InfiniBand, GPU Direct, NvLink, and NvSwitch.

However, available hardware is rapidly evolving, resulting
in varying hardware environments for different users. NCCL
has many parameters that users can configure to adapt to dif-
ferent hardware environments and improve the performance
of data transfer to increase the training speed. We have con-
ducted several tests on NCCL in a production environment,
and the results show that different configurations have a
significant impact on NCCL performance and need to be
carefully tuned. However, given the large parameter space,
manual exploration can be time-consuming and laborious.

To address this issue, we propose AFNFA, an automated
program that employs machine learning and simulated an-
nealing to explore NCCL configurations.We first train a re-
gression model of NCCL performance with respect to con-
figuration, and then use simulated annealing[1] to find the
maximum value of the model, which is the predicted max-
imum performance, and the corresponding configuration,
which can be used for all future training when the hard-
ware environment remains unchanged. The results of our
tests show that configuration explored by AFNFA yields a
22.90% improvement in performance compared to the default
configuration.

2 DESIGN

Implementing an automated configuration exploration pro-
gram involves more than just automating the exploration
process. The time overhead would be unacceptable if the
program were to automatically traverse the entire parameter
space. Thus, the key is to narrow the search space in various
ways, which helps reduce the number of explorations.

2.1 Overview

As machine learning can reveal hidden associations in vast
amounts of data, we believe that applying it to this scenario


https://doi.org/10.1145/3600061.3600068
https://doi.org/10.1145/3600061.3600068
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600061.3600068&domain=pdf&date_stamp=2023-09-05

APNET 2023, June 29-30, 2023, Hong Kong, China

can effectively reduce the number of explorations and de-
crease the time overhead of exploration.
2.1.1 Determining the configuration parameter space. We
conducted several tests in a production environment by man-
ually altering the environment variables provided on the offi-
cial NCCL website!. Subsequently, we selected the variables
that demonstrated a substantial impact on performance.

o NCCL_MAX/MIN_NCHANNE

e NCCL_SHM_DISABLE

e NCCL_P2P_LEVEL

e NCCL_SOCKET_NTHREADS

o NCCL_BUFFSIZE

e NCCL NET_GDR_LEVEL

e NCCL_ALGO

2.1.2  Constructing the training dataset. It is apparent that
the solution space, which is the Cartesian product of the
parameter space of each variable, is extremely vast, with up
to 61920 possible combinations, making it unfeasible and
impractical to test each one of them. In order to mitigate
the time overhead of the process, we randomly sample 5% of
variable combinations from the full set to execute NCCL-test,
and record the resulting data. The final dataset contains 345
samples.

2.1.3 Selecting model and training. To predict the corre-
sponding NCCL-test performance based on the selected con-
figuration, we approach this as a regression problem. We use
the dataset constructed in the previous step to train a func-
tion y=f(x), where x represents the input NCCL configuration
and y represents the NCCL-test performance predicted by
this function for that configuration.

Firstly, we need to select a suitable regression model for

the task. We performed several tests with the commonly
used regression algorithms, measuring the maximum value
obtained by each algorithm and its error with the true value
obtained from the production environment with the same
configuration. The results are shown in the table 1. After
carefully comparing the ease of implementation and the
accuracy of the algorithm, we ultimately selected random
forest regression as our regression model.
2.1.4 Selecting the optimal values. We use simulated anneal-
ing, a randomized selection algorithm to find the maximum
value of the model obtained from the third training step and
the corresponding input parameters. We use the predicted
results of the model as the input parameters for the simulated
annealing algorithm.

3 PRELIMINARY EVALUATION

We have implemented AFNFA in approximately 1000 lines
of Python code, created the regression model using sklearn,

!https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
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Table 1: Performance of different model

Model Predicted results Errors
linear regression[8] 0.2123 GB/s 38.90%
ridge regression[4] 0.2289 GB/s 34.13%
MLP regression[2] 0.3100 GB/s 10.79%
random forest regression[3] 0.3365 GB/s 3.17%
Adaboost regression[7] 0.3879 GB/s 11.63%

and utilized MPI to automate running the test on multiple
machines.

We performed a preliminary evaluation of AFNFA on a
machine learning training platform provided by our univer-
sity. Each machine in this platform is equipped with eight
NVidia V100 GPUs connected by NVLink, while the differ-
ent machines are connected to each other through a lower
bandwidth Ethernet.

We conducted five NCCL-test runs for configuration gen-
erated by AFNFA, resulting in an average performance of
0.3475GB/s, which was a 22.90% improvement over the de-
fault configuration’s average of 0.2828GB/s. We also evalu-
ated the DLRM model[5] training time, and found that the
configuration generated by AFNFA had a training time of
25ms per round, which was more than 10% faster than the
default configuration’s training time of 28ms per round.

4 CONCLUSION

In this poster, we propose AFNFA, an automated NCCL pa-
rameter exploration method using model training and simu-
lated annealing, which we implement as a python program
and can be used in any environment. Our preliminary evalu-
ation results demonstrate that the configuration explored by
AFNFA significantly improves NCCL communication perfor-
mance by 22.90% compared to the default configuration.
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