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Abstract—Once started, existing hash tables cannot change their pre-defined hash functions, even if the incoming data cannot be

evenly distributed to the hash table buckets. In this paper, we present DHASH, a type of hash table for sharedmemory systems, that can

change its hash function and rebuild the hash table on the fly, without noticeably degrading its service. Themajor technical novelty of

DHASH stems from an efficient distributingmechanism that can atomically distribute every nodewhen rebuilding, without locking the

corresponding hash table buckets. This not only enables non-blocking lookup, insert, and delete operations, but more importantly, makes

DHASH independent of the implementation of hash table buckets, such that DHASH allows programmers to select the set algorithms that

meet their requirements best from a variety of existing lock-free andwait-free set algorithms. Evaluations show that DHASH can efficiently

change its hash function on the fly. Moreover, when rebuilding, DHASH consistently outperforms the state-of-the-art hash tables in terms of

throughput and response time of concurrent operations, at different concurrency levels, and with different operationmixes and average

load factors.

Index Terms—Concurrent programming, parallelism and concurrency, dynamic hash tables

Ç

1 INTRODUCTION

TYPICALLY, a hash table consists of an array of buckets.
Nodes to be inserted into the hash table are first reduced

to 32-bit or 64-bit hash value by using a pre-defined hash func-
tion. The hash table takes the hash value modulo the size of
its bucket array to determine the buckets where the corre-
sponding nodes will be stored. Once two or more distinct
nodes are mapped to the same bucket, a hash collision has
happened. One typical approach to dealing with hash colli-
sions is separate chaining, in which each hash bucket contains
a list of nodes mapped to the bucket. The average length of
the lists, referred to as average load factor, is defined as the
total number of nodes in the hash table divided by the size
of the bucket array. In general cases, given a specified aver-
age load factor, hash tables offer the advantage of constant-
time lookup operations, such that they have been widely
used throughout computer systems.

Most existing hash tables, however, lacks robustness; the
pre-defined hash functions cannot be changed even if they
cannot evenly distribute incoming data to the hash table
buckets. For example, an adversary can launch algorithmic
complexity attacks [1] by first spying out the details of the

hash function and then creating malicious nodes that will
be hashed to a few buckets. This causes a few buckets
(henceforth referred to as target buckets) to contain many
more nodes than the average load factor, effectively making
the hash table unavailable for legitimate requests accessing
these buckets. This robustness issue has affected the hash
table implementations in a long list of operating systems
and programming languages, including the Linux kernel
[2], Perl [1], PHP [3], and .NET [4].

Researchers have proposed various techniques to address
this robustness issue. The most well-studied solution is uni-
versal hashing [5], which, by randomly selecting a hash func-
tion from a set of well-designed hash functions, can, in
theory, provide good average-case hashing performance and
address the above robustness issue. Unfortunately, empirical
evaluation shows that universal hashing is not fit for applica-
tions such as Perl [6], which is heavily used to process strings
that are often selected from restricted character sets, and thus
have an unexpected distribution property. Moreover, emerg-
ing research shows that it is possible for the adversary to
observe or guess the random choice of the pre-defined hash
function, rendering universal hashing useless [1], [7], [8], [9].

In this paper, we first demonstrate that rebuilding a hash
table by dynamically changing its hash function on the fly is
a promising approach to build robust hash tables. Specifi-
cally, once the pre-defined hash function cannot evenly dis-
tribute incoming data to the buckets, a new instance of the
hash table with a distinct, well-designed hash function is cre-
ated. Then, the existing nodes in the old hash table are
distributed to the new one. During the time period of distrib-
uting nodes, both hash tables are used to serve concurrent
insert, delete, and lookup operations (henceforth simply regular
operations). After all nodes have been distributed to the new
hash table, the old hash table can be deleted. By changing the
hash function, the new hash table can distribute existing
nodes evenly over all buckets, and, therefore, provide the
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expected constant-time lookup operations. We use the term
dynamic to describe a hash table algorithm that can provide
this flexibility feature, and refer to the function that dynami-
cally changes its hash function as rebuild. Researchers have
proposed hash tables that can only enlarge or shrink their
bucket sizes by constant factors but cannot change hash func-
tions [10], [11], [12], [13], which we refer to as resizable hash
tables. In Section 6.3, we demonstrate that for each run, resiz-
able hash tables can only cut the list length of the target buck-
ets by half, and hence cannot resolve the robustness issue.
We thus mainly focus on dynamic hash tables. Note that in
this paper, for ease of presentation, we only say that a
dynamic hash table can change its hash function, even
though it actually can change its hash function and/or hash
seed. In contrast, a resizable hash table cannot change any of
them, and the only aspect a resizable hash table can change
is the size of its bucket array. Moreover, in some sense, a
dynamic hash table is the hash table that is resizable and can
rebuild by using a different function.

The core problem indesigning a dynamic hash table is how
to atomically and efficiently distribute every node from the
old hash table to the newone. This poses the following unique
challenge: Even though the delete and insert operations on a
single hash table can be atomic and non-blocking [14], [15],
[16], [17], there are no non-blocking approaches that can atom-
ically distribute every node from the old hash table to the new
one. Consequently, prior dynamic hash tables [18], [19] all
depend on locking mechanisms and need to first lock the cor-
responding buckets in the old and the new hash tables, before
distributing each node (see Related Work for the pseudo-
code).However, it iswell known that locking can prevent reg-
ular operations from executing simultaneously, leading to
unexpected delays or even suspension in a busy system. In
Section 6.2, we demonstrate that for a typical hash-table usage
pattern, when a rebuild operation is in progress, the 99.9%-
percentile response time of these lock-based dynamic hash
tables’ lookup operations reaches 5 microseconds, 3.6 times
worse than the normal case, adding significant delays to nor-
mal operations from legitimate users.

This paper presentsDHASH, a novel non-blockingDynamic
Hash table. The major technical novelty of DHASH stems from
a new distributing mechanism that can atomically and effi-
ciently distribute each node without needing to acquire any
per-bucket mutex locks. (To serialize concurrent rebuilding
attempts, the rebuild operation uses a global lock, which,
however, can never block any regular operations. We discuss
this in Section 4.3.) Experimental results show that the distrib-
uting mechanism is lightweight and does not noticeably
degrade the performance of concurrent regular operations.
Furthermore, the distributing mechanism is independent of
the implementation of hash table buckets, such that DHASH

can utilize a variety of existing lock-free and wait-free set
algorithms as the implementation of its buckets. Thismodular
design allows programmers to make trade-offs among their
own DHASHs’ progress guarantee, performance, and engi-
neering efforts, and to select the set algorithms that meet their
requirements best, bridging the gap between building robust
hash tables and utilizing existing non-blocking set algorithms
from the parallel-processing community.

We prove the correctness of our key techniques and
implement two versions of DHASH that respectively provide

lock-free and wait-free lookup operations. Experimental
results show that DHASH can effectively change its hash func-
tion and seed. Moreover, our distributing mechanism is
lightweight; when rebuilding, DHASH consistently outper-
forms the alternatives in terms of throughput and response
time of concurrent regular operations, at different concur-
rency levels, and with different operation mixes and average
load factors. Furthermore, we demonstrate that DHASH’s
rebuild operation is scalable; the parallelized rebuild opera-
tion of DHASH with eight or more rebuilding threads outper-
forms the state-of-the-art alternatives.

The rest of the paper is organized as follows. We first dis-
cuss related work in Section 2. Section 3 gives an overview
of DHASH and the distributing mechanism. Section 4
presents the details of the algorithm. We prove the correct-
ness of DHASH in Section 5, present evaluations in Section 6,
and conclude in Section 7.

2 RELATED WORK

This section sketches a high-level overview of the existing
dynamic and resizable hash tables.

Dynamic Hash Tables. Xu et al. designed a dynamic hash
table [18] for the management of IGMP packets in the Linux
kernel in 2010. The key idea behind Xu’s algorithm is to
manage two sets of pointers in each node, so that regular
operations traverse one set of pointers while the rebuild
operation is updating the other set. The two sets are
exchanged upon the completion of every rebuild operation.
Xu’s algorithm is straightforward and easy to be imple-
mented, but it has two major drawbacks in practice. (1)
Locking mechanisms are used to serialize concurrent
update and rebuild operations. (2) A linked list algorithm
must be customized by adding an extra set of pointers
before it can be used by Xu’s hash table. In contrast, DHASH

overcomes these drawbacks in its design.
Based on Triplett et al.’s ATC’11 paper [11], Graf intro-

duced a dynamic hash table into the Linux kernel in 2014
[19], and this algorithm has been widely used in the kernel.
Graf’s hash table maintains a single pointer in each node,
and utilizes per-bucket mutex locks to synchronize concur-
rent update and rebuild operations on each bucket. The
skeleton of the rebuild operation of Graf’s dynamic hash
table is as follows.

for each bucket htbp in the old hash table

mutex_lock ( htbp);

for each node htnp in htbp

remove htnp from htbp;

htbp_new = new_hash( htnp);

mutex_lock (htbp_new);

insert htnp into htbp_new;

mutex_unlock (htbp_new);

mutex_unlock ( htbp);

Correspondingly, the insert and delete operations of Graf’s
dynamic hash table must first acquire the corresponding per-
bucket mutex lock before they can operate on a bucket. Graf’s
algorithm is a practical design. However, this algorithm has
the following drawbacks. (1) It uses locks to serialize updates
to the same bucket. (2) Itmaintains unordered lists as its buck-
ets and temporarily concatenates two lists when rebuilding.
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Perl (versions between 5.8.2 and 5.16.2) uses a much
more coarse-grained locking mechanism when rebuilding;
the rebuild operation needs to acquire a global lock before
distributing every node, preventing concurrent insert and
delete operations from making any progress, even though
they work on different buckets.

Lock-Free Resizable Hash Tables. The resizable hash tables
[10], [11], [13] do not change their hash functions; all they
can do is enlarge or shrink their bucket sizes by a constant
factor. One classic resizable hash table [10] was presented
by Ori Shalev and Nir Shavit in 2006. To atomically distrib-
ute every node from the old hash table to the new one, Sha-
lev and Shavit’s algorithm introduces a novel data structure
called “recursive split-ordered list” which is fundamentally
a lock-free linked list. Each hash table maintains a single
“recursive split-ordered list,” and all nodes in the hash table
are chained in this list. This hash table gradually assigns the
bucket pointers to the places in the list where a sublist con-
taining the requested node can be found. In solving the
atomic-distribution problem when resizing, Shalev and
Shavit’s algorithm does not move nodes among the buckets.
Instead, it moves the buckets among the nodes by referenc-
ing buckets to the proper nodes in the list.

Even though the split-ordered list is lock-free, it has draw-
backs in practice. (1) The algorithm must first bit-reverse the
hash results of the keys before performing any regular opera-
tions. Unfortunately, the bit-reverse operation is inefficient
on X86 and Power9,where hardware does not provide native
instructions. (2) Evaluations show that when the pre-defined
hash function cannot evenly distribute incoming data, resiz-
ing cannot effectively help a hash table recover.

Open-Addressing Based Hash Tables. Researchers have pro-
posed several resizable hash tables [20], [21] based on open
addressing [22]. In particular, Maier et al. presented a resiz-
able hash table [21] based on linear probing [22]—a form of
open addressing— demonstrating that it is possible to build
fast, open-addressing based resizable hash tables. The main
technical contributions of Maier et al.’s algorithm and that
of DHASH are orthogonal. We focus on separate-chaining
based hash tables in this paper and leave applying our dis-
tributing mechanism to open-addressing based hash tables
(e.g., Maier et al.’s algorithm) as future work.

3 DHASH ALGORITHM OVERVIEW

This section first presents the system model and key chal-
lenge in designing dynamic hash tables, and then sketches a
high-level overview of the distributing mechanism of
DHASH, leaving technical details to Section 4.

We design DHASH for an asynchronous shared memory sys-
tem [23] with multiprocessors. On such a system, a program
is executed by p deterministic threads, where p may exceed
the number of physical processors. A scheduler decides
which threads to run and may suspend the execution of any
thread at any time for arbitrarily long. We assume a TSO
memory model [24] in this paper.

The key challenge in designing a dynamic hash table is to
atomically and efficiently distribute every node from the old
hash table to the new one. To distribute each node, the
rebuild operation must update two hash tables. Even
though the delete and insert operations on a single hash

table can be atomic and non-blocking [14], [15], [16], [17],
there are no non-blocking approaches that can atomically
move a node from the old hash table to the new one. Prior
research addressed this challenge by (1) maintaining two
sets of linked lists in each bucket [18], (2) synchronizing the
rebuild and other regular operations by using locks [18],
[19], (3) maintaining unordered linked lists [11], [19], and/
or (4) degenerating dynamic hash tables to resizable hash
tables [10]. These approaches, however, sacrifice the algo-
rithms’ generality and/or performance.

Distributing Mechanism. This paper presents a novel dis-
tributing mechanism that can atomically and efficiently dis-
tribute every node from the old hash table to the new one,
without acquiring any mutex locks. The basic idea behind
our distributing mechanism is that we can synchronize the
rebuild operation and concurrent regular operations by
managing them to access hash tables and shared variables
in specified orders, rather than serializing them by using
expensive synchronization mechanisms such as locking.
Specifically, to distribute a node, the rebuild operation of
DHASH first deletes the node from the old hash table and
then inserts it into the new hash table, without acquiring
any mutex locks. The process of distributing the node leads
to a short time period during which in neither the hash
tables can this node be found. We call this a node’s hazard
period. To allow other concurrent regular operations to be
able to access the node, DHASH employs a global pointer
that always points to the node that is in the hazard period.
Consequently, when a rebuild operation is in progress, con-
current regular operations need to check different locations
because a node may reside in either the new or the old hash
table, or is referenced by the global pointer. In Section 4, we
prove that if regular operations search both hash tables and
check the node currently in the hazard period in the specified
orders, they can always find the node with the matching
key and successfully apply the specified operations on it.

Example of Rebuilding. To illustrate how DHASH’s distrib-
uting mechanism works, we use the example hash table
shown in Fig. 1. In this hash table, DHASH consists of two
buckets: Bkt 0 and Bkt 1. Bkt 0 contains three nodes (a, b,
and c), and Bkt 1 contains two nodes (d and e). We assume
that the new hash table contains three buckets, and that its
user-provided hash function maps all of the keys to the new
three-buckets array. The rebuild operation then performs a
hash table traversal and distributes every node in the old
hash table to the new one. Fig. 1 illustrates the process of
distributing the node a, with the initial state shown in
Fig. 1a and with the time advancing from figure to figure.

Specifically, the node a is first pointed to by the global
pointer rebuild_cur, resulting in the state shown in Fig. 1b.
Then, a is removed from the old hash table and enters its
hazard period, shown in Fig. 1c. When a is in the hazard
period, other concurrent regular operations can access it via
the global pointer rebuild_cur. Without loss of generality, we
assume that when the rebuild operation is in progress, other
regular operations concurrently insert a new node f into the
new hash table, shown in Fig. 1c. Then, the node a is
inserted into the new hash table, shown in Fig. 1d. After it
has been successfully inserted into the new hash table,
rebuild_cur is set to NULL. The rebuild operation traverses
the old hash table and distributes every node to the new
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hash table, shown in Fig. 1e. After that, the rebuild opera-
tion waits for all prior unfinished operations to complete
before safely reclaiming the old hash table, shown in Fig. 1f.

Fig. 1 illustrates the following key reasons that DHASH

consistently outperforms prior dynamic and resizable hash
tables. (1) By changing the hash function, DHASH effectively
cuts the list length of the target buckets that contain many
more nodes than the average load factor. Therefore, concur-
rent regular operations can avoid traversing the lists that
are unacceptably long. (2) Allowing other threads to access
the node that is in the hazard period is the key reason that dis-
tributing a node is not necessary to involve expensive lock-
ing mechanisms in distributing the node. (3) In sharp
contrast to prior algorithms [11], [19] that can only distrib-
ute the tail nodes of unordered lists, DHASH utilizes efficient
set algorithms (e.g., lock-free skip lists [16]) and always dis-
tributes the head nodes. We demonstrate these advantages
in Section 6.

4 DHASH IMPLEMENTATION

The design of DHASH presented in Section 3 leads to a rela-
tively straightforward implementation, which is the subject
of this section. Section 4.1 introduces concepts that provide
a foundation for our design. We then discuss in detail how
DHASH synchronizes rebuild operations and concurrent reg-
ular operations.

Note that even though we use the RCU mechanism in
this paper, it can be replaced by other synchronization
mechanisms such as reference counters [15] and hazard
pointers [25]. There is no direct impact on the distributing
mechanism in DHASH by using the alternative techniques.
However, they can lead to higher performance penalties.
While using reference counters and hazard pointers, addi-
tional memory fence instructions are required each time a
lookup operation moves forward to a new node. Updating
the counter within each node and referencing a hazard
pointer to the node may cause cache misses. Moreover, by
using RCU, the rebuild operation of DHASH takes the bene-
fit of the “waiting” mechanism provided by RCU [26] (in
particular, the synchronize_rcu() and call_rcu() primitives).
In contrast, while using reference counters or hazard
pointers, programmers need to implement the “waiting”
mechanism by hand, which requires much more engineer-
ing effort.

4.1 Preliminaries

Read-Copy Update. RCU was originally developed for oper-
ating systems such as IBM’s K42 [27], and nowadays has
been widely used in the Linux kernel [28] and user-space

applications [29]. RCU works as a synchronization mecha-
nism to address read-write conflicts. In particular, it distin-
guishes between the read-side code and the write-side code
and has the following primitives:

– rcu_read_lock() / rcu_read_unlock()defines the read-
side critical section. Each time a thread wants to
access shared variables, it accesses them in a read-
side critical section, which begins with the primitive
rcu_read_lock()and ends with the primitive rcu_rea-
d_unlock(). Within a read-side critical section, the
thread is safe to access the shared resources; it does
not need to worry if these resources could be freed
simultaneously by other threads.

The hash table regular operations of DHASH are
protected by RCU read-side critical sections. That is,
before invoking the function ht_lookup(), ht_insert(),
or ht_delete(), which will be discussed later, a caller
must have entered an RCU read-side critical section
by invoking rcu_read_lock().

– synchronize_rcu() works as a wait-for-readers barrier.
This function blocks until all pre-existing RCU read-
side critical sections have completed. It can be used
in the rebuild operation of DHASH, for example, to
ensure that any lookup operations that might have
references to the old hash table complete before free-
ing the old hash table.

– call_rcu() is an asynchronous version of synchroni-
ze_rcu(). Instead of blocking, call_rcu() register a call-
back function and argument, which can be invoked
by a separate thread after all ongoing RCU read-side
critical sections have completed. The caller to call_-
rcu() can thus continue without blocking. The func-
tion call_rcu() is particularly useful in situations
where it is illegal to block or where update-side per-
formance is critically important. For example, call_-
rcu() is used in DHASH to safely reclaim nodes
memory without blocking the delete operation.

RCU synchronizes readers with writers by using con-
strained access order, instead of shared variables [30]. Any
RCU-protected node accessed by a reader is guaranteed to
remain unreclaimed until the reader completes its access
and calls rcu_read_unlock(). The production-quality imple-
mentations of rcu_read_lock() and rcu_read_unlock() are
extremely lightweight; they have exactly zero overhead in
the Linux kernels built for production use with CONFIG_-
PREEMPT=n [28] and have extremely close to zero over-
head in user-space applications when the QSBR flavor
model is used [29], such that readers of RCU-based data
structures can execute as fast as single-threaded programs.

Fig. 1. The workflow of DHASH’s rebuild operation. Bkt is short for Bucket. rebuild_cur points to the node in hazard period.
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API of DHASH ’s Bucket. DHASH is modular, and its buck-
ets can be implemented by using any lock-free or wait-free
set algorithm that implements the Application Program-
ming Interface (API) shown in Algorithm 1.

Algorithm 1: Structures and API of DHASH’s Bucket.

1: struct node flong key; <node *ptr, flag> nextg;
/* Hasbeenlogicallyremovedbydeleteoperation.*/

2: define LOGIC_RM (1UL < < 0)
/* Is being distributed by rebuild operation. */

3: define IN_HAZARD (1UL < < 1)
4: struct list fnode *headg;
5: struct snapshot fnode **prev, *cur, *nextg;
/* Search the node in list htbp . */

6: list_find(list *htbp, key, snapshort *sp)
/* Insert node htnp into list htbp . */

7: list_insert(list *htbp, node *htnp)
/* Search the node in list htbp , set the node’s

flag , and try to physically delete the node. */

8: list_delete(list *htbp, long key, long flag)

The data structures and API of DHASH’s bucket are shown
in Algorithm 1. The structure list, which will be used as the
implementation of DHASH’s buckets, is fundamentally a
chain of nodes. For each node, the key field holds the key value,
and the next field, which is a pointer, consists of two parts
called ptr and flag. The ptr field points to the following node
in the linked list if any, or has aNULL value otherwise. Since
pointers are at least word aligned on all currently available
architectures, the two least significant bits of next are used as
the flag field indicating if the node is in a special state. The
least significant bit, denoted as LOGIC_RM, indicates that a
node has been logically removed by a delete operation. The
second least significant bit, denoted as IN_HAZARD, indi-
cates that a rebuild operation is distributing this node from
the old hash table to the new one, and hence this node is in
its hazard period. The difference between these two states is
whether the node memory will be reclaimed when the node
is physically removed from the list, which we will discuss in
detail in the following paragraphs.

To return the search result of function list_find() to the
function invoking it, we borrowed the definition of the
structure snapshot from Michael’s classic lock-free linked list
[14]. Specifically, each time we want to search a node, an
instance of snapshot is passed to list_find(). Upon the comple-
tion of list_find(), it is guaranteed that the cur field of the
snapshot points to the list node containing the value that is
greater than or equal to the specified search key.

The set algorithm is required to implement three functions:
list_find(), list_insert(), and list_delete(). The function list_delete
() takes the third parameter flag. If flag is set to LOGIC_RM,
list_delete() deletes the matching node from the list and
reclaims the node memory. In contrast, if flag is set to IN_HA-
ZARD, the node memory will not be reclaimed because the
node will be inserted into the new hash table. The function
list_delete() does not block because it uses call_rcu() to asyn-
chronously reclaim a node. Note that call_rcu() is safe to be
invokedwithin an RCU read-side critical section [30].

Choice of Hash Functions. When rebuilding, DHASH

heavily relies on the choice of the hash function for the new
hash table to resolve hash collisions. Although DHASH allows

programmers to choose arbitrary hash functions, in prac-
tice, we suggest that they first utilize some widely-used
non-cryptographic hash functions (e.g., Jenkins’ hash func-
tion [31]) that are fast and have been empirically proved
to be “approximately” universal by changing their hash
seeds [32].

If the target buckets are still unacceptably long after
rebuilding, programmers are suggested to adopt a universal
hashing approach [5]. In universal hashing, the system first
creates a set of hash functions that are carefully designed,
and programmers randomly select one hash function from
the set for each hash table. Universal hashing guarantees
that for the same group of nodes, two randomly-selected
hash functions (one for the old hash table and another for
the new one) are extremely unlikely to both cause bad hash-
ing performance [5].

Overall, the proposed strategy for selecting new hash
functions can provide good average-case hashing perfor-
mance for DHASH , even if the existing hash function can-
not evenly distribute the incoming data, or if an adversary
has compromised the existing hash function. Specifically,
for any existing nodes (including those in the target buck-
ets), the expected length of the list in the new hash table
that the node hashes to is at most the load factor a ¼ n=m,
where n and m are the total number of the existing nodes
in DHASH and the number of buckets in the new hash table,
respectively (Theorem 11.3 of [33]). Moreover, for a
rebuilding scenario where the m and q (the number of
nodes in the target buckets) are 1,024 and 32, respectively,
the probability of at least 4 and 16 out of these q nodes
being hashed to the same bucket are 3:34 � 10�5 and 4:21 �
10�37, respectively (Theorem 4 in [34]), which shows that
by using the universal hashing approach, it is extremely
unlikely that the hash collisions in DHASH can remain after
rebuilding.

Two Implementations of DHASH. In this paper, we built and
evaluated two versions of DHASH: one by using Michael’s
classic lock-free linked list [14] as the implementation of its
buckets, and another by using a concurrent linked list algo-
rithm [35] that provides wait-free lookup operations. To
keep our presentation self contained, we take Michael’s
linked list [14] as an example and discuss how we modify it
before using it in DHASH in Appendix A, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2022.3151499.

4.2 Data Structures

Algorithm 2 lists the data structures and auxiliary functions
of DHASH. The main structure, ht, is an array of buckets (bkts
[]), with the array length stored in the nbuckets field. Each
element of bkts is fundamentally a pointer to an instance of
list, an RCU-based lock-free or wait-free set algorithm that
provides the API shown in Algorithm 1. The hash field is a
function pointer to the user-specified hash function. The
ht_new field remains NULL unless a rebuild operation is in
progress, in which case it points to the newly-allocated hash
table that is going to replace the old one. The global variable
rebuild_cur points to the node that is currently in the hazard
period or is equal to NULL if there is no such a node. The
mutex lock rebuild_lock is to serialize attempts to rebuild the
hash table. Note that the workload of rebuilding a hash
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table can be parallelized by creating a group of rebuilding
threads, which will be discussed in Section 4.7.

The helper function logically_removed(htnp) checks
whether the LOGIC_RM bit of the next field of the node
pointed to by htnp has been set. The helper function ht_alloc
() creates a new instance of the hash table and allows users
to specify its hash function. Note that the hash function,
once set, cannot be changed, and is shared among all
rebuilding threads and worker threads accessing this hash
table instance.

Algorithm 2. Structures and Auxiliary Functions.

9: struct ht fht *ht_new; long (*hash)(long key); int nbuckets;
list *bkts[]g;
/* Global variables. */

10: struct node *rebuild_cur;
11: mutex rebuild_lock;
12: #define logically_removed(htnp) (htnp->next &LOGIC_RM)
13: clean_flag(node *htnp, long flag) {
14: atomic_fetch_and(htnp->next, �flag);
15: g
16: ht_alloc(ht *htp, int nbuckets, long (*hash)(long key)) {
17: htp->ht_new := NULL; htp->hash := hash;
18: htp->nbuckets := nbuckets; htp->bkts := allocate(nbuckets);
19: g

4.3 Rebuild Operation

The pseudocode for the rebuild operation is shown in
Algorithm 3. Line 22 attempts to acquire the global lock
rebuild_lock, which serializes concurrent rebuild attempts.
Note that the lock rebuild_lock is transparent to concur-
rent regular operations and thus can never block any of
them. Once a rebuild operation has the lock, it checks
again that the rebuild is still required on line 23. Line 24
allocates a new hash table with the user-specified bucket
array size and hash function. Line 25 assigns the new
hash table to the ht_new field of the old hash table, allow-
ing subsequent operations to access the new hash table.
Line 26 performs an RCU synchronization barrier to wait
for prior regular operations, which may not be aware of
the new hash table, to complete before the rebuild opera-
tion continues.

The function ht_rebuild() traverses the old hash table and
distributes every node to the new hash table (lines 27–44).
Before distributing each node, the function ht_rebuild() first
enter an RCU read-side critical section (line 29) to prevent
concurrent delete operations from erroneously reclaiming
the node, while ht_rebuild() is still accessing it. Then, the
global variable rebuild_cur points to the node on line 30. The
two write barriers on lines 31 and 40 pair with the read bar-
riers in ht_lookup() and ht_delete(). They together guarantee
that ht_rebuild()’s updates to rebuild_cur and the two hash
tables are performed in program order with respect to con-
current regular operations. Note that, for ease of presenta-
tion, we omit memory order specifications in the
pseudocode. In practice, all accesses to the bucket pointers
(e.g., htbp), the node pointers (e.g., htnp), ht_new, and
rebuild_cur must be made with the specifications of std::
memory_order_acquired or release [36].

Algorithm 3: Rebuild Operation of DHASH.

Parameters: nbuckets: Size of the bucket array.
hash: User-specified hash function.

20: Local variables: struct node *htnp, *htbp, *htbp_new;
struct ht *htp_new;

21: void ht_rebuild(ht *htp, nbuckets, hash) {
22: if ( trylock(rebuild_lock) != SUCCESS ) return -EBUSY;
23: if ( ! rebuild_is_required() ) return -EPERM;
24: htp_new := ht_alloc(htp, nbuckets, hash);
25: htp->ht_new := htp_new;

/*Waitfor operations not awareof htp_new . */

26: synchronize_rcu();
27: for each bucket htbp in htp {
28: for each node htnp in htbp {
29: rcu_read_lock();
30: rebuild_cur := htnp;
31: smp_wmb();
32: key := htnp->key;
33: if (list_delete(htbp, key, IN_HAZARD)!= SUCCESS)//Hflag
34: continue;
35: clean_flag(htnp, IN_HAZARD)/* unHflag */;
36: htbp_new := htp_new->bkts[htp_new->hash(key)];
37: if list_insert(htbp_new, htnp) != SUCCESS {
38: call_rcu(htnp, free_node);
39: g
40: smp_wmb();
41: rebuild_cur := NULL;
42: rcu_read_unlock();
43: g
44: g

/* Wait for operations accessing nodes via

htp->bks[] . */

45: synchronize_rcu();
46: htp_tmp := htp; htp := htp_new;

/*Waitforoperationsaccessingoldhashtable. */

47: synchronize_rcu();
48: unlock(rebuild_lock);
49: free(htp_tmp);
50: return SUCCESS;
51: g

Line 33 deletes the node from the old hash table. The
function list_delete() receives a third argument IN_HA-
ZARD, indicating that the node with the matching key will
be deleted from the old hash table, but its memory will not
be reclaimed. If this delete operation fails, which implies
that the node has been deleted by other concurrent delete
operations since the reference to the node was fetched on
line 28, the rebuild operation skips this node (line 34). Oth-
erwise, the node has been physically removed from the old
hash table. It is guaranteed that rebuild_cur points to this
physically-removed node, because once rebuild operations
are in progress, no new node (possibly with the identical
key) can be inserted into the old hash table (discussed in
detail in Section 4.6). Line 35 then prepares the node for
reuse by cleaning the IN_HAZARD bit and the ptr part of its
next field. Note that if the LOGIC_RM bit has been set by
another concurrent delete operation, it remains. Since the
node can be logically removed by other concurrent delete
operations, clean_flag() uses an atomic primitive (line 13).
Then, line 37 inserts the node into the proper bucket of the
new hash table. This insertion generally succeeds. It fails
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only if the node referenced by the global pointer rebuild_cur
is logically deleted by a concurrent delete operation (dis-
cussed in Section 4.5), and then a new node with identical
key is inserted into the new hash table before line 37 is per-
formed. In this case, line 38 invokes call_rcu(), which
reclaims the node after currently unfinished operations
pointing to this node have been completed. After the node
has been inserted into the new hash table, the global pointer
rebuild_cur is set back to NULL.

After distributing the existing nodes in the old hash
table, line 45 waits for prior unfinished operations, which
may be holding references to the distributed nodes. Line 46
sets the new hash table as the current one, and line 47 waits
for prior unfinished operations that may be holding referen-
ces to the old hash table. Then, line 48 releases the global
lock, line 49 frees the old hash table, and finally, line 50
returns success.

For each iteration, ht_rebuild() deletes a node from the old
hash table and then inserts it into the new hash table, reus-
ing the node’s memory. One potential issue with this dis-
tributing mechanism is that it may redirect lookup
operations traversing the old hash table to the wrong lists.
For example, suppose that a lookup operation is traversing
a hash bucket in the old hash table and is pointing to the
node a. At the same time, the rebuild operation distributes
a by inserting it into the new hash table. This can redirect
the lookup operation to the bucket in the new hash table,
and result in a false negative if the node with the matching
key is at the bottom of the linked list in the old hash table.
There are two solutions to this problem.

(1) Each node contains an extra integer field called bkt_id,
which records the id of the bucket where the node is stored.
Before traversing a list, a lookup operation first reads and
remembers the id of the bucket. Each time the lookup opera-
tion moves to a new node, it compares the value stored in
the bkt_id field with the stored bucket id, and starts over if
they are not equal. This approach introduces negligible per-
formance overhead because accessing the bkt_id field does
not involve any atomic instructions. The shortcoming of
this approach, however, is that lookup operations may start
over when a rebuild operation is distributing nodes. Note
that, even though lookup operations may start over, they
will not be blocked because when rebuilding, the length of
the lists in the old hash table is limited, and therefore the
lookup operations can complete in a finite number of steps.

(2) After a node has been deleted from the old hash table,
and before this node is inserted into the new hash table, the
rebuild operation invokes a synchronize_rcu() barrier and
waits until all of the prior regular operations complete and
leave their RCU read-side critical sections. Even though this
approach can slow down the rebuild operation, it saves the
bkt_id field in each node and prevents lookup operations
from starting over. Given that rebuild operations should be
relatively infrequent, we believe this approach is a valuable
option for use cases where extremely fast lookup operations
are required.

Overall, for DHASH implementations that need to provide
extremely fast lookup operations, the second solution best
meets the requirements. Otherwise, the first one is the solu-
tion of choice. The two implementations of DHASH presented
in this paper (discussed in Section 6.1) use the first solution.

4.4 Lookup Operation

The pseudocode for the lookup operation is presented in
Algorithm 4. This function first searches for the specified
key value in the old hash table (line 54). If a node with the
matching key can be found, a pointer to the node is returned
(line 54). Otherwise, line 55 checks whether a rebuild opera-
tion is in progress, and line 55 returns -ENOENT if rebuild
operations are absent. The two read barriers on lines 56 and
61 pair with the two write barriers in ht_rebuild(). Line 58
continues the lookup operation by checking the node
pointed to by the global pointer rebuild_cur. Recall that
rebuild_cur always points to the node that is currently in its
hazard period. If the node pointed to by rebuild_cur matches,
and if the LOGIC_RM bit of the next field of this node has
not been set, which means that the node has not been logi-
cally deleted by concurrent delete operations, line 59 returns
a pointer to the node. Otherwise, ht_lookup() continues by
searching the new hash table and returns a pointer to the
node if the function list_find() succeeds (line 64).

Algorithm 4: Lookup Operation of DHASH.

Local variables: struct node *cur, *htbp, *htbp_new; struct ht
*htp_new; struct snapshot ss;

52: node *ht_lookup(ht *htp, long key) {
53: htbp := htp->bkts[htp->hash(key)];
54: if (list_find(htbp, key, &ss) = SUCCESS) f return ss.cur g;
55: if (htp->ht_new = NULL) f return -ENOENT g;
56: smp_rmb();
57: cur := rebuild_cur;
58: if cur and (cur->key = key) and !logically_removed(cur) {
59: return cur;
60: g
61: smp_rmb();
62: htp_new := htp->ht_new;
63: htbp_new := htp_new->bkts[htp_new->hash(key)];
64: if (list_find(htbp_new, key,&ss) = SUCCESS) f return ss.cur g;
65: else return -ENOENT;
66: g

Algorithm 4 shows that a lookup operation first searches
for the node with the matching key in the old hash table
(line 54), then checks the node referenced by the global
pointer rebuild_cur (line 58), and finally searches in the new
hash table (line 64). This manipulation order guarantees
that lookup operations can always find the node. That is,
the following lemma holds:

Lemma 1. If DHASH contains a node a with the key value of k,
the function ht_lookup(k) can find a, no matter if a rebuild
operation is in progress.

Proof. Obviously, if there are no rebuild operations, the
node a resides in the only hash table. The function
ht_lookup(K) can find the node in the only hash table (lines
53 - 54).

We then prove that ht_lookup(K) can find the nodewhen
a rebuild operation is in progress. Note that we assume
that the set algorithm used as the implementation of hash
table buckets is linearizable, which is the case for most
existing non-blocking set algorithms. Therefore, in the fol-
lowing proof, the three list operations, list_find(), list_insert
(), and list_delete(), can be treated as atomic operations that
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take place as “point” events [14], [23] in the execution
history of DHASH. The code snippet to distribute a
node is shown on lines 30–41 in Algorithm 3. We use
writerebuildðrebuild cur;aÞ to denote the event in which
the thread running the rebuild operation (henceforth
rebuild thread for short) writes the address of the node
a to the global variable rebuild_cur (line 30), and use
deleterebuildðold;aÞ and insertrebuildðnew;aÞ to denote the
events in which a is deleted from and inserted into the
old and the new hash tables, respectively (lines 33
and 37). Similarly, we use lookuplookupðold;aÞ and
lookuplookupðnew;aÞ to denote the events in which the
thread running lookup operations (henceforth lookup
thread for short) searches for the node a in the old and the
new hash tables, respectively (lines 54 and 64). We use
lookuplookupðrebuild cur;aÞ to denote the event in which
the lookup thread checks the node pointed to by rebuild_-
cur (line 58). In the following proof, since the rebuild
thread is the only thread that performs write, delete, and
insert operations, and the lookup thread is the only thread
that performs lookup operations, we omit the thread sym-
bol without introducing any ambiguity. For brevity, we
use the acronym rbc to stand for rebuild_cur. One event e1
precedes another event e2, written e1 � e2 , if e1 occurs at
an earlier time.

By inspecting the code of ht_rebuild() in Algorithm 3,
we get the following event sequence

writeðrbc;aÞ � deleteðold;aÞ � insertðnew; aÞ � writeðrbc;?Þ
(1)

By inspecting the code of ht_lookup() in Algorithm 4,
we get the following event sequence

lookupðold;aÞ � lookupðrbc; aÞ � lookupðnew;aÞ (2)

When the rebuild and the lookup threads are simulta-
neously accessing the node a, there are three types of
interleaving between these two threads:

� lookupðold;aÞ � deleteðold;aÞ, which implies that
the lookup thread searches for the node a before
the rebuild thread starts distributing the node.
Thus, a can be found in the old hash table, and
the lookup operation can return a pointer to a on
line 54.

� insertðnew;aÞ � lookupðnew;aÞ, which implies
that the lookup thread searches for the node a after
it has been inserted into the new hash table by the
rebuild thread. Thus, a can be found in the new
hash table, and the lookup operation can return a
pointer to a on line 64.

� deleteðold;aÞ � lookupðold;aÞ � � � � � lookup
ðnew;aÞ � insertðnew;aÞ, which implies that the
lookup thread searches for the node a which is in
the hazard period. Combined with the event
sequences 1 and 2, we get the following event
sequence:

writeðrbc; aÞ � deleteðold;aÞ � lookupðold;aÞ �
lookupðrbc; aÞ � lookupðnew;aÞ � insertðnew;
aÞ � writeðrbc;?Þ

It follows that:

writeðrbc; aÞ � lookupðrbc; aÞ � writeðrbc;?Þ
Once the global pointer rbc is set to point to

the node a it remains. Hence the lookup thread
can find a via rbc and can return a pointer to it
on line 59.

Overall, if there is a node with the matching key in
DHASH, it is guaranteed that the function ht_lookup(k) can
find the node and return a pointer to it, no matter if a
rebuild operation is in progress. tu

4.5 Delete Operation

Recall that when DHASH is rebuilding, a node can (1) resides
in either the old or the new hash table, or (2) is in the hazard
period and is referenced by the global pointer rebuild_cur.
Therefore, the challenges that the delete operation of DHASH

must address are (1) how to find the node, and then (2) how
to delete this node which is concurrently being distributed
from the old hash table to the new one by the rebuild
operation.

To address the first challenge, the delete operation uses
the same manipulation order as ht_lookup() (shown in Algo-
rithm 4). That is, the delete operation first searches for the
node with the matching key in the old hash table, then
checks the node referenced by the global pointer rebuild_cur,
and finally searches in the new hash table. Lemma 1 guaran-
tees that if a node with the matching key is in DHASH, the
function ht_delete() can always find this node.

To address the second challenge, DHASH adopts a classic,
lightweight mechanism, by separating the deletion of a
node into two stages: logical and physical deletions [14], [37].
The first stage is to mark a node to prevent subsequent
lookup operations from returning this node, and to prevent
subsequent insert/delete operations from inserting/delet-
ing nodes after this node. Marking a node is notably by
using a cas operation that sets the least significant bit (i.e.,
the LOGIC_RM in this paper) of the next field of the node.
The second stage, which is typically performed by subse-
quent lookup operations, is to physically remove the node
from the list by swinging the next pointer of the previous
node to the next node in the list and then reclaiming the
node memory.

The pseudocode for the delete operation is shown in
Algorithm 5. The function ht_delete() first attempts to delete
the node from the old hash table on line 70. Then, it contin-
ues by checking if a rebuild operation is in progress on line
73. The two read barriers on lines 74 and 83 pair with the
two write barriers in ht_rebuild(). If a rebuild operation is in
progress, ht_delete() checks the node referenced by rebuild_-
cur, and attempts to delete the node by setting the LOG-
IC_RM bit if the node has the expected key value (line 79).
Since the rebuild operation can simultaneously clean the
IN_HAZARD bit (line 35) and/or update the ptr field (line
37) of this node, ht_delete() uses a loop that repeatedly sets
the LOGIC_RM bit by using a cas instruction, which can fail
at most two times. If other concurrent delete operations
have successfully deleted this node, ht_delete() skips this
node (line 78). The delete operation continues by attempting
to delete the node with the matching key from the new hash
table (line 85). If the delete operation fails, line 87 returns
-ENOENT, indicating that no node with the matching key
can be found in DHASH.
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Algorithm 5: Delete Operation of DHASH.

67: Local variables: struct node *cur, *htbp, *htbp_new;
struct ht *htp_new;

68: int ht_delete(ht *htp, long key) {
69: htbp := htp->bkts[htp->hash(key)];
70: if (list_delete(htbp, key, LOGIC_RM) = SUCCESS)/*Rflag*/
71: return SUCCESS;
72: htp_new := htp->ht_new;
73: if (htp_new = NULL) return -ENOENT;
74: smp_rmb();
75: cur := rebuild_cur;
76: while cur and (cur->key = key) {
77: cur_next := cur->next;
78: if (cur_next &LOGIC_RM) break;
79: if (cas(cur->next, cur_next, cur_next | LOGIC_RM))

/*Rflag*/
80: return SUCCESS;
81: cur := rebuild_cur;
82: g
83: smp_rmb();
84: htbp_new := htp_new->bkts[htp_new->hash(key)];
85: if (list_delete(htbp_new, key, LOGIC_RM) =

SUCCESS)/*Rflag*/
86: return SUCCESS;
87: return -ENOENT;
88: g

To prove that the delete operation of DHASH can success-
fully delete the expected node, while a rebuild operation is
distributing this node, we illustrate the possible values of
the two least significant bits of the next field (the flag field
henceforth) of a node and the sequence of changes the
node’s flag field can go through in Fig. 2. The labels in the
boxes show the values of the flag field, and the labels of the
transitions show the corresponding cas instructions and line
numbers in the pseudocode. For example, the right-most
box shows that both the IN_HAZARD and LOGIC_RM bits
have been set, indicating that while the node is being dis-
tributed by the rebuild operation (between lines 33 and 35),
a delete operation finds it via the global pointer rebuild_cur
and successfully deletes it on line 79. The flag field of a node
is initially clean (the left-most box) and can only be changed
by the following cas operations. (1) To distribute the node,
the rebuild operation sets the IN_HAZARD bit of the node
on line 33, and after physically removing this node out of
the old hash table, cleans the IN_HAZARD bit on line 35.
We refer to these two cas steps as Hflag and unHflag, respec-
tively. (2) To delete the node, a delete operation sets the

LOGIC_RM bit of the node on either line 70, 79, or 85. We
refer to these cas steps as Rflag.

By examining the pseudocode in Algorithms 3 and 5, we
can see that these cas operations proceed in the orderly way
shown in Fig. 2, and that the sequence of changes shown in
Fig. 2 reflects all possible changes to the flag field of the
node. For example, each time a node is distributed from the
old hash table to the new one, its flag field walks through
the top left circuit (transitions labeled Hflag and unHflag).
Fig. 2 illustrates that the following statements are true for
each node.

� No matter if the IN_HAZARD bit has been set,
exactly one delete operation can succeed, by setting
the LOGIC_RM bit of the node (via one of the two
Rflag CASes).

� If the IN_HAZARD bit is set, it is eventually cleaned
via one of the two unHflag CASes, and the unHflag
CASes leave the LOGIC_RM bit untouched.

� Once the LOGIC_RM bit is set, it remains; a node that
has been deleted eventually reached the state repre-
sented by the shaded box in Fig. 2.

Moreover, by examining the code, we can see that once a
node’s LOGIC_RM bit is set, no concurrent lookup opera-
tions can return this node. Instead, they help physically
remove this node. With all these facts, we get the following
lemma:

Lemma 2. No matter where the node is (either in one of the hash
tables, or is referenced by rebuild_cur), a delete operation can
successfully delete it by setting its LOGIC_RM bit.

Overall, we can prove that the following lemma holds:

Lemma 3. If DHASH contains a node a with the key k, the func-
tion ht_delete(k) can delete the node a by successfully setting
its LOGIC_RM bit, no matter if a rebuild operation is in
progress.

Proof. The function ht_delete(k) fundamentally performs a
lookup operation along with a logical deletion if the node
can be found. Lemma 1 guarantees that if a node with the
required key is in DHASH, the function ht_delete() can
always find this node. Moreover, Lemma 2 guarantees
that once the node can be found, the delete operation can
successfully delete it. tu
Note that Fig. 2 also allows us to naturally choose the lin-

earization points for delete operations: each successful
delete operation is linearized at the successful Rflag CAS.

4.6 Insert Operation

The basic idea of DHASH’s insert operation is as follows.
When there are no rebuild operations, which is the common
case, DHASH inserts new nodes into the only (i.e., old) hash
table. Otherwise, new nodes are inserted into the new hash
table. (For ease of presentation, we refer to insert operations
that add a node with key k into the old and the new hash
table as IO(k) and IN(k), respectively.)

However, simply applying this strategy in practice might
lead to concurrency issues because when rebuild operations
are in progress, IO(k) and IN(k) may exist simultaneously,
such that some synchronization mechanisms are required to

Fig. 2. Sequence of changes a node’s flag field can go through. The
labels in the boxes show the values of the flag field of the node. Each of
the transitions corresponds to a successful cas instruction, and the label
shows the specific cas instruction along with its line number in the
pseudocode.
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prevent IO(k) and IN(k) from inserting duplicate nodes in
DHASH.

To that end, we adopt a lightweight and conceptually
straightforward synchronization strategy that consists of
two aspects. (1) Once a rebuild operation starts, IO(k) stops
inserting nodes into the old hash table. Instead, IO(k) starts
over and then attempts to insert the node into the new hash
table (i.e., it becomes an IN(k)). (2) An IN(k) first checks if
any node with key k already exists in the old hash table or is
currently referenced by rebuild_cur, before attempting to
insert its own node into the new hash table. Fig. 3 illustrates
how DHASH’s insertion works. The initial state of the hash
table is the same as that in Fig. 1b, and thread T attempts to
insert k, m, and then a into DHASH. We assume that the
rebuild operation starts while thread T is performing IO(k),
such that IO(k) will fail and become an IN(k), shown in
Fig. 3a. Thread T is then aware of the rebuild operation,
such that subsequent insertions (e.g., m) directly occur in the
new hash table, shown in Fig. 3b. The insertion of node a

fails, because before performing IN(a), thread T performs a
lookup operation which returns an error message indicating
that another node with identical key value has been in
DHASH, shown in Fig. 3c.

Specifically, we implement the function list_insert_dcss
(), a variant of the standard insert operation of the under-
lying buckets discussed in Algorithm 1, that allows us
to insert a node into the underlying bucket only if rebuild
operations are absent. The function list_insert_dcss()
returns -EADDR1 if a rebuild operation started before it
linearizes; otherwise, it works as if it were the standard lis-
t_insert() (i.e., it returns SUCCESS if the node is success-
fully inserted into the list, and -EEXIST if such a node
already existed in the bucket.)

The implementation of the function list_insert_dcss() is
similar to that of the standard list_insert(), except that the
statement where a successful list_insert() operation linear-
izes, which is notably a cas or write instruction, is replaced
with Harris et al.’s lock-free double-compare-and-single-
swap (dcss) primitive [38]. The dcss primitive is imple-
mented from normal cas instructions, and takes five argu-
ments: two addresses, two expected values, and one new
value, and can atomically (1) read the two memory
addresses, (2) check if they contain the expected values, and
(3) if so, write the new value into the second address. There-
fore, by setting the first memory address and the expected
value in this address to htp->htp_new and NULL, respec-
tively, the function list_insert_dcss() can successfully insert

the node into the list only if rebuild operations are absent.
Once a rebuild operation has started, and the htp->htp_new
field has been set to point to the newly-allocated hash table
on line 25, list_insert_dcss()will fail and start over.

The use of the dcss primitive is motivated by Arbel-Raviv
and Brown’s non-blocking range query algorithms [39].
Appendix A, available in the online supplemental material
shows the implementation of list_insert_dcss() for Michael’s
classic lock-free linked list algorithm [14].

Algorithm 6: Insert Operation of DHASH.

89: Local variables: node *htnp, *htbp, *htbp_new; ht *htp_new;
90: int ht_insert(ht *htp, long key) {
91: retry:
92: htnp := allocate_node(key);
93: htp_new := htp->ht_new;
94: if htp_new = NULLf

/* IO(k) */

95: htbp := htp->bkts[htp->hash(key)];
96: ret := list_insert_dcss(&htp->htp_new, NULL, htbp, htnp) ;
97: if (ret = SUCCESS) return SUCCESS ;
98: else if (ret = -EADDR1) ffree(htnp); goto retry (line 91);}
99: g
100: elsef

/* IN(k) */

101: if (ht_lookup(htp, key) = SUCCESS) ffree(htnp); return
-EEXIST;g

102: htbp_new := htp_new->bkts[htp_new->hash(key)];
103: if (list_insert(htbp_new, htnp) = SUCCESS)
104: return SUCCESS;
105: g
106: free(htnp);
107: return -EEXIST;
108: g

Algorithm 6 shows the pseudocode for the insert operation
of DHASH. The function first allocates a new node, initializes it
(line 92), and then checks if a rebuild operation is in progress
(line 94). For an IO(k), the function list_insert_dcss()will fail if a
rebuild operation starts during the time gap between lines 93
and 96 of this insert operation. In this case, list_insert_dcss()
returns an error message -EADDR1. Upon receiving this mes-
sage, IO(k) starts over (line 98), and in the subsequent inser-
tion attempt, it can see the new hash table (line 93) and will
insert the node into it. That is, it becomes IN(k). Note that the
RCUmechanism (line 26) prevents another rebuild operation
from starting before this IO(k) completes, such that an IO(k)
restarts at most once. That is, the following lemma holds:

Lemma 4. Once a rebuild operation has started, IO(k) will fail,
start over, and then attempt to insert the node into the new
hash table; that is, it becomes IN(k).

An IN(k) first performs a lookup operation on line 101,
and then attempts to insert the node into the new hash table
(line 103). By examining the code, we can prove that the fol-
lowing lemma holds:

Lemma 5. When IN(k) attempts to insert a node a with key k
into the new hash table on line 103, it is guaranteed that (1) the
old hash table does not contain any node with key k, and (2) the
node referenced by rebuild_cur does not have the key k.

Fig. 3. The interaction between hash table insert and rebuild operations.
Thread T attempts to insert k, m, and then a, while a rebuild operation is
in progress. Shaded boxes indicate that the corresponding insertion
attempts failed.
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Proof.When IN(k) performs the lookup operation on line 101,
which implies that a rebuild operation has started, Lemma
4 guarantees that no new nodeswill be inserted into the old
hash table. Moreover, if any existing node in DHASH has the
key k, Lemma 1 guarantees that this lookup operation can
find it, and return the error message -EEXIST. Since a new
nodewith key k can be inserted into the newhash table dur-
ing the time gap between lines 101 and 103 of this insert
operation, we can only guarantee that the node with key k
cannot appear in the old hash table and cannot be refer-
enced by rebuild_curwhen IN(k) performs the line 103. tu
With Lemma 4 and 5, now we can prove that the follow-

ing lemma holds:

Lemma 6. If DHASH does not contain a node with key k, the
function ht_insert(k) can successfully insert a node a with key
k in DHASH; otherwise, the error message -EEXIST is returned
without changing the hash table, no matter if a rebuild opera-
tion is in progress.

Proof. Obviously, if there are no rebuild operations, the
value of htp->htp_new is always equal to NULL, such that
the function ht_insert(k) always attempts to insert the
node a into the only hash table (lines 94 – 98).

When rebuild operations are in progress, IO(k) and IN
(k) can exist simultaneously. However, Lemma 4 guaran-
tees that IO(k)will start over and become IN(k). Therefore,
the function ht_insert(k) always attempts to insert the
node a into the new hash table. Moreover, Lemma 5 guar-
antees that a duplicate nodewith key k can neither exist in
the old hash table nor be referenced by rebuild_cur.

Overall, DHASH always attempts to insert new nodes
into either the old or the new hash table, depending on
whether rebuild operation are absent, such that the insert
operation of DHASH complies with the standard specifi-
cation for the insert operation of a normal hash table. tu
Note that the original implementation of the dcss primi-

tive [38] uses a helping mechanism, which can lead to poor
performance because each dcss operation needs to dynami-
cally allocate (and later, free) an Info object that holds the
required information for helping. To address this perfor-
mance issue, we applied the following optimizations in our
implementation. (1) Motivated by Arbel-Raviv and Brown’s
research results [40], the Info objects for the dcss operation
are pre-allocated and reused. Additional fields such as
sequence numbers and flags are used to prevent insert oper-
ations from erroneously reading improper information from
these shared, global objects [40]. (2) The Info objects are care-
fully placed and properly aligned in memory to avoid cache
thrashing [41], when multiple insert operations update
them simultaneously. (3) Lookup operations that might
access these objects utilize hardware prefetch unit as much
as possible by prefetching the possible objects before access-
ing their contents. Experimental results show that our dcss
implementation introduces negligible overhead to DHASH

in terms of throughput and operation latency.

4.7 Parallelizing Rebuild Operation

Even though the rebuild operation of DHASH is lightweight
(demonstrated in Section 6.3), it is expected to be completed

as soon as possible. To that end, we parallelize the rebuild
operation by leveraging the thread-level parallelism [41].

The basic idea behind our parallelizing strategy is that in
distributing the nodes of the old hash table, different buck-
ets can be processed in parallel, since they are mainly inde-
pendent of one another. Specifically, when rebuilding, the
rebuild operation of DHASH create a group of n threads
(referred to as rebuilding threads), each of which is bind to a
dedicated CPU core. We then divide the bucket range of the
old hash table to n interleaved regions, and then assign dif-
ferent regions to different rebuilding threads. That is, the
bucket b is assigned to the rebuilding thread i if b % n = i.
Each rebuilding thread takes the argument of a region of
buckets, and distributes the nodes in these buckets to the
new hash table by using the program logic shown on lines
27 – 44 in Algorithm 3. The only modification is that
rebuild_cur becomes a global, per-thread variable; each
rebuilding thread has its own rebuild_cur, which points to
the node that is being distributed by this thread and is in
the hazard period. Rebuilding threads may simultaneously
insert nodes into the same bucket in the new hash table,
which is synchronized by the lock-free or wait-free set algo-
rithm used as the implementation of the buckets.

Accordingly, each time a lookup, insert, or delete opera-
tion wants to check if a node with the matching key is in the
hazard period, it checks the rebuild_cur pointers of all rebuild-
ing threads. For example, for the function ht_lookup() (Algo-
rithm 4), the only modification is that the code snippet on
lines 57 – 60 will be included in a for-loop statement, and
that each iteration checks the node that is being pointed to
by one rebuilding thread’s rebuild_cur pointer. One benefit
of our parallelizing strategy is that except for letting the
lookup, insert, and delete operations to check a group of
rebuild_cur, the control flow of these operations remains, sig-
nificantly simplifying the proof of the correctness of DHASH

when a parallelized rebuild operation is running.

5 CORRECTNESS

In this section, we prove that DHASH is linearizable and imple-
ments an node set object in a lock-free or wait-free manner,
depending on the implementation of the hash table buckets.

Set Semantics. We first define the set H of nodes of DHASH

in any given state as follows: if rebuild operations are
absent, H is composed of the non-logically-removed nodes
in the only (i.e., old) hash table; otherwise, H is the union of
(1) the non-logically-removed nodes in both the old and the
new hash tables, and (2) the non-logically-removed nodes
that are referenced by the rebuild_cur pointers.

We then claim that DHASH complies with the abstract set
semantics, and we use the standard sequential specification
defined in [33] that includes the following three functions:

� The ht_lookup(k) operation returns a pointer to the
node with key k in H, -ENOENT otherwise.

� The ht_insert(k) operation returns SUCCESS if a node
with key k is successfully inserted into H, and -EEX-
IST if such a node already existed in H.

� The ht_delete(k) operation returns SUCCESS if the
node with key k was successfully deleted from H,
and -ENOENT if such a node cannot be found in H.
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Wefirst prove that DHASH is linearizable to this sequential
specification. That is, each of DHASH’s regular operations has
specific linearization points, where the operation takes
effect and maps the operation in our concurrent implemen-
tation to sequential operations so that the histories meet
the specification.

Recall that DHASH is modular, and that any linearizable
lock-free or wait-free set algorithm (e.g., linked lists) that
implements the API listed in Algorithm 1 can be used as the
implementation of DHASH’s bucket. The execution histories
of DHASH include sequences of list operations (list_find, lis-
t_insert, and list_delete) which can be treated as atomic opera-
tions because they are linearizable objects [14], [23].
Moreover, we prove in Appendix A, available in the online
supplemental material that the function list_insert_dcss() is
linearizable.

Linearization Points. For each of DHASH’s regular opera-
tions, linearization points exist within its execution interval,
so that at this point, it atomically reads or changes the node
set H.

(1) Every lookup operation that finds the node with the
expected key via rebuild_cur, or in the old or the new hash
table is linearized on line 57, 54, or 64, respectively. When
rebuild operations are absent, every lookup operation that
returns -ENOENT is linearized on the first invocation of list_-
find() (line 54). In contrast, when rebuild operations are in
progress, defining the linearization point for a lookup opera-
tion that returns -ENOENT is a bit intricate, because there is a
time gap between ht_lookup() searches the old hash table (on
line 54) and checks the existence of rebuild operations (on line
55), such that a new node with the desired key might be
inserted into the old hash table after it has been searched.
Therefore, in this case, we linearize the unsuccessful lookup
operation within its execution interval at the earlier one of the
following points: (1) the point immediately before a new node
with the expected key is inserted into the old hash table, and
(2) the point where the search on the new hash table returns
-ENOENT. This linearization point definition is motivated by
Heller et al.’s classic concurrent set implementation [35].

(2) Similar to the lookup operation, every successful
delete operation that finds the node with the required key
via rebuild_cur takes effect on line 79. For other successful
cases, the delete operation linearizes in either of the two
invocations of list_delete() (line 70 or 85). When rebuild oper-
ations are absent, every delete operation that returns
-ENOENT linearizes on the first invocation of list_delete()
(line 70). When rebuild operations are in progress, we line-
arize the unsuccessful delete operation within its execution
interval at the earlier one of the following points: (1) the
point immediately before a node with the expected key is
inserted into the old hash table, and (2) the point where the
invocations of list_delete() on line 85 returns -ENOENT.

(3) Every successful IN(k) linearizes in the invocation of
list_insert() on line 103. Unsuccessful IN(k) linearizes on line
101 or 103, depending on where the existing node with the
required key is found. IO(k) that fails because of the exis-
tence of concurrent rebuild operations (i.e., the return value
of list_insert_dcss() is equal to -EADDR1) will attempt to
insert the node into the new hash table and linearizes as an
IN(k) does. Otherwise, IO(k) linearizes in the invocation of
list_insert_dcss() (line 96).

Given the above definition, it is straightforward to
deduce from Lemmas 1, 3, and 6 that for each of DHASH’s
regular operations, within its execution interval, there is a
linearization point at which the operation reads or modifies
the abstract state H, according to the specified set semantics.
That is, the following lemma hold:

Theorem 1. DHASH is a linearizable implementation of a sequen-
tial set object.

Progress Guarantee. The lookup, insert, and delete opera-
tions of DHASH are non-blocking and can provide lock-free
or wait-free progress guarantee, depending on the underly-
ing set algorithm used.

(1) A lookup operation ht_lookup() invokes the list operation
list_find() twice. Other statements are regular instructions,
which can complete in a finite number of CPU cycles. One cor-
ner case is that for some list implementations, the function
list_find()may need to help other concurrent insert operations,
which can be continuously inserting new nodes into the same
linked list via the dcss primitive (discussed in Appendix A,
available in the online supplemental material). However, the
progress guarantee of list_find() does not degenerate, despite
this helping workload, because each time it helps a pending
insert operation, it moves forward one node, and this can hap-
pen only a limited number of times. Otherwise, a rebuild oper-
ation is incurred, preventing subsequent insert operations
from inserting nodes into this list in the old hash table.

(2) A delete operation invokes the list operation list_delete
() twice, and utilizes call_rcu() that is non-blocking. As dis-
cussed in Section 4.5, the cas operation on line 79 fails at
most twice. Other statements are regular instructions.

(3) The function list_insert_dcss() is a variation of the func-
tion list_insert(), such that they have the same progress guar-
antee. An IO(k) jumps to the label retry and starts over at most
once. Therefore, an insert operation invokes either the func-
tion list_insert_dcss() or list_insert() once for most cases, and
when there are concurrent rebuild operations, it may invoke
both of themonce. Other statements are regular instructions.

In summary, DHASH provides a wait-free framework for
regular operations. For the implementation of DHASH utiliz-
ing Michael’s lock-free linked list, the lookup, insert, and
delete operations are lock-free. However, since DHASH is
modular, programmers can instead choose a wait-free
linked list and build their own DHASH that provides a stron-
ger progress guarantee.

Note that the rebuild operation of DHASH could block.
Specifically, ht_rebuild() serializes concurrent rebuild
attempts by using a mutex lock and waits for prior hash
table regular operations by using the synchronize_rcu bar-
riers. However, this mutex lock is only used by the rebuild
operations to serialize concurrent rebuild attempts, and
hence can never block concurrent regular operations. Simi-
larly, the RCU barriers in the rebuild operation are used to
force a build operation to wait for the existing regular
operations. However, they are transparent to regular oper-
ations, and cannot block any of them. Moreover, rebuild
operations are infrequent, and their speed is not the major
concern if they do not noticeably degrade the performance
of concurrent regular operations. We thus leave making
the helper function ht_rebuild non-blocking as our future
work.
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6 EVALUATIONS

DHASH is the first dynamic hash table providing lock-free
and wait-free regular operations. Therefore, we need to
prove that it is robust, efficient, and scalable. In this section,
we demonstrate that (1) DHASH’s rebuild operation is effec-
tive, (2) DHASH’s rebuild operation is lightweight and does
not noticeably degrade system performance in terms of
throughput and response time of concurrent regular opera-
tions, and (3) DHASH’s rebuild operation is fast and scalable;
that is, users can obtain an approximately linear speedup
by creating more rebuilding threads.

6.1 Evaluation Methodology

Hash Table Implementations. We chose Xu’s algorithm [18] as
representative of dynamic hash tables that maintain two
sets of list pointers in each node, and refer to this algorithm
as HT-Dyn-Classic. Another dynamic hash table widely
used is the rhashtable algorithm in the Linux kernel [19]
(henceforth referred to as HT-Dyn-Linux). We chose HT-
Dyn-Linux as representative of dynamic hash tables that
maintain one unordered linked list for each hash bucket.
Both HT-Dyn-Classic and HT-Dyn-Linux use locks to syn-
chronize concurrent insert and delete operations on the
same bucket. We chose Shalev and Shavit’s algorithm
(henceforth referred to as HT-Resizable) as representa-
tive of resizable hash tables.

To demonstrate the benefits of DHASH’s modularity, we
implemented and evaluated two versions of DHASH. HT-
DHash-lf utilizes Michael’s classic lock-free linked list [14]
as the implementation of its buckets. The lookup operation
of HT-DHash-lf needs to start over from the beginning of the
list once it encounters logically removed nodes. Moreover,
we implemented HT-DHash-wf, another version of DHASH

that provides wait-free lookup operations, by utilizing
Heller et al.’s concurrent linked list algorithm [35]. Note that
Heller et al.’s linked list provides wait-free lookup opera-
tions, but its insert and delete operations are serialized by
an optimistic, fine-grained locking mechanism.

In the experiments, we chose Jenkins’ hash function [31].
Jenkins’ hash function takes a hash_seed parameter, and for
a benchmarking framework, the hash function with differ-
ent seed values can be regarded as different hash functions.
For each regular operation, Jenkins’ hash function is
invoked to generate a 32-bit hash result for the key, and the
hash result modulo the size of the bucket array is used as
the index to the bucket array. When rebuilding, we change
the seed value.

We implemented DHASH and the above-mentioned alter-
natives as user-space programs by using C. For all of the
hash tables, optimizations such as cache-line padding are
applied. Our benchmarking framework utilizes Desnoyers’
user-space implementation of RCU [29]. Specifically, the
QSBR flavor [29] model is used, such that the lookup opera-
tions can perform as fast as single-threaded programs. We
compile the code with GCC 7.4.0 on all platforms where
Ubuntu 18.04.4 is installed. We use -O3 as our optimization
level without any special optimization flags.

Benchmarking Framework. To compare DHASH with the
alternatives, we built a benchmarking framework for evalu-
ating dynamic hash tables. We give a brief overview of the

framework in this section, and refer interested readers to
the full version of this paper [42].

The framework consists of a specified number of worker
threads, each of which performs the workload with the spec-
ified distribution of lookup, insert, and delete operations,
denoted as m. The range of keys U is set to ten million to pre-
vent the CPU caches from buffering the whole test set.
When a test starts, each worker thread performs an infinite
loop. In each iteration, the worker thread randomly selects
an operation type according to the specified distribution m,
randomly chooses a key ranging from 0 to the specified
upper bound U, and then performs the specified operation.
We set the initial size of the bucket array b to 1K. We con-
trolled the average load factor a indirectly by inserting a � b
nodes in a hash table before starting a test, and by selecting
the ratio of insert operations to be equal to that of delete
operations.

An attacker thread continuously inserts nodes with the
keys mapped to a few target buckets of the evaluated hash
table, simulating uneven distribution. The attacker thread
inserts these nodes at the rate of 300 nodes per second, sim-
ulating malicious traffic that uses low bandwidth and is
hard to be detected. When a test starts, a rebuild daemon is
created. Each bucket maintains a per-bucket atomic counter
that records the number of nodes in this bucket. A success-
ful insert operation increments this counter, and if it
becomes larger than a pre-defined threshold, a signal is sent
to the rebuild daemon that in turn, rebuilds the hash table.

We evaluate the hash tables on a Dell PowerEdge server,
with 64 GB memory and two Intel Ivy Bridge CPUs, each
having 12 cores running at 2.6 GHz. Each CPU has 15 MB
shared L3 cache. Each plotted data point, unless specified
otherwise, represents the mean value of 20 trials. For perfor-
mance tests, the standard deviation is denoted by vertical
bars, which, however, may be too small to be visible in
some figures.

6.2 Effects of Rebuilding

We first evaluate the effects of the rebuild operations. To
that end, in this experiment, our benchmarking framework
only measures the response time of lookup operations on
the target buckets. The statistics of insert and delete opera-
tions and the statistics of lookup operations on the non-tar-
get buckets will be discussed in Section 6.3. The response
time is measured by the worker threads as the time between
an operation is invoked and that the hash table returns a
result.

In this experiment, we evaluate the hash tables under a
typical hash-table usage pattern that consists of eight worker
threads, with the average load factor a being 16, and with
the operation distribution m being 5, 5, and 90 for insert,
delete, and lookup operations, respectively. The initial and
the maximum size of the bucket array are set to 1 K and
64 K, respectively. Once the length of any bucket becomes
larger than 32, two times of a, a rebuild request is sent to
the rebuild daemon, which rebuilds the hash table by creat-
ing a single rebuilding thread.

To better evaluate the effectiveness of the rebuild opera-
tions, we further measure HT-DHash-lf under the same
usage pattern but do not run the attacker thread; that is, we
measure how concurrent operations of dynamic hash tables
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behave, when the length of the list of each bucket is roughly
equal to the average load factor. This evaluation is the ideal
case for a hash table, which we refer to as HT-Ideal.

Fig. 4 shows the Cumulative Distribution Function
(CDF) of response time, and Table 1 lists the correspond-
ing statistics. We make the following observations. First,
once the pre-defined hash function cannot evenly distrib-
ute incoming data, DHASH is much more effective in cut-
ting the length of the lists of the target buckets, such that
concurrent lookup operations that need to traverse these
lists do not experience increased delays. Fig. 4 shows that
both versions of DHASH outperform the alternatives in
lookup operations’ response time. In particular, Table 1
shows that the median response time of HT-DHash-lf

and HT-DHash-wf is 288 and 328 nanoseconds, respec-
tively. In contrast, the alternatives are more than one thou-
sand nanoseconds, about 3 times slower than DHASH.
Moreover, the 99.9%-percentile response time of DHASH is
under 2 microseconds, but the alternatives reach 5 micro-
seconds, introducing noticeable delays to legitimate users.
The reasons for this are as follows. (1) Our distributing
mechanism allows DHASH to use lock-free and wait-free
lists as the implementation of the buckets. Therefore, the
rebuild operation can run in parallel with concurrent regu-
lar operations. In contrast, HT-Dyn-Classic and HT-

Dyn-Linux employ a locking mechanism, such that the
locks are contended, and the rebuild operation could be
suspended, leading to a much longer time period during
which concurrent lookup operations must traverse the lists
of the target buckets. (2) DHASH is modular, and both HT-

DHash-lf and HT-DHash-wf employ ordered linked
lists. In contrast, HT-Dyn-Linux can only use unordered
linked lists, which causes concurrent lookup operations to
traverse many more nodes to get the results.

The second observation is that the performance of HT-
Resizable deteriorates sharply when its pre-defined hash
function cannot evenly distribute incoming data. Fig. 4
shows that HT-Resizable has the worst tail latencies com-
pared with other hash tables. Moreover, it is interesting that
HT-DHash-lf even outperforms HT-Ideal in some cases.
Table 1 shows that the 99.9%-percentile response time of
HT-DHash-lf is 1,546 nanoseconds, smaller than HT-

Ideal’s 1,571 nanoseconds.

6.3 DHASH Performance

After evaluating the effectiveness of DHASH’s rebuild opera-
tion under a typical hash-table usage pattern, we now evalu-
ate the performance of DHASH in a broad range of use cases.

In the experiments, HT-Resizable quickly exhausts its
bucket array (64 K in maximum) and requests more, and
hence the benchmarking framework kills it in a few sec-
onds. We thus omit HT-Resizable in the following
experiments. The hash table configuration is the same as in
Section 6.2, but we vary (1) the number of concurrent
worker threads, (2) operation mixes, or (3) average load fac-
tors. We make the following observations.

Throughput. First, DHASH outperforms the alternatives at
different concurrency levels. Fig. 5a shows that all hash
tables have similar throughput results when running with a
single worker thread. As the number of worker threads
increases, HT-DHash-lf outperforms the alternatives. The
main reason for this is that to synchronize the rebuild opera-
tion and concurrent insert and delete operations, HT-Dyn-
Linux and HT-Dyn-Classic employ per-bucket locks.
Even though HT-DHash-wf uses an optimistic, fine-grained
locking mechanism, it still suffers from the contention on
the target buckets. When the server becomes overloaded
(the number of worker threads exceeds that of the CPU
cores), the throughput of HT-Dyn-Linux and HT-Dyn-

Classic decreases sharply due to the increased contention

Fig. 4. Response time CDF of lookup operations when rebuilding.

TABLE 1
Response Time Statistics of Lookup Operations

When Rebuilding (Nanoseconds)

Hash Table Median 95%- percentile 99%- percentile 99.9%- percentile

HT-Dyn-Linux 1,211 1,888 2,060 5,492
HT-Dyn-Classic 1,076 1,512 2,038 5,393
HT-Resizable 1,196 2,152 3,003 7,665

HT-Ideal 256 636 944 1,571

HT-DHash-lf 288 692 920 1,546
HT-DHash-wf 328 813 1,361 2,012

Fig. 5. Throughput (lookup, insert, and delete operations).
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on locks. HT-DHash-lf, in contrast, is much more robust,
and there is no noticeable decrease in its throughput.

Second, Fig. 5b shows that as the percentages of insert
and delete operations increase, the throughput of all hash
tables decreases. However, DHASH still outperforms the
alternatives, except with the extreme operation mix consist-
ing of 40% of insert, 40% of delete, and 20% of lookup opera-
tions. The reason for this is that even for DHASH, insert and
delete operations are much more costly compared with
lookup operations because they must update shared varia-
bles and issue memory fence instructions.

Third, DHASH outperforms the alternatives with different
average load factors. The main reason for this is that HT-
DHash-lf employs a lock-free, ordered linked list.

Response Time. When evaluating the throughput, we also
measured the corresponding 99.9%-percentile response
time of regular operations. We present the results of lookup
operations in Fig. 6. Due to lack of space, we omit the results
of update operations, which are similar to that of lookup
operations, and refer interested readers to the full version of
this paper [42].

The response time of DHASH’s lookup operations
increases mainly when the server is overloaded. Fig. 6a
shows that the worst 99.9%-percentile response time of HT-
DHash-lf is around 3 microseconds, when there are 48
concurrent worker threads. In contrast, HT-Dyn-Linux

and HT-Dyn-Classic reach as high as 8 microseconds.
Second, the response time of HT-DHash-lf’s lookup opera-
tions is irrelevant to the operation mixes. Fig. 6b shows that
99.9% of HT-DHash-lf’s lookup operations can complete
in 2 microseconds, but HT-Dyn-Linux takes more than 8.3
microseconds, when the percentage of lookup operations is
reduced to 20%. Third, Fig. 6c shows that as the average
load factor increases, the 99.9%-percentile response time of
DHASH’s lookup operations increases slowly. In contrast,
the lookup operations of both HT-Dyn-Linux and HT-

Dyn-Classic suffer unexpected delays, mainly because of
the unordered linked lists used.

6.4 Rebuilding Efficiency

We next measure the efficiency of the rebuild operations;
that is, how fast can DHASH and the alternatives change
their hash functions and rebuild the hash tables. We use the
same hash table usage pattern as in Section 6.2, but we vary
(1) the total number of nodes in the hash tables, which
relates to the workload of rebuild operations, and (2) the
number of concurrent worker threads, which causes the
rebuild operations to run at different concurrency levels.
Since HT-DHash-lf and HT-DHash-wf show the same
general trends, for clarity, we only present the results of
HT-DHash-lf in this paper. To evaluate our parallelizing
strategy, we measure HT-DHash-lf with different num-
bers of rebuilding threads, and the experimental results are
marked with different suffixes. Fig. 7 shows the results. We
make the following observations.

First, our parallelizing strategy can achieve an almost lin-
ear speedup as a function of the number of rebuilding
threads. For example, Fig. 7a shows that it takes the sequen-
tial version (HT-DHash-lf-1) 40.3 ms to rebuild a hash
table with 64K nodes, and that the time the 4-rebuilding-
threads and the 8-rebuilding-threads versions need are 11.9
and 6.0 ms, achieving 3.4x and 6.7x performance speedups,
respectively.

Second, for dynamic hash tables, which need to distrib-
ute nodes to the new hash tables, the time required to
rebuild is almost linear to the number of nodes in the old
hash tables. For example, Fig. 7a shows that it takes HT-

Dyn-Linux 13.7 and 27.1 ms to respectively rebuild hash
tables containing 32K and 64K nodes. This implies that
parallelizing rebuild operations is a must have for large
dynamic hash tables.

7 CONCLUSION

To recover from the emerging algorithmic complexity
attacks, this paper presents DHASH, one type of hash table
that can dynamically change its hash function and rebuild
the hash table on the fly. The core of DHASH is a novel dis-
tributing mechanism that is atomic, non-blocking, and effi-
cient in distributing every node from the old hash table to
the new one. DHASH is modular and allows programmers to
select from existing lock-free and wait-free set algorithms
to create their own hash tables. We present the core techni-
ques and demonstrate that DHASH is efficient and scalable.
Experimental results indicate that DHASH is the algorithm
of choice for operating systems and applications under ser-
vice-level agreement (SLA) contracts.

Fig. 6. 99.9%-percentile response time (lookup operations).

Fig. 7. Time required to rebuild hash tables.
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