
Dong JQ, He ZH, Gong YY et al. SMART: Speedup job completion time by scheduling reduce tasks. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 37(4): 763–778 July 2022. DOI 10.1007/s11390-022-2118-5

SMART: Speedup Job Completion Time by Scheduling Reduce Tasks

Jia-Qing Dong1 (Â\�), Ze-Hao He2 (ÛLh), Yuan-Yuan Gong2 (÷ww), Pei-Wen Yu2 (u�©)
Chen Tian2 (X �), Senior Member, IEEE, Member, CCF, ACM, Wan-Chun Dou2,∗ (��S)
Gui-Hai Chen2 (�B°), Nai Xia2 (g F), and Hao-Ran Guan3 (+Ó,)

1State Key Laboratory of Media Convergence and Communication, Communication University of China
Beijing 100024, China

2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
3School of Computer Science, The University of Sydney, Sydney NSW 2006, Australia

E-mail: jiaqing@cuc.edu.cn; {hezehao, mf1933022, pavin}@smail.nju.edu.cn
E-mail: {tianchen, douwc, gchen, xianai}@nju.edu.cn; hgua5212@uni.sydney.edu.au

Received December 27, 2021; accepted June 29, 2022.

Abstract Distributed computing systems have been widely used as the amount of data grows exponentially in the era

of information explosion. Job completion time (JCT) is a major metric for assessing their effectiveness. How to reduce the

JCT for these systems through reasonable scheduling has become a hot issue in both industry and academia. Data skew is

a common phenomenon that can compromise the performance of such distributed computing systems. This paper proposes

SMART, which can effectively reduce the JCT through handling the data skew during the reducing phase. SMART predicts

the size of reduce tasks based on part of the completed map tasks and then enforces largest-first scheduling in the reducing

phase according to the predicted reduce task size. SMART makes minimal modifications to the original Hadoop with only

20 additional lines of code and is readily deployable. The robustness and the effectiveness of SMART have been evaluated

with a real-world cluster against a large number of datasets. Experiments show that SMART reduces JCT by up to 6.47%,

9.26%, and 13.66% for Terasort, WordCount and InvertedIndex respectively with the Purdue MapReduce benchmarks suite

(PUMA) dataset.

Keywords job scheduling, job completion time, MapReduce, Hadoop

1 Introduction

Distributed computing systems have been widely

used as the amount of data grows exponentially with

the rapid development of various network-based appli-

cations. In order to solve the problem of storage and

processing of petabyte-level data, distributed comput-

ing systems such as Hadoop, Spark and Hive emerge as

the times require. They have high reliability, high scala-

bility, high fault tolerance and efficiency, and can sup-

port processing very large datasets across server clus-

ters. These systems meet the requirements of large-

scale data processing, such as advertising recommenda-

tion, log processing and user behavior analysis. How

to improve the performance of these systems has be-

come a hot issue in both industry and academia. It is

very important to find a good scheduling mechanism

for these systems to speed up these jobs and carry out

more efficient processing.

Job completion time (JCT) is a major metric to

evaluate such distributed computing systems [1–4]. In

this paper, we focus on minimizing JCT of distributed

computing systems.

Data skew, which can compromise the perfor-

mance of such distributed computing systems, is not

uncommon [5, 6]. As an example, we observe that the

Regular Paper

Special Section of Xia Peisu Young Scholars Forum 2021

This work was supported by the National Key Research and Development Project of China under Grant No. 2020YFB1707600,
the National Natural Science Foundation of China under Grant Nos. 62072228, 61972222 and 92067206, the Fundamental Research
Funds for the Central Universities of China, the Collaborative Innovation Center of Novel Software Technology and Industrialization,
and the Jiangsu Innovation and Entrepreneurship (Shuangchuang) Program.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-022-2118-5

764 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

input data of reduce tasks (i.e., the intermediate out-

put data generated by the end of map tasks) is skewed

during the daily usage of Hadoop. However, we find

that the default scheduling mechanism for reduce tasks

in Hadoop does not take the data skew into considera-

tion, and simply schedules all reduce tasks in a first-in-

first-out (FIFO) manner. Here comes the question.

Can we leverage this feature to design a good

scheduling mechanism to speed up the overall job com-

pletion time?

The module we propose in this paper, named as

SMART, answers this question affirmatively.

We envision that scheduling the reduce tasks with

the largest-first mechanism will be helpful to improve

the performance. Intuitively, a good scheduler should

overlap large reduce tasks with smaller tasks as many

as possible. It can effectively reduce JCT by scheduling

reduce tasks with longer execution time first.

We use the example shown in Fig. 1 to illustrate

the issues in scheduling reduce tasks with skewed input

data. In Fig.1, each slice stands for a reduce task, with

the slice label representing the task duration. All the

reduce tasks belonging to the same job execute the same

part of the code. Therefore, if the hardware devices are

the same, it can be regarded that the total processing

time will be proportional to the data size. Suppose that

there are three reduce tasks, the time required for each

task is 3 T, 2 T, and 1 T respectively, where T stands

for the basic time unit. We mark the three reduce tasks

as T3, T2 and T1 respectively. In Hadoop, all scheduled

reduce tasks will be queued waiting for slots to be re-

leased. In the example, there are three slots released at

1 T, 2 T, 3 T respectively for reduce tasks to run.

C
o
n
ta

in
e
r

ID

Time (T)

1 2 3 4 5 6

C
o
n
ta

in
e
r

ID

Time (T)

1 2 3 4 5 6

2 3

1

3

2

1

(a) (b)

Fig.1. Example of reduce task scheduling, where largest-first
takes 40% less time than FIFO. (a) FIFO. (b) Largest-first
scheduling.

Fig.1 shows the task execution details of both FIFO

scheduling and largest-first scheduling. The scheduling

order of FIFO is {T2, T1, T3}, and the scheduling order

of largest-first is {T3, T2, T1}. The result shows that

the execution time of largest-first is 3 T, while the exe-

cution time of FIFO is 5 T. In this example, largest-first

scheduling takes 40% less execution time than FIFO.

In this paper, we propose SMART which can effec-

tively improve the overall performance of distributed

computing systems by enforcing largest-first schedul-

ing in the reducing phase. We implement SMART

in Hadoop, which is one of the most widely used dis-

tributed frameworks for massive data processing, with

just minimal modification to the original Hadoop source

code. It is worth noting that SMART is not lim-

ited to Hadoop. SMART can bring benefits to all

distributed computing systems with the MapReduce

paradigm where data skew exists.

The contributions of this paper can be summarized

as follows.

• We propose a reduce task size prediction method

based on part of the completed map tasks. Experimen-

tal results demonstrate that the proposed method is

robust and effective.

• We formally define and analyze the reduce task

scheduling problem and propose to apply the largest-

first scheduling mechanism for the reducing phase in

MapReduce jobs.

• We design and implement SMART on Hadoop,

with minimal modification to native Hadoop source

code. The implementation shows that SMART is read-

ily deployable with high portability.

• We evaluate SMART in a real-world server clus-

ter with realistic Hadoop job benchmarks. The experi-

mental results demonstrate that SMART is robust and

can effectively reduce the JCT under various job sce-

narios. Specifically, SMART reduces JCT by up to

6.47%, 9.26%, 13.66% for Terasort, WordCount and

InvertedIndex respectively with the PUMA dataset.

Furthermore, simulation results show that SMART can

reduce JCT by up to 33% as the skewness increases.

2 Background

In this section, we briefly introduce Hadoop MapRe-

duce, Hadoop Yarn and the common methods for task

scheduling. In addition, some examples are given to

demonstrate the phenomenon of data skew.

2.1 Hadoop MapReduce

MapReduce, popularized by Google [7] and

Hadoop 1○, is a programming framework for distributed

1○Hadoop: Developed by Apache Software Foundation. https://hadoop.apache.org, June 2022.

Jia-Qing Dong et al.: SMART: Speedup Job Completion Time by Scheduling Reduce Tasks 765

computing programs and the core framework for users

to develop “Hadoop-based data analysis applications”.

A MapReduce job usually splits the input dataset

into independent data blocks, which are processed by

the map tasks in a completely parallel manner. The

framework sorts the outputs of the map tasks, which

are then inputted to the reduce tasks. Usually, the in-

put and the output of the job are stored in the Hadoop

distributed file system (HDFS). The whole framework is

responsible for the scheduling and monitoring of tasks,

as well as the re-execution of failed tasks.

2.2 Hadoop Yarn

After Hadoop version 2.0, Yarn 2○ has been used for

scheduling. Yarn is a resource scheduling platform, re-

sponsible for providing computing resources for com-

puting programs, which is equivalent to a distributed

operating system platform, and computing programs

such as MapReduce should be run in applications on

top of the operating system.

Yarn is mainly composed of the resource manager

(RM), node manager (NM), application master (AM),

and containers. The fundamental idea of Yarn is to split

up the functionalities of resource management and job

scheduling/monitoring into separate modules. In order

to do this, the idea is to have a global ResourceManager

and per-application ApplicationMaster.

Fig. 2 shows the architecture of Yarn. The func-

tions of components in Yarn are as follows: RM keeps

track of NM and available resources, allocates availa-

ble resources to applications and tasks, and monitors

AM. NM is responsible for resource management and

task management of a single node. It is responsible for

processing requests from RM, and processing container

start or stop requests from AM. After receiving the re-

quest to start the container, the resources used by the

process will be monitored and fed back to RM. AM is

responsible for coordinating the execution of all tasks

of the current application, and will request containers

from RM to run tasks. Container is the resource ab-

straction within Yarn, describing the running resources

of a task (such as memory, CPU, disk and network).

The workflow of Yarn is as follows: the client sub-

mits an application to Yarn, and RM allocates a con-

tainer for the application, communicates with the cor-

responding NM, and requires NM to start the AM in

the allocated container. AM registers with RM so that

users can view the running state of the application di-

rectly through RM. AM requests resources from RM

for each task, and communicates with NM to start the

task. After the task has been started, each task reports

its state and progresses to its AM. After the application

is finished, AM requests RM to log off itself.

NM

Container Container

Map AM

NM

Container Container

Reduce MAP

RM Task Status

Resource Request

Node Status

Fig.2. Architecture of Yarn, which consists of several compo-
nents, such as RM, NM, AM, and container. NM sends the node
state to RM periodically through heartbeat. AM requests re-
sources from RM to run the tasks. Tasks periodically report
their current progress and states to AM via heartbeat.

2.3 Task Scheduling

MapReduce jobs can be subdivided into map tasks

and reduce tasks. The MapReduce application master

divides (MRAppMaster) map tasks and reduce tasks

into four states: pending (the resource request has

started, but not been sent to RM), scheduled (the re-

source request has been sent to RM, but RM has not

allocated resource for it), assigned (the resource request

has been assigned to a container), and completed (the

resource request assigned to the container has com-

pleted).

The lifecycle of map tasks is: scheduled → assigned

→ completed. And the lifecycle of reduce tasks is:

pending → scheduled → assigned → completed. As

is known to all, the execution of reduce tasks depends

on the output data of map tasks. In order to avoid

the low resource utilization caused by the early startup

of reduce tasks, MRAppMaster puts the newly started

reduce task in the pending state, so that it can decide

whether to schedule it according to the running states

of map tasks. Next, we will describe the scheduling of

map tasks and reduce tasks in Hadoop respectively.

• Map Task Scheduling. When scheduling a map

task for a job, the scheduling order is as follows. First,

we check if there are any map tasks that have failed to

execute. If so, let the failed tasks run first (data locality

is not considered here). Second, we assign map tasks

2○Hadoop Yarn: Developed by Apache Software Foundation. https://hadoop.apache.org/docs/current/hadoop-yarn, June 2022.

766 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

which have never been assigned, and select the map

task that has the input data closest to the assignable

container based on the location first (data location pri-

ority is node-local, rack-local, and other-local).

• Reduce Task Scheduling. Unlike a map task, re-

duce tasks do not need to consider data locality because

they need to fetch input data from all map tasks. AM

starts reduce tasks when the number of completed map

tasks reaches a threshold specified by users. In the pro-

cess of reduce task scheduling, map tasks will be given

priority. If map tasks that have applied for resources

are not allocated with resources, and the waiting time

is too long, the reduce tasks will be preempted, and

will not get the opportunity to start and even be killed.

If no map task needs to preempt the resources of re-

duce tasks, reduce tasks will have an opportunity to

get scheduled. When several reduce tasks apply for re-

sources concurrently, the resources are allocated in a

first-come-first-served manner.

2.4 Phenomenon of Data Skew

As can be seen from the simplified example in Fig.1,

when the data is skewed, it is helpful to follow the

Largest-First mechanism to schedule reduce tasks.

Terasort, WordCount and InvertedIndex are typ-

ical baseline MapReduce tasks. The datasets and

programs are publicly available [8]. We take the

datasets in Terasort (149 GB), WordCount (50 GB)

and InvertedIndex (50 GB) as an example to illus-

trate the phenomenon of data skew. The output data

of all map tasks grouped by partition is accumulated in

the MapReduce job, which will be the input data that

the reduce tasks need to process.

The results are presented in Fig.3, where the Y -axis

denotes the input data size of reduce tasks and the X -

axis stands for task IDs. Fig.3 clearly illustrates that

the size of data processed by reduce tasks is biased, ir-

respective of the data scale or job scenarios. This result

shows that data skew in reduce tasks is a very common

phenomenon.

3 Design

This section gives a formalization of the reduce task

scheduling as an optimization problem. And the de-

fault FIFO scheduling is discussed. After that we pro-

pose the design of SMART, which breaks the schedul-

ing optimization problem into two sub-problems. We

first describe how SMART predicts the size relation-

ship among reduce tasks. Then we describe and an-

alyze the largest-first scheduling mechanism based on

the prediction.

0 10 20 30 40 50

Reduce Task ID

4

6

8

10

12

14

16

18

D
a
ta

 S
iz

e
 (

M
B

)

Τ102

0 20 40 60 80 100 120 140

Reduce Task ID

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
a
ta

 S
iz

e
 (

M
B

)

Τ102

0 10 20 30 40 50

Reduce Task ID

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

D
a
ta

 S
iz

e
 (

M
B

)

Τ102
(b)

(a)

(c)

Fig. 3. Data skew of reduce tasks in different scenarios. (a)
Terasort (149 GB). (b) WordCount (50 GB). (c) InvertedIndex

(50 GB).

3.1 Problem Definition

Multi-job distributed computing systems usually set

the threshold of the completed map task for starting the

reducing phase to 1, which means the reducing phase is

started only after all map tasks have been completed.

Suppose we have m identical containers for the re-

ducing phase and n reduce tasks in total. The i-th

reduce task has the task size pi and takes time ti to

Jia-Qing Dong et al.: SMART: Speedup Job Completion Time by Scheduling Reduce Tasks 767

process. For a specific task scheduling S, let Sj denote

the set of tasks scheduled to container j. Then the total

working time of container j will be Tj =
∑

i∈Sj
ti. The

target of the job scheduling is to minimize the job com-

pletion time of all reduce tasks, which can be defined

as:

JCTS = maxj(Tj), (1)

where JCTS stands for the job completion time of the

task scheduling S. maxj(Tj) means that the overall job

completion time of a task is decided by the maximum

total working time of the containers.

It is a reasonable assumption that the processing

time required for a reduce task is proportional to its

task size, in that all the reduce tasks belonging to the

same job execute the same binary code and the pro-

cessing units in the distributed computing framework

usually have the same capability if their hardware de-

vices are the same. In this scenario, the reduce task

scheduling problem can be abstracted as a minimum

makespan scheduling problem, which is NP-hard.

The minimum makespan scheduling problem can be

described as follows. There are m identical machines

for processing n jobs each of which takes time ti to

finish. Jobs cannot be split between machines. For a

given scheduling, let Aj be the set of jobs assigned to

machine j. Let

Tj =
∑
i∈Aj

ti (2)

be the total processing time of machine j.

The target of the minimum makespan scheduling is

to find an assignment of jobs to machines that min-

imizes the makespan, defined as the maximum total

processing time of all machines:

CA = maxj(Tj), (3)

which is formally consistent with (1), indicating that

the job completion time in the reduce task schedul-

ing corresponds to the makespan in the minimum

makespan scheduling.

The scheduling logic of the default FIFO is that

whenever a container becomes available, it will be as-

signed to execute the reduce task on top of the queue

where tasks are ordered by timestamp. A container be-

comes available at a specific time t indicates that this

container gets the resource to execute a reduce task at

time t.

Consequently, the default FIFO mechanism can be

described as Algorithm 1, which is consistent with the

List [9] algorithm for the minimum makespan problem.

Approximation ratio, which is the ratio between the

result obtained by an algorithm and the optimal as-

signment, can be used as a metric to assess algorithms

for NP-hard problems. Suppose the makespan of the

optimal assignment A∗ is C∗, and the result of FIFO

scheduling is CFIFO, it can be proved that:

CFIFO

C∗
6 2− 1

m
, (4)

where m is the total number of machines. (4) indicates

that FIFO is a 2-approximation algorithm.

Algorithm 1. Default FIFO Scheduling

Input: Jobi, i = 1, 2, ..., n: the task sequence ordered by

timestamp

Containerj , j = 1, 2, ...,m: all containers for the

reducing phase

Output: Ai: the list of (Jobi, Containerj) tuples

1: for each Jobi, i = 1, 2, ..., n do

2: Assign Jobi to a currently available container

3: end for

3.2 Design of SMART

In SMART, we break the scheduling optimization

problem in the reducing phase into two sub-problems.

The first is how to predict the reduce task size. The

second is how to schedule the tasks in order to reduce

the overall JCT, given the reduce task size.

3.2.1 Task Size Prediction

In Hadoop, it is nontrivial to implement a schedul-

ing mechanism based on the reduce task size because

the sizes of reduce tasks are usually unknown a priori.

SMART reschedules reduce tasks based on sizes pre-

dicted from part of completed map tasks. It is worth

noting that SMART does not predict the exact sizes

of reduce tasks, but the relative size relationship.

The basic idea of reduce task size prediction in

SMART is that the relationship among sizes of reduce

tasks is likely to be consistent with the size relationship

among intermediate accumulated partitions.

More precisely, let partitiontotal[i] denote the ac-

cumulated partition size for the reduce task i at the

time when a fraction p of map tasks have been com-

pleted, and let sizereduce[i] denote the size of reduce

task i. If partitiontotal[m] > partitiontotal[n], then

SMART considers that sizereduce[m] will be larger than

sizereduce[n]. The selection of the value p will be dis-

cussed in Subsection 5.2.1. And the correctness of pre-

dicted relationship among sizes of reduce tasks will be

evaluated in Subsection 5.2.1.

768 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

3.2.2 Largest-First Scheduling

With predicted size relationship, SMART is able to

schedule reduce tasks with the largest-first mechanism

instead of the default FIFO scheduling.

The largest-first scheduling in SMART requires the

jobs to be sorted by their task sizes. Whenever a con-

tainer becomes available, the job with the largest size,

which indicates the longest processing time among all

rest jobs, will be assigned to that container.

Then the largest-first scheduling can be described

as Algorithm 2, which happens to be the LPT (Longest

Processing Time) algorithm for the minimum makespan

problem. Similarly, it can be proved that this algorithm

has the approximation ratio of 4/3− 1/3m:

CLargest-First
C∗

6
4

3
− 1

3m
, (5)

where m is the total number of machines and

CLargest-First stands for the JCT of the largest-first

scheduling.

Algorithm 2. Largest-First Scheduling

Input: Jobi, i = 1, 2, ..., n: the task sequence

ti, i = 1, 2, ..., n: the processing time of each job

Containerj , j = 1, 2, ...,m: all containers for the

reducing phase

Output: Ai: list of (Jobi, Containerj) tuples

1: Sort Job[] by the task size so that t1 > t2 > ... > tn

2: for each Jobi, i = 1, 2, ..., n do

3: Assign Jobi to a currently least loaded container

4: end for

From the analysis above, we can see that the largest-

first scheduling is a 4
3 -approximation algorithm for the

reduce task scheduling. In contrast, the default FIFO

scheduling is a 2-approximation algorithm, which is not

so good as the largest-first scheduling. For the worst

case of each algorithm, CFIFO = 2C∗, CLargest-First =
4
3C
∗, and the largest-first scheduling will outperform

FIFO by around 33%.

4 Implementation

In this section, we present the detailed implemen-

tation of SMART. SMART predicts the size relation-

ship of reduce tasks through obtaining information from

RPC messages and then schedules remaining reduce

tasks based on the predicted task size relationship.

We describe the architecture of SMART first, then

introduce details about how to obtain key information

from RPC messages, and finally show how SMART

predicts the relative size relationship of reduce tasks.

4.1 Architecture

Fig.4 illustrates the overall architecture of SMA-

RT. SMART resides in a separate node outside the

data processing cluster. It continuously monitors the

RPC messages in the job to obtain the states of running

tasks, collects the output sizes of the completed map

tasks, and predicts the sizes of remaining reduce tasks.

Note that this process relies on collecting and parsing

RPC messages, which does not require any modifica-

tions to the application program. It is worth noting

that as the algorithms for prediction and scheduling are

linear, SMART works with high efficiency. In addition,

if there are too many jobs sharing the system, the node

where SMART resides can be extended to improve the

performance.

In order to get the size of the intermediate data

outputted by map tasks, we need to obtain the to-

SMART

Resource Manager (RM)

Node Manager (NM)

Application Master (AM)

RPC
Collection

RPC

Parsing

Prediction

&
SchedulingCluster

RPC

Message

Scheduled

Reduce Task Order

Fig.4. Overall architecture of SMART.

Jia-Qing Dong et al.: SMART: Speedup Job Completion Time by Scheduling Reduce Tasks 769

tal number of map tasks and the running states and

running positions of each map task. To make minimal

changes to the existing system, we develop an RPC col-

lection module (Subsection 4.2) to obtain all RPC mes-

sages, and take advantage of the RPC parsing module

(Subsection 4.3) to obtain map tasks’ information we

need. We further develop a prediction module (Subsec-

tion 4.4) to predict the reduce task size based on the

intermediate results’ size from p = 5% of all map tasks.

4.2 RPC Collection Component

In order to implement this component simply and

effectively, we use one dedicated machine to monitor all

RPC messages from other machines which compose a

cluster running Yarn. We can use a special function-

ality of switch-port mirroring, which allows the user

to send a copy of packets of some ports’ traffic stream

into an analyzer port 3○ to which the specific machine

connects. Then we use the open-source library named

LIBpcab 4○ to sniff and filter packets effectively. All col-

lected messages from the network will be delivered to

RPC parsing component for further analysis.

4.3 RPC Parsing Component

Fig.5 illustrates the transmission mode and func-

tion of RPC messages in the cluster, together with how

SMART collects different types of information from the

system. The following steps present the typical lifecycle

of map tasks in a MapReduce job. First of all, the client

needs to submit the job to the RM node with function

submitApplication through ApplicationClientProto-

colPB RPC messages. Then the RM node starts the

AM node by calling function startContainers through

sending ContainerManagementProtocolPB RPC mes-

sages to the NM node. The AM node will then call func-

tion startContainers to the NM node to start con-

tainers for processing map tasks. Whenever a map task

gets completed, the NM node will call the done function

through TaskUmbilicalProtocol RPC messages. From

the above, we can see that transitions between diffe-

rent stages are accompanied by the triggering of RPC

messages, from which SMART can parse information

about tasks.

RPC messages collected from RPC collection com-

ponent are binary files. In order to get useful in-

formation, SMART deserializes RPC messages first.

There are two types of RPC message engines used

in Hadoop 3.1, which are ProtobufRpcEngine and

WritableRpcEngine. Fig.6 and Fig.7 illustrate the for-

mats of the two types of RPC messages. They corre-

spond to RPC implementation with different serializa-

tion/deserialization methods. SMART is able to han-

dle both types of the RPC messages to collect task in-

formation.

Algorithm 3 illustrates the details of how SMART

parses and filters an RPC message. After intercept-

ing an RPC message, the RpcRequestHeader is used

by SMART to determine the type of RPC. SMART

uses the protocol name and the method name to filter

submitApplication and startContainers calls from

ProtobufRPC messages. In terms of WritableRPC mes-

sages, SMART uses the protocol name and the method

name to filter done calls. All requests matching the fil-

ters will be put into specified queues, Qsa, Qsc, Qdone,

corresponding to three different stages of a map task.

Table 1 lists the kinds of RPC messages SMART

needs to parse from the filtered requests.

RM NMAM

Client SMART

Parsed Info.

RPC Messages

Number of Map Tasks

AM Location
Completed Map Tasks

Map Task
Location

submitApplication

startContainers startContainers

done

Fig.5. Transmission mode and function of RPC messages in the cluster.

3○Mellanox switch onyx-eth-um: By Mellanox technologies. https://www.mellanox.com/files/doc-2020/onyx-eth-um.pdf, June
2022.

4○LIBpcap project: By the tcpdump group. https://github.com/the-tcpdump-group/libpcap, June 2022.

770 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

Total Length PRCRequestHeader Length RPCRequestHeader

4 Bytes

Variable (Variants)

Variable (Variants)

Variable (Variants)

Variable

RequestHeader Length RPCRequestHeader

Variable

Request Length Request PayLoad

Variable

Fig.6. Format of the RPC message using ProtobufRpcEngine for serialization.

Total Length PRCRequestHeader Length RPCRequestHeader

4 Bytes Variable

RPCRequest PayLoad

Variable

Variable (Variants)

Fig.7. Format of the RPC message using WritableRpcEngine for serialization.

Algorithm 3. Parsing and Filtering the RPC Message

Input: package: the RPC message

Qsa: the queue of submitApplication requests

Qsc: the queue of startContainers requests

Qdone: the queue of done requests

Output: the target request extracted after filtering

1: if RpcRequestHeader.engine == ProtobufRpcEngine then

2: if RequestHeader.proto == ApplicationClientProtocolPB && RequestHeader.method == submitApplication then

3: Qsa.push(request)

4: else if RequestHeader.proto == ContainerManagementProtocolPB && RequestHeader.method == startContainers then

5: Qsc.push(request)

6: else

7: delete package

8: end if

9: else if RpcRequestHeader.engine == WritableRpcEngine then

10: if RpcRequest.proto == TaskUmbilicalProtocol && RpcRequest.method == done then

11: Qdone.push(request)

12: else

13: delete package

14: end if

15: else

16: delete package

17: end if

Table 1. Kinds of RPC Messages Parsed in SMART

RPC Protocol Name RPC Method Name RPC Engine Function

ApplicationClientProtocolPB submitApplication ProtobufRpcEngine Get the total number of map tasks from job.xml

ContainerManagementProtocolPB startContainers ProtobufRpcEngine Get the location of AM and map tasks

TaskUmbilicalProtocol done WritableRpcEngine Indicate that this map task has completed

4.4 Reduce Task Size Prediction Component

From the RPC parsing component, we can get the

running location of each map task, the total number

of map tasks and the total number of completed map

tasks. With the information, SMART is able to obtain

the data for prediction when a fraction p of map tasks

have been completed. The choice of the value of p will

be discussed in Subsection 5.2.1.

Every completed map task has a metadata file

named file.out.index, which contains information about

its output data. The format of file.out.index is illus-

trated in Fig. 8, which contains many tuples (start-

offset, raw-length, compressed-length). The i-th raw-

Jia-Qing Dong et al.: SMART: Speedup Job Completion Time by Scheduling Reduce Tasks 771

Start-Offset Partition 1

N

Map Task: 1



N

Map Task: M

Partition 1

Reduce Task: 1

Reduce Task: N

Shuffle

…

… …
…

…

…

Raw-Length Compressed-Length

Start-Offset Partition NRaw-Length Compressed-Length

Start-Offset Partition 1Raw-Length Compressed-Length

Start-Offset Partition N Partition NRaw-Length Compressed-Length

Fig.8. Process of partition data size accumulation.

length represents the i-th partition size of a map task.

And, by default, one partition corresponds to one re-

duce task.

Algorithm 4 describes how SMART extracts the

output data size of completed map tasks from

file.out.index. SMART keeps monitoring the status

of map tasks, tracking their locations and collecting

metadata file file.out.index of each completed map task

until the number of completed map tasks has reached

the threshold (p = 5%). For each completed map task,

SMART parses the output data length of different par-

titions from the metadata file file.out.index. The data

length will be the size of data that the reduce task needs

to read from the output of the completed map task.

When SMART detects that the number of com-

pleted map tasks has reached the threshold (p = 5%),

it stops collecting file.out.index. After that, SMART

calculates the accumulated partition size of each reduce

task from completed map tasks. The detailed algorithm

is listed as Algorithm 5. partitiontotal[j] in Algorithm 5

represents the total length of data in the j-th partition.

By accumulating the size of partitions of completed

map tasks, the size of the input data of reduce tasks can

be obtained. With the reasonable assumption that the

final relative size relationship among reduce tasks will

be consistent with the one at the time when a propor-

tion p of total map tasks has been completed, SMART

is able to reschedule the reduce tasks based on the pre-

dicted relative size relationship. The reorder of reduce

tasks will be sent to AM. Finally, AM will schedule

reduce tasks with largest-first order.

5 Evaluation

As far as we know, there is no similar work focus-

ing on improving performance of distributed computing

systems through rearranging the reducing phase. There

is lots of work focusing on reducing JCT from different

aspects, such as application-level optimization [10] and

data re-partitioning [5, 6, 11]. SMART is orthogonal to

Algorithm 4. Extract the Output Data of map Task from file.out.index

Input: file.out.index for the j-th completed map task

map num: the total number of map tasks

jobMap Ratio: the required ratio of completed map tasks

jobHas Received Map: the number of completed map tasks

Output: map[j].partition[]: the partition size (output size) list of the j-th map task

1: repeat

2: if jobHas Received Map < (map num× jobMap Ratio) then

3: file.out.index is composed of tuples (start-offset, raw-length, compressed length)

4: for each i ∈ [1, partition num] do

5: Initialize an array data to save tuples as above

6: fread(data, sizeof(tuple), file.out.index) // data[1] is raw-length

7: map[j].partition[i] = data[1]

8: end for

9: end if

10: until jobHas Received Map > (map num× jobMap Ratio)

772 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

these existing studies and can bring additional benefit,

as long as data skew exists. Therefore the evaluation

focuses on assessing the effectiveness of SMART itself.

Algorithm 5. Accumulating the Value of Partitions

Input: the list of partitions sizes of completed map tasks

Output: the order of reduce tasks

1: for each i ∈ [1,map num] do

2: for each j ∈ [1, partition num] do

3: Get partition length of the i-th map task with

Algorithm 4

4: partitiontotal[j] += map[i].partition[j]

5: end for

6: end for

7: reduce task order = sort(partitiontotal, desc)

This section evaluates SMART from several as-

pects. Firstly, we evaluate the robustness of SMART

by making different choices of parameter p. Then the

effectiveness of SMART is evaluated against different

datasets. Finally, we discuss the influence of different

skewness over JCT.

5.1 Methodology

Experimental Setup. SMART is evaluated in a real-

world server cluster, which is composed of 13 physi-

cal servers. One of the servers is used for RM, one

is used for SMART, and the others are used as com-

puting nodes. All the physical servers are NUMA

(non-uniform memory access) architecture with Intelr

Xeonr Silver 4214 2.2 GHz CPU, two sockets, and each

socket contains 12 cores, 256 GB memory, 100 Gb/s

network interface. The switch used in the cluster is

Mellanox SN2700. We run Hadoop 3.1 on the physical

servers for the SMART evaluation. HDFS is stored in

memory, where the size of an HDFS block is 128 MB

and the replication factor is set to 3. The resources

〈CPU, memory〉 assigned to each map task and reduce

task are 〈1 core, 1.5 GB〉. Same as most of the multi-

job systems, the slowstart factor in SMART is set to 1,

that is, the reducing phase is started only after all map

tasks are completed. The scheduler used by Hadoop is

the capacity scheduler. Unless otherwise specified, the

experimental setup remains unchanged.

Workload. In order to test different scenarios, we

setup three different experiments for the evaluation,

i.e., Terasort, WordCount and InvertedIndex.

For Terasort, we use teragen in hadoop-

mapreduce-examples-3.1.1.jar to generate different

sizes of the dataset (10 GB, 15 GB, 149 GB, etc.)

as input data. We also use the Wikipedia dataset

(50 GB, 80 GB, 280 GB) in [8] as the input data

for WordCount in hadoop-mapreduce-examples-3.1.1.jar

and for InvertedIndex in puma.jar [8].

The programs and datasets are publicly available on

the website [8].

Evaluation Metrics. In the evaluation, we use JCT

as the metric. We can obtain JCT from finishTime

and submitTime from the job id.summary file: JCT =

finishT ime− submitT ime.

5.2 Effectiveness of SMART

This subsection evaluates the effectiveness of

SMART through experiments with different data

scales under different scenarios.

The computing resource 〈CPU, memory〉 assigned

to each map task and reduce task is 〈1 core, 2 GB〉.

5.2.1 Choice of Parameter p

The parameter p in SMART denotes the thresh-

old for the ratio of completed map tasks. SMART

waits until the ratio of completed map tasks reaches

the threshold and then predicts the size of reduce tasks

based on the output of the currently completed map

tasks.

The choice of parameter p faces a tradeoff between

accuracy and cost. It is straightforward that as p in-

creases, SMART can have more intermediate data to

predict the size of reduce tasks and thus will be able to

have a more accurate largest-first order of reduce tasks.

However, as a large number of map tasks are executed

parallelly for one job, the amount of data processed by

each map is small, which results in that the execution

speed of the map phase is fast. SMART needs to col-

lect and parse all RPC messages of p map tasks in a

short time. If p is set too large, it will be too late for

SMART to send the rearranged reduce order before

AM starts to schedule the reduce tasks.

To evaluate the robustness of SMART against para-

meter p, we evaluate the effectiveness of SMART under

different job scenarios with a large data scale. Specifi-

cally, different values of p (0.05, 0.125, 0.25) are evalu-

ated under Terasort, WordCount and InvertedIndex

with 267 GB, 280 GB and 280 GB dataset respectively.

Fig.9 is an intuitive task scheduling diagram in the

Terasort job, with the X-axis representing the running

time of containers and the Y -axis representing different

container IDs. Each colored bar in Fig.9 represents the

running time of a specific reduce task. For example, for

a red bar with the Y -axis value 70, the abscissa range

Jia-Qing Dong et al.: SMART: Speedup Job Completion Time by Scheduling Reduce Tasks 773

0 20 40 60 80 100 120

Elapsed Time (s)

0

10

20

30

40

50

60

70

80

C
o
n
ta

in
e
r

ID

0 20 40 60 80 100

Elapsed Time (s)

0

10

20

30

40

50

60

70

80

C
o
n
ta

in
e
r

ID

0 20 40 60 80 100

Elapsed Time (s)

0

10

20

30

40

50

60

70

80

C
o
n
ta

in
e
r

ID

(b)(a)

(c)

Fig.9. Reduce task scheduling diagram: the reduce task is running in the container. A horizontal bar represents the running time of
a particular container. (a) Native Hadoop. (b) SMART with p = 0.05. (c) SMART with p = 0.125.

of the line is [15, 40], which means that the reduce task

is assigned to the container with ID 70 and runs from

15 s to 40 s and the total running time is 25 s. As the

baseline, the reduce task scheduling result of the na-

tive Hadoop is shown in Fig.9(a), in which reduce tasks

are randomly distributed and run loosely. Figs.9(b) and

9(c) are the scheduling diagram of SMART, with para-

meter p set to 0.05 and 0.125 respectively. The running

time of the reducing phase depends on the maximum

abscissa value in Fig.9. For instance, the abscissa value

of the last bar in Fig.9(a) exceeds 120 while the maxi-

mum abscissa value of the last bar in Figs.9(b) and

9(c) does not exceed 100, indicating that the running

time of the reducing phase in native Hadoop is longer

than the running time in SMART. Compared with the

baseline, the result tells that when long reduce tasks

are scheduled first, the entire scheduling will be com-

paratively compact, and the total running time of the

reducing phase will also be reduced. It is worth noting

that even though the p value in Fig.9(c) is over twice as

large as the p value in Fig.9(b), the scheduling results

are almost the same.

To better understand the robustness of SMART

against parameter p, we define the metric sortedness

S:

S = 1− 2

N2

N∑
i=1

|f(xi)− i| , (6)

where N is the total number of elements in the list, xi

is the i-th element in the sorted list and f(xi) is the

position or index of element xi in the unsorted list that

we want to measure. The metric S ranges from 0, for

completely unsorted, to 1, for completely sorted.

Fig.10 shows sortedness of SMART with different

values of parameter p under different job scenarios.

From the result we can see that with a small p (0.05),

the sortedness of scheduled reduce tasks can be im-

proved notably, while the marginal benefit brought by

larger p is negligible. The appropriate value of p mainly

depends on data skewness. When the data skewness is

large, the predicted sorting order can be obtained with

fewer map tasks (smaller p). For the evaluation in this

paper, it can be seen from Fig.3 that the data in these

experiments is very skewed. Therefore, as illustrated in

Fig.10, when the values of p are 0.05, 0.125 and 0.250

774 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

respectively, the sortedness is almost the same. With a

small p (0.05), the sortedness of scheduled reduce tasks

can be improved notably.

0 0.050 0.125 0.250

Percentage (p)

0.4

0.5

0.6

0.7

0.8

0.9

S
o
rt

e
d
n
e
ss

Terasort

WordCount

InvertedIndex

Fig.10. Sortedness with different values of parameter p under
different job scenarios.

Fig.11 shows the JCT reduction ratio of Terasort

80 GB/267 GB with parameter p set to 0.05, 0.125,

0.250 respectively. It can be seen that the performance

improvement under different values of p (0.05, 0.125,

0.250) is very similar.

Terasort 80 GB Terasort 267 GB

Benchmark

0

2

4

6

8

10

12

Im
p
o
rv

e
m

e
n
t

(%
)

3.85

11.33

3.87

11.14

3.64

11.09
p=0.050
p=0.125
p=0.250

Fig.11. Improvement of Terasort under different p values and
different sizes.

The above results demonstrate that SMART is ro-

bust against parameter p and it is sufficient to choose

the value parameter p as 0.05.

5.2.2 Effectiveness Under Different Scenarios

In this subsection, we evaluate performance of

SMART under different job scenarios.

Table 2 records the workload of different job scenar-

ios in this evaluation. Three different job scenarios are

tested, each with two datasets of different data scales.

The parameter p is set to 0.05 as guided by Subsec-

tion 5.2.1.

Table 2. Workload of Different Job Scenarios

Scenario Input Data Data Size

Terasort Generated by teragen 80 GB, 280 GB

WordCount Wikipedia 80 GB, 280 GB

InvertedIndex Wikipedia 80 GB, 280 GB

The experimental results are presented in Fig.12.

From the results we see that SMART can effectively

improve the performance of different jobs. In addition,

Fig.12 also tells that SMART performs better as the

input size increases. This is because SMART is able to

gain more scheduling space as the data size increases.

However, the input data size is not the most critical

factor, a more important factor is the skewness of the

input data.

Terasort WordCount InvertedIndex

Benchmark

0

2

4

6

8

10

12

14

Im
p
o
rv

e
m

e
n
t

(%
)

3.85

1.75 1.48

6.47

9.26

13.6680 GB
280 GB

Fig.12. Performance improvement under different job scenarios.

5.2.3 Skewness Simulation

We make a simulation to see the performance im-

provement brought by SMART with the strict imple-

mentation of largest-first scheduling when the data is

skewed. We define a metric skewness K:

K =
Size+10th

Size−10th
, (7)

where Size+10th is the average value of the largest 10%

reduce task size, and Size−10th is the average value of

the top 10% smallest reduce task size.

We generate datasets with different skewness as the

input data and evaluate the effectiveness of SMART.

The experimental results are presented in Fig.13.

It can be seen from Fig.13 that performance improve-

ment brought by SMART increases as the skewness

of datasets increases, and finally stabilizes at a perfor-

mance improvement ratio around 33%, which accords

with the theoretical analysis in Subsection 3.2.2.

Jia-Qing Dong et al.: SMART: Speedup Job Completion Time by Scheduling Reduce Tasks 775

0 10 20 30 40 50

Skewness of Data

0

5

10

15

20

25

30

35

P
ro

m
o
ti
o
n
 (

%
)

Fig.13. Performance improvement under different data skewness.

6 Related Work

There have been lots of researches focusing on im-

proving resource utilization in distributed computing

frameworks to reduce JCT in recent years. In order to

achieve the goal, they try to optimize distributed sys-

tems from different aspects, including but not limited

to, resource utilization and job scheduling.

In the aspect of network, Mosharaf and Ion [10] fo-

cused on application-level networking abstraction and

proposed that coflow scheduling [12, 13] can achieve high

network utilization and decrease communication time.

In the aspect of directed acyclic graph (DAG),

Grandl et al. [1] suggested that scheduling hete-

rogeneous DAG can not only improve the throughput

of cluster, but also reduce JCT. Mao et al. [14] used rein-

forcement learning and past workload logs to learn so-

phisticated scheduling policies automatically, which can

achieve efficient resource utilization and reduce JCT.

In the aspect of memory usage, Nguyen et al. [15, 16]

observed that big data applications’ memory usage is

different with other applications, such that optimizing

memory management policy in Java virtual machine

(JVM) can reduce garbage collection time, thus reduc-

ing JCT.

In the aspect of disk I/O, Rasmussen et al. [17] im-

proved the performance of MapReduce jobs by ensuring

the intermediate data not being repetitively accessed

through disks, which can reduce the amount of ran-

dom disk I/O access. Rao et al. [18] used a new file

system design to support multiple insertion points to

aggregate intermediate results, thus reducing disk ac-

cess time. Zhang et al. [19] observed that there are a

large number of small I/O requests during the shuffle

stage of large jobs, which can incur significant shuf-

fle overhead, and suggested that merging fragmented

intermediate files can convert small, random disk IO

requests to large, sequential ones, thus reducing com-

pletion time.

In addition, MapReduce jobs can be scheduled at

the lower granularity of tasks. MapReduce jobs con-

sist of two separate phases: the mapping phase and

the reducing phase, which are scheduled independently.

Therefore, many papers take map scheduling and re-

duce scheduling as research points.

•Map Task Scheduling. Map task scheduling mainly

focuses on data locality. Zaharia et al. [20] proposed de-

lay scheduling. It schedules a task to run on some hosts

which contain the task’s input data. It reduces JCT by

temporarily sacrificing fairness to satisfy data locality.

Ibrahim et al. [21] proposed the Maestro algorithm to

schedule map tasks by tracking data blocks and copy

locations to ensure data locality. The above two solu-

tions use data locality to reduce network transmission

to achieve performance improvement. However, in a

high-speed network environment, the network cannot

be fully used and the proportion of network transmis-

sion is relatively small, and therefore the utilization of

data locality cannot be better improved.

• Reduce Task Scheduling. Hammoud and Sakr [6]

proposed Lars, trying to put the reduce task on the

node with the largest input data to ensure data local-

ity. As described above, the utilization of data locality

cannot be better improved. Tang et al. [22] proposed to

reduce JCT by dynamically determining the start time

of the reduce task. However in the high-speed network

environment, the performance improvement by reduc-

ing the data copy time is small. In addition, data skew

may occur in the reducing phase. Data skew in Hadoop

is an imbalance in the load assigned to different reduce

tasks. The load includes the number of keys assigned

to a reducer, the number of values, and the number

of bytes of each value. When faced with the problem

of data skew in the reducing phase, the data can be

re-partitioned to achieve balance [5, 6, 11], thus reducing

JCT. Kwon et al. [11] proposed an optimizer SkewTune,

parameterized by user-defined cost functions. Through

user-defined cost functions, SkewTune determines how

best to partition the input data to minimize computa-

tional skew. IbrahIm et al. [23] developed LEEN, an al-

gorithm for locality-aware and fairness-aware key parti-

tioning in MapReduce. The intermediate keys after the

shuffle phase are partitioned according to their frequen-

cies and the fairness of the expected data distribution.

• Coupling Task Scheduling. Tan et al. [24] pro-

posed a resource-aware scheduler, which couples the

776 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

progresses of map tasks and reduce tasks to optimize

task placement for both of them. It improves the overall

data locality; thus it improves the job response time.

7 Conclusions

In this work, we presented SMART, a readily de-

ployable module for Hadoop that can effectively re-

duce the JCT through handling the data skew dur-

ing the reducing phase. SMART predicts the reduce

task size based on part of the completed map tasks

and then enforces largest-first scheduling in the reduc-

ing phase according to the predicted reduce task size.

SMART proves to be robust and effective. The ex-

perimental results showed that SMART reduces the

job completion time by up to 6.47%, 9.26%, 13.66% for

Terasort, WordCount and InvertedIndex respectively

with 280 GB dataset compared with the native Hadoop.

In the future work, we consider optimizing the pre-

diction of the reduce task size through adding an offline

training module. This paper takes Hadoop as a specific

case; however, SMART is not Hadoop-specific. Theo-

retically, it can be applied to data processing systems

with DAG patterns, under the assumption that pro-

cessing units are limited and the input of some tasks

are the output of some other tasks. MapReduce jobs

in Hadoop can be regarded as a specific kind of DAG-

task, where the input of reduce tasks is the output of

map tasks. We plan to implement SMART in other

distributed frameworks such as Spark in the future.

Acknowledgement The authors would like to

thank the anonymous reviewers for their valuable feed-

back.

References

[1] Grandl R, Kandula S, Rao S, Akella A, Kulkarni J.

Graphene: Packing and dependency-aware scheduling for

data-parallel clusters. In Proc. the 12th USENIX Confe-

rence on Operating Systems Design and Implementation,

Nov. 2016, pp.81-97.

[2] Chang H, Kodialam M, Kompella R R, Lakshman T V,

Lee M, Mukherjee S. Scheduling in MapReduce-like sys-

tems for fast completion time. In Proc. the 30th IEEE

International Conference on Computer Communications,

Joint Conference of the IEEE Computer and Communica-

tions Societies, Apr. 2011, pp.3074-3082. DOI: 10.1109/IN-

FCOM.2011.5935152.

[3] Peng Y, Chen K, Wang G, Bai W, Zhao Y, Wang H, Geng

Y, Ma Z, Gu L. Towards comprehensive traffic forecasting

in cloud computing: Design and application. IEEE/ACM

Transactions on Networking, 2016, 24(4): 2210-2222. DOI:

10.1109/TNET.2015.2458892.

[4] Ullah I, Khan M S, Amir M, Kim J, Kim S M. LSTPD:

Least slack time-based preemptive deadline constraint

scheduler for Hadoop clusters. IEEE Access, 2020, 8:

111751-111762. DOI: 10.1109/ACCESS.2020.3002565.

[5] Gao Y, Zhou Y, Zhou B, Shi L, Zhang J. Handling data

skew in MapReduce cluster by using partition tuning.

Journal of Healthcare Engineering, 2017, 2017: Article

No. 1425102. DOI: 10.1155/2017/1425102.

[6] Hammoud M, Sakr M F. Locality-aware reduce task

scheduling for MapReduce. In Proc. the 3rd IEEE In-

ternational Conference on Cloud Computing Technology

and Science, Nov. 29-Dec. 1, 2011, pp.570-576. DOI:

10.1109/CloudCom.2011.87.

[7] Dean J, Ghemawat S. MapReduce: Simplified data process-

ing on large clusters. Commun. ACM, 2008, 51(1): 107-113.

DOI: 10.1145/1327452.1327492.

[8] Ahmad F, Lee S, Thottethodi M, Vijaykumar T.

PUMA: Purdue MapReduce benchmarks suite. Techni-

cal Report, Purdue University, 2012. https://engineeri-

ng.purdue.edu/∼puma/puma.pdf, May 2022.

[9] Graham R L. Bounds for certain multiprocessing anomalies.

The Bell System Technical Journal, 1966, 45(9): 1563-1581.

DOI: 10.1002/j.1538-7305.1966.tb01709.x.

[10] Mosharaf C, Ion S. Coflow: A networking abstraction for

cluster applications. In Proc. the 11th ACM Workshop

on Hot Topics in Networks, Oct. 2012, pp.31-36. DOI:

10.1145/2390231.2390237.

[11] Kwon Y, Balazinska M, Howe B, Rolia J. Skew-

Tune: Mitigating skew in MapReduce applications. In

Proc. the 2012 ACM SIGMOD International Conference

on Management of Data, May 2012, pp.25-36. DOI:

10.1145/2213836.2213840.

[12] Chowdhury M, Zhong Y, Stoica I. Efficient coflow schedul-

ing with Varys. ACM SIGCOMM Comput. Commun. Rev.,

2014, 44(4): 443-454. DOI: 10.1145/2740070.2626315.

[13] Chowdhury M, Stoica I. Efficient coflow scheduling with-

out prior knowledge. In Proc. the 2015 ACM Conference

on Special Interest Group on Data Communication, Aug.

2015, pp.393-406. DOI: 10.1145/2785956.2787480.

[14] Mao H, Schwarzkopf M, Venkatakrishnan S B, Meng Z,

Alizadeh M. Learning scheduling algorithms for data pro-

cessing clusters. In Proc. the ACM Special Interest Group

on Data Communication, Aug. 2019, pp.270-288. DOI:

10.1145/3341302.3342080.

[15] Nguyen K, Wang K, Bu Y, Fang L, Hu J, Xu G. FACADE:

A compiler and runtime for (almost) object-bounded big

data applications. In Proc. the 20th International Confe-

rence on Architectural Support for Programming Lan-

guages and Operating Systems, Mar. 2015, pp.675-690.

DOI: 10.1145/2694344.2694345.

[16] Nguyen K, Fang L, Xu G, Demsky B, Lu S, Alamian

S, Mutlu O. Yak: A high-performance big-data-friendly

garbage collector. In Proc. the 12th USENIX Symposium on

Operating Systems Design and Implementation, November

2016, pp.349-365.

[17] Rasmussen A, Lam V T, Conley M, Porter G, Kapoor R,

Vahdat A. Themis: An I/O-efficient MapReduce. In Proc.

the 3rd ACM Symposium on Cloud Computing, Oct. 2012,

Article No. 13. DOI: 10.1145/2391229.2391242.

https://doi.org/10.1109/INFCOM.2011.5935152
https://doi.org/10.1109/INFCOM.2011.5935152
https://doi.org/10.1109/TNET.2015.2458892
https://doi.org/10.1109/ACCESS.2020.3002565
https://doi.org/10.1155/2017/1425102
https://doi.org/10.1109/CloudCom.2011.87
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1145/2390231.2390237
https://doi.org/10.1145/2213836.2213840
https://doi.org/10.1145/2740070.2626315
https://doi.org/10.1145/2785956.2787480
https://doi.org/10.1145/3341302.3342080
https://doi.org/10.1145/2694344.2694345
https://doi.org/10.1145/2391229.2391242

Jia-Qing Dong et al.: SMART: Speedup Job Completion Time by Scheduling Reduce Tasks 777

[18] Rao S, Ramakrishnan R, Silberstein A, Ovsiannikov

M, Reeves D. Sailfish: A framework for large scale

data processing. In Proc. the 3rd ACM Symposium

on Cloud Computing, Oct. 2012, Article No. 4. DOI:

10.1145/2391229.2391233.

[19] Zhang H, Cho B, Seyfe E, Ching A, Freedman M J. Rif-

fle: Optimized shuffle service for large-scale data analytics.

In Proc. the 13th EuroSys Conference, Apr. 2018, Article

No. 43. DOI: 10.1145/3190508.3190534.

[20] Zaharia M, Borthakur D, Sarma S J, Elmeleegy K, Shenker

S, Stoica I. Delay scheduling: A simple technique for achiev-

ing locality and fairness in cluster scheduling. In Proc. the

5th European Conference on Computer Systems, Apr. 2010,

pp.265-278. DOI: 10.1145/1755913.1755940.

[21] Ibrahim S, Jin H, Lu L, He B, Antoniu G, Wu S. Maestro:

Replica-aware map scheduling for MapReduce. In Proc.

the 12th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, May 2012, pp.435-442. DOI:

10.1109/CCGrid.2012.122.

[22] Tang Z, Jiang L, Zhou J, Li K, Li K. A self-adaptive

scheduling algorithm for reduce start time. Future Gene-

ration Computer Systems, 2015, 43/44: 51-60. DOI:

10.1016/j.future.2014.08.011.

[23] Ibrahim S, Jin H, Lu L, Wu S, He B, Qi L. LEEN:

Locality/fairness-aware key partitioning for MapReduce in

the cloud. In Proc. the 2nd IEEE International Conference

on Cloud Computing Technology and Science, Nov. 30-Dec.

3, 2010, pp.17-24. DOI: 10.1109/CloudCom.2010.25.

[24] Tan J, Meng X, Zhang L. Coupling task progress

for MapReduce resource-aware scheduling. In Proc. the

2013 IEEE INFOCOM, Apr. 2013, pp.1618-1626. DOI:

10.1109/INFCOM.2013.6566958.

Jia-Qing Dong received his Ph.D.

degree in computer science and techno-

logy from Tsinghua University, Beijing,

in July 2020 and received his B.S.

degree in computer science and techno-

logy from Peking University, Beijing,

in July 2013. He is currently an

assistant researcher with the State Key

Laboratory of Media Convergence and Communication,

Communication University of China, Beijing. His research

interests include data center networks, and distributed

systems.

Ze-Hao He received his M.S. degree

in computer science and technology

from Nanjing University, Nanjing, in

2021, and his B.S. degree in computer

science and technology from Shandong

University, Jinan, in 2018. His research

interests include datacenter networks

and systems.

Yuan-Yuan Gong received her B.S.

degree in software engineering from Hu-

nan University, Changsha, in 2019, and

her M.S. degree in computer science and

technology from Nanjing University,

Nanjing, in 2022. Her research interests

include the task scheduling of big data

system.

Pei-Wen Yu received his B.E.

degree in environment engineering at

Nanjing University, Nanjing, in 2020.

He is a M.E. student in the Department

of Computer Science and Technology

at Nanjing University, Nanjing. His

research interests include datacenter

networks and network architecture.

Chen Tian received his B.S., M.S.,

and Ph.D. degrees in communication

engineering from Huazhong University

of Science and Technology, Wuhan,

in 2000, 2003, and 2008, respectively.

He is currently a professor with the

State Key Laboratory for Novel Soft-

ware Technology, Nanjing University,

Nanjing. From 2012 to 2013, he was a postdoctoral

researcher with the Department of Computer Science,

Yale University, New Haven. His current research in-

terests include data center networks, network function

virtualization, distributed systems, and Internet streaming.

Wan-Chun Dou received his Ph.D.

degree in mechanical and electronic

engineering from the Nanjing University

of Science and Technology, Nanjing,

in 2001. He is currently a full profes-

sor of the State Key Laboratory for

Novel Software Technology, Nanjing

University, Nanjing. He visited the

Department of Computer Science and Engineering, Hong

Kong University of Science and Technology, Hong Kong, as

a visiting scholar in 2005 and 2008. His research interests

include workflow, cloud computing, and service computing.

https://doi.org/10.1145/2391229.2391233
https://doi.org/10.1145/3190508.3190534
https://doi.org/10.1145/1755913.1755940
https://doi.org/10.1109/CCGrid.2012.122
https://doi.org/10.1016/j.future.2014.08.011
https://doi.org/10.1109/CloudCom.2010.25
https://doi.org/10.1109/INFCOM.2013.6566958

778 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

Gui-Hai Chen received his B.S.

degree in computer software from Nan-

jing University, Nanjing, in 1984, his

M.E. degree in computer applications

from Southeast University, Nanjing, in

1987, and his Ph.D. degree in computer

science from the University of Hong

Kong, Hong Kong, in 1997. He is a

distinguished professor of Nanjing University, Nanjing. He

had been invited as a visiting professor by the Kyushu

Institute of Technology, Kitakyushu, University of Queens-

land, St Lucia, and Wayne State University, Detroit. He

has a wide range of research interests with focus on parallel

computing, wireless networks, data centers, peer-to-peer

computing, high-performance computer architecture, and

data engineering.

Nai Xia received his B.S. (2001),

Ph.D. (2007) degrees in computer

science and technology from Nanjing

University, Nanjing. He is an assistant

professor with Department of Computer

Science and Technology, Nanjing Uni-

versity, Nanjing. His research interests

focus on operating system design and

implementation.

Hao-Ran Guan is currently pur-

suing his B.S. degree in data science

and software development in School of

Computer Science, University of Syd-

ney, Sydney. His research interests in-

clude data analysis and machine learn-

ing systems.

	1 Introduction
	2 Background
	2.1 Hadoop MapReduce
	2.2 Hadoop Yarn
	2.3 Task Scheduling
	2.4 Phenomenon of Data Skew

	3 Design
	3.1 Problem Definition
	3.2 Design of SMART
	3.2.1 Task Size Prediction
	3.2.2 Largest-First Scheduling

	4 Implementation
	4.1 Architecture
	4.2 RPC Collection Component
	4.3 RPC Parsing Component
	4.4 Reduce Task Size Prediction Component

	5 Evaluation
	5.1 Methodology
	5.2 Effectiveness of SMART
	5.2.1 Choice of Parameter p
	5.2.2 Effectiveness Under Different Scenarios
	5.2.3 Skewness Simulation

	6 Related Work
	7 Conclusions

