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1 INTRODUCTION
Distributed training on multi-rack clusters is used to support
large machine learning models. Providing machine learning
as a service (MLaaS) is becoming a new trend [4]. However,
for the large-scale distributed ML platform, the communica-
tion is expensive and is where we are spending most of the
time [2]. The technology of in-network aggregation (INA)
has thus been applied to speed up the ML training in MLaaS
clusters [3, 5]. INA offloads the aggregation to programmable
switches in the network, effectively reduces the latency and
bandwidth consumption.

Scalable Hierarchical Aggregation and Reduction Protocol
(SHArP) has been used to speed up high performance com-
puting (HPC) through commodity switches over InfiniBand
(IB) networks [1] and obtains large performance enhance-
ments. However, a 200Gbps HDR switch with SHArP enabled
only supports a single ML job of a specified user at the same
time due to the limited hardware memory. Cloud providers
lack the estimation and understanding for multi-job and
multi-tenant scenarios which is common in datacenters. To
effectively support multiple jobs while avoiding conflict at
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Figure 1: MINA architecture

switch, the allocation of computation resources of switches
on multiple layer topology needs to be carefully determined.

We study, for the first time, the usage of INA capability of
SHArP for supporting multiple ML jobs in multi-layer data-
center networks. Based on the distinct temporal and spatial
characteristics of ML jobs, we design an efficient job alloca-
tion algorithm for coordinating the use of INA resources on
switches. We estimate the capacity of the algorithm through
simulation based on realistic traffic. The average number of
accepted jobs increases by 52.7% and the job completion time
(JCT) decreases by 4.09%.

2 SYSTEM DESIGN AND INA RESOURCE
ALLOCATION

We introduce MINA to exploit the usage of SHArP in multi-
job ML service in datacenter. Figure 1 illustrates the architec-
ture of MINA, which consists of three primary components:
the Tree-Allocation Controller, responsible for optimizing
the aggregation tree in the space dimension; the Sharing
Controller, responsible for managing resource sharing in
the time dimension; and the Job Controller, responsible for
controlling job start/stop and resource utilization of SHArP.
These components operate on both the control and data
planes to globally assign resources of SHArP and manage
job execution on nodes to achieve best overall performance.

To carefully allocate of limited SHArP INA resources, our
key idea is first allocating the switches of the cluster in coarse
granularity among jobs to avoid resource conflicts at the spa-
tial level, then determining the SHArP aggregation resources
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Figure 2: Aggregation trees and conflict graph

sharing with the fine granularity of AllReduce operations
with the minimum communication overhead.

Space dimension allocation. Given the available SHArP-
enabled switches, we first determine how to allocate jobs in
the space dimension. The allocation aims to find an aggre-
gation tree of switches for each job while minimizing the
conflict of trees belonging to different jobs.

Time dimension sharing. After the space dimension allo-
cation, there are still jobs that have to share the same SHArP
switches. To maximize the benefit of SHArP when shared
among multiple jobs, we carefully schedule when each job
uses the INA resources in the time dimension.

2.1 Space Dimension Allocation Algorithm
The input of the algorithm includes the datacenter topology,
ML jobs, and the corresponding computation nodes for each
job. Note that if a switch has been allocated to other jobs, it
can still forward packets to other switches.

To achieve an effective space scheduling, we need to solve
the following two problems. The first problem is to generate
aggregation trees for each ML job. Note that given the com-
putation nodes of a ML job, we can find multiple aggregation
trees in the topology for a single job. Due to the hierarchical
nature of the topology, the high-level switches are shared by
multiple jobs. Therefore, an intuitive solution is to generate
switch trees that occupy fewer nodes and more lower-level
nodes to improve the resource utilization.
The second problem is to find a maximum set of trees

such that each pair of the trees does not conflict with each
other. As shown in Figure 2, we build a conflicting graph
by abstracting the aggregation trees into vertices, and draw
edges between two vertices with no conflict. Therefore, the
problem is transformed into finding the maximum clique in
the graph. Since the maximum clique problem is NP-hard, we
use an approximation algorithm by first obtaining multiple
approximate-maximum cliques in the graph, then choosing
a clique with the maximum earning. The earning of a clique
is the sum of the JCT decrease of ML jobs.

2.2 Time Dimension Sharing Algorithm
The network pattern of training steps exhibits a great op-
portunity to share SHArP resources among multiple jobs.
Figure 3 illustrates the computation and aggregation process
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Figure 3: SHArP acceleration effectiveness

of a training step. First, we can see that if we use SHArP for
all AllReduce operations, we can reduce JCT in comparison
with the aggregation without using SHArP, as shown in the
second and third rows in Figure 3. One interesting observa-
tion is that we can achieve the same amount of improvement
by using SHArP for only parts of the AllReduce operations, as
shown in the second and fourth rows in Figure 3. It happens
because JCT is determined by the last AllReduce operation.
By accelerating the former AllReduce operations can not
truly speed up the training step.
Based on the observation, we propose the fine-grained

time sharing algorithm to effectively reduce the occupation
of INA resources of one job (i.e. enlarge the chance of shar-
ing among jobs) and achieve the best acceleration effect.
Specifically, we partition the AllReduce operations within
a training step into two portions, where the latter portion
uses SHArP acceleration while the former one does not. We
greedily make the latter portion as small as possible on the
premise of keeping the best acceleration effect.

3 EVALUATION & FUTUREWORK
We first measure the overhead of our implementation of
MINA on a testbed consisting of 5 SHArP switches and 4
hosts with an A100 on each interconnected with 100Gbps
links. In the space dimension, releasing switch resources and
reapplying them takes 125ms and 294ms on average respec-
tively, allowing a seamless migration required in MLaaS. In
the time dimension, switching between using and not using
SHArP takes 33.1𝜇s on average, which is negligible compared
to the interval of the switching (∼100ms).
We collect 14 traces of ML job requests in real scenarios,

and use them as inputs of our scheduling algorithm to per-
form the large-scale simulation. Compared with the naive
greedy allocation, our scheduling in the space dimension can
increase the number of INA jobs by 35% on average (up to
67.7%) and decrease the total JCT by 3.52% on average (up to
6.9%). With the time dimension sharing enabled, the average
number of INA jobs will increase by 52.7% (up to 85.8%), and
the average JCT will decrease by 4.09% (up to 7.6%).
We conducted this study on 200Gbps HDR switches and

are continuing our research on the 400Gbps NDR ones. It is
notable that with the release of new devices which support
multiple INA jobs, our study can easily adapt to the new
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feature by allowing 𝑛 jobs instead of two sharing the switch.
Another potential optimization is integrating MINA into the
job scheduler to achieve INA-aware job allocation.
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