
Lilac: Parallelizing Atomic Cross-Chain Swaps
Donghui Ding∗†, Bo Long∗†, Feng Zhuo∗†, Zhongcheng Li∗†, Hanwen Zhang∗†¶, Chen Tian‡, Yi Sun∗†§B

∗ Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
† University of Chinese Academy of Sciences, Beijing, China

‡ Nanjing University, Nanjing, China
§ Shandong Key Laboratory of Blockchain Finance, Jinan, China

¶ Institute of Blockchain R&D of ICT, Hainan, China
Bcorresponding author

{dingdonghui, longbo20g, zhuofeng19s, zcli, hwzhang, sunyi}@ict.ac.cn, {tianchen}@nju.edu.cn

Abstract—Hashed Timelock Contract (HTLC) is a widely-
used protocol for cross-chain asset swaps. However, it relies on
serial asset-locking to guarantee atomicity, which causes high
latency and poor fairness. Aiming at the drawbacks of HTLC,
we propose Lilac, a cross-chain asset swap protocol that supports
parallel asset-locking. Lilac replaces the unique asset-unlocking
credential in HTLC with multiple sub-credentials generated by
all participating users, and the sequence of sub-credentials is
used as the complete asset-unlocking credential. Users obtain the
complete credential only when all assets have been locked, and
the credential construction process is independent of the order
in which assets are locked, so atomicity can be guaranteed when
users lock their assets in parallel. Experiments show when a swap
involves 2 to 4 blockchains, Lilac reduces the swap latency by
36.75% to 62.20%. Moreover, Lilac reduces the waiting time gap
between different users so the fairness of a swap is improved.

Index Terms—blockchain, cross-chain swap, atomicity, HTLC,
swap latency, fairness

I. INTRODUCTION

A variety of blockchain platforms featured by different types
of digital assets have emerged in recent years, and these digital
assets can circulate reliably within independent blockchains
designed for specific industrial applications. However, there
are also scenarios in which assets circulate across multiple in-
dustrial sectors, so achieving efficient and secure asset swaps
between different blockchains (i.e., cross-chain swaps) has
become an urgent demand.

For instance, we assume there are three blockchains:
the copyright chain, tourism chain and game chain. Each
blockchain carries a different type of assets: copyrights, hotel
vouchers and game credits. Now users of these blockchains
have following intentions for swapping:
• Alice holds accounts on the copyright chain and game

chain. She took some photos during her trip, and used the
copyright chain to manage the photo copyrights. Now
she hopes to trade these copyrights for the game credits
on the game chain.

• Bob holds accounts on the tourism chain and copyright
chain. He runs a hotel in the city where Alice has visited,
and issues vouchers on the tourism chain. Now he plans
to trade some vouchers for Alice’s photo copyrights for
advertising.

• Carol holds accounts on the game chain and tourism
chain. She owns the game credits Alice wants on the

game chain. At present, she is also planning a trip and
hopes to trade these game credits for the vouchers issued
by Bob on the tourism chain.

Based on the above intentions, a cross-chain swap involving
three blockchains is established. We use the “swap graph” in
Fig.1 to describe this swap, in which each vertex represents
a user participating in the swap, and each directed edge
represents a transfer operation on a blockchain. As is shown
in Fig.1, this swap is jointly achieved by multiple “transfer
operations” occurring on three blockchains: on the copyright
chain, Alice transfers the copyrights to Bob; on the tourism
chain, Bob transfers the vouchers to Carol; and on the game
chain, Carol transfers game credits to Alice. Each user acts
as the sender (losing the asset) in the transfer operation on
one blockchain, and the receiver (obtaining the asset) in the
transfer operation on another blockchain. For example, Alice
loses the copyrights on the copyright chain, but obtains game
credits on the game chain.

Alice’s Account Bob’s Account
Copyrights

Vouchers

Tourism Chain

Copyright Chain

Game Credits

Game Chain

Alice’s Account

Alice

Bob Carol
Bob’s Account Carol’s Account

Carol’s Account

Fig. 1: Instance of Swap Graph

The core of a cross-chain swap is to guarantee atomicity,
which means either all the transfer operations in this swap
are successfully executed, or none of them are executed.
However, atomicity is challenging in practice. This is because
when a user executes a transfer operation, it is difficult to

978-1-6654-9792-3/22/$31.00 ©2022 IEEE

predict whether other users will also execute the transfer
operations as agreed. For example, once Alice has transferred
the copyrights to Bob on the copyright chain, but Carol refuses
to transfer game credits to Alice on the game chain, Alice will
suffer from an economic loss.

Hashed Timelock Contract (HTLC) is a widely-used cross-
chain swap protocol [1] [2] that guarantees atomicity. This
protocol adopts Two-Phase Commit (2PC) [3], which divides
a swap into the prepare phase and the commit phase.
Moreover, an escrow contract (or an escrow for short) is
deployed on each blockchain, and one of the users (e.g., Alice)
is elected as the initiator, who will generate a globally unique
credential for all users to obtain their required assets.

In the prepare phase, starting from the initiator, the sender of
each transfer operation serially locks her/his asset into the es-
crow based on the order of the swap graph (In our instance,
this order is “Alice → Bob → Carol”). Since the swap graph
forms a cycle (Fig.1), once the asset required by the initiator
(game credits in our instance) is locked, all of other assets
involved in this swap will also be locked. In other words, all
users have been ready to execute the transfer operations. This
swap then enters the commit phase. The initiator releases the
credential, and the receiver in each transfer operation uses this
credential to obtain (or “unlock”) her/his required asset from
the escrow. However, if any user fails to lock the asset, the
initiator will not release the credential, and each locked asset
will be withdrawn by its original sender after timeout.

In HTLC, the key for atomicity guarantee is serial asset-
locking. This is because the unique credential for all users
to unlock their required assets is held by the initiator, and
can only be released after all assets have been locked (i.e., in
the commit phase). If each user serially locks the asset, the
initiator will learn the current phase of a swap by observing
whether her/his required asset has been locked. However, serial
asset-locking has two drawbacks:
• High swap latency. When a swap involves multiple

blockchains and especially includes “public chains” such
as Bitcoin or Ethereum, the swap latency may reach
dozens of minutes or even several hours.

• Poor fairness. If we define the time taken by each
user from locking her/his originally-owned asset on one
blockchain to unlocking her/his required asset on another
blockchain as the “waiting time”, the waiting time of
users who lock the assets earlier (e.g., the initiator) will
be longer. This may make users unwilling to become the
initiator and thus reduce the swap success rate.

Aimed at the drawbacks of serial asset-locking in HTLC, the
contribution of this paper is to propose Lilac, a novel cross-
chain swap protocol that supports parallel asset-locking.
Lilac decomposes the unique credential in HTLC: Each user
generates a random value as the sub-credential, and the
sequence composed of all random values is used as the
complete credential for all users to obtain the locked assets.
In each transfer operation of a swap, if the sender has locked
the asset, the receiver will release her/his random value as
confirmation. Once all random values are released, it means

that all assets in this swap have been locked. Moreover, the
complete credential is revealed, by which all users obtain their
required assets.

In Lilac, the construction process of the credential is inde-
pendent of the order in which assets are locked, so atomicity
is guaranteed when users lock the assets in parallel. Therefore,
Lilac effectively reduces the swap latency. In addition, the
time taken by each user from assets-locking to reveal of the
credential is close to other users and only depends on the
highest transaction confirmation latency, so Lilac reduces the
waiting time gap between different users, thus improving
the fairness of a swap.

Our experiments show the swap latency of Lilac is reduced
by 36.75% to 62.20% compared with HTLC when a swap
involves 2 to 4 blockchains. Meanwhile, Lilac effectively
reduces the variance of user waiting time in each swap and
thus improves the fairness.

The rest of this paper is organized as follows. Section II
describes the detailed design of Lilac. Section III analyzes
the security of Lilac. Section IV evaluates the performance of
Lilac using experiments. Section V introduces the related work
of this paper. Finally we conclude our work in Section VI.

II. DESIGN OF LILAC

This Section describes the detailed design of Lilac. Sub-
section II-A introduces the formal notations used by this
paper and the assumption based on which Lilac is constructed.
Subsection II-B describes the basic workflow of Lilac. Sub-
section II-C theoretically analyzes the swap latency and user
waiting time of HTLC and Lilac.

A. Formal Notations and Assumptions

1. Formal Notations: To accurately specify a cross-chain
swap involving n blockchains, we utilize the formal notations
in Table I. As an instance of these notations, for the swap intro-
duced in Section I, B=<copyright chain, tourism chain, game
chain>, U=<Alice, Bob, Carol>, and A=<photo copyrights,
vouchers, game credits>. Moreover, e1, e2 and e3 represent
the escrows deployed on copyright chain, tourism chain and
game chain respectively.

2. Assumption: Similar to other cross-chain swap solutions
including HTLC, we assume all users are connected to a
matching platform. Users send their swapping requirements to
this platform, and the platform matches swapping requirements
to establish the swap graphs. Different from current cryptocur-
rency exchanges, the matching platform does not hold assets
of users during a swap.

B. Workflow of Lilac

The workflow of Lilac is also summarized as 2PC: In the
prepare phase, the sender of each transfer operation temporar-
ily locks the asset into the escrow. Once all of the assets to
be swapped have been locked, this swap enters the commit
phase, and the receivers can unlock their required assets from
the escrows.

Based on the swap instance in Section I, the rest of this
subsection first introduces the procedures before a swap (called

TABLE I: Formal Notations

Formal Notations Explanations
B = 〈b1, b2, · · · , bn〉 Sequence of all blockchains in this swap.
U = 〈u1, u2, · · · , un〉 Sequence of all users participating in this swap.

A = 〈a1, a2, · · · , an〉
Sequence of assets to be swapped. Each asset ai (1 ≤ i ≤ n) is issued on bi, and belongs
to ui before the swap.

OP = 〈op1, op2, · · · , opn〉
Sequence of transfer operations included in this swap. In each operation opi, ui transfers the
ownership of ai to uj on the blockchain bi, and j = (i+ 1) mod n, so ui and uj are the
sender and receiver of opi respectively.

ei Escrow deployed on the blockchain bi.

T (i)
Timeout moment specified in ei. After the sender ui locks ai into ei, if the receiver uj fails
to unlock the asset ai before T (i), ui will withdraw ai from ei.

tri Transaction recording latency of bi (i.e., the time taken by a transaction to be recorded on bi).

tci

Transaction confirmation latency of bi (i.e., the time taken by a transaction to be confirmed
by bi). In some blockchains, a transaction needs to wait for several additional blocks before
it is considered confirmed, so tci ≥ tri .

tcmax tcmax = max
{
tc1, t

c
2, · · · , tcn

}
.

“pre-swap phase”), then describes the workflow of the prepare
phase and commit phase respectively, and finally gives the
value of timeout moment (defined in Table I) of each escrow.

1) Pre-Swap Phase:
Each user with an intention for swapping locally generates

a random value si, and then calculates the hash value hi of si.
As an instance, in Fig.2 Alice, Bob and Carol independently
generate the random values s1, s2 and s3, and then calculate
the hash values h1, h2 and h3 respectively. When each user ui

sends the swapping requirement to the matching platform, the
hash value hi is included in this requirement as a parameter.
The platform matches the requirements from different users to
establish the swap graphs. Various matching algorithms have
been proposed [4] [5], which can be adopted by the platform.

Alice’s Account Bob’s Account
Copyrights

Vouchers

Tourism Chain

Copyright Chain

Game Credits

Game Chain

Alice’s Account

u1: Alice

u2: Bob u3: Carol
Bob’s Account Carol’s Account

Carol’s Account

Generate 𝒔𝟏
𝒉𝟏 = 𝒉𝒂𝒔𝒉 𝒔𝟏

Generate 𝒔𝟐
𝒉𝟐 = 𝒉𝒂𝒔𝒉 𝒔𝟐

Generate 𝒔𝟑
𝒉𝟑 = 𝒉𝒂𝒔𝒉 𝒔𝟑

𝑯 = 𝒉𝟏,𝒉𝟐,𝒉𝟑

Fig. 2: Instance of Pre-Swap Phase

If a swap graph is established, the platform will push this
graph to all users who participate in this swap, so these
users will learn the information of this swap in a timely
manner. Similar to HTLC, one of the users is elected as the
“initiator”. Without loss of generality, we let u1 be the initiator,
and assume Alice is elected as the initiator in our instance.
Bob and Carol respectively establish network connections
with Alice, and all three users read a hash value sequence
H = 〈h1, h2, h3〉 from the matching platform, which will be
used for asset-locking during the prepare phase.

2) Prepare Phase:
In each transfer operation opi of a swap, the sender ui

broadcasts a “locking transaction” TXui

locking into the network
of the blockchain bi. This transaction temporarily locks the
asset ai into the escrow ei, and sets the following unlock-
ing conditions in ei using the hash value sequence H =
〈h1, h2, · · · , hn〉:
1. If the receiver uj provides the random value sequence S =
〈s1, s2, · · · , sn〉 before T (i), and for ∀k ∈ [1, n], sk in S
and hk in H satisfy hk = hash (sk), the asset ai will be
transferred to uj .

2. If the receiver uj fails to provide the correct sequence S
before T (i), ui will withdraw the asset ai.

If the receiver uj is not the initiator (i.e., j 6= 1), after the
“locking transaction” is confirmed by bi, uj will release the
random value sj to the initiator u1 through the pre-established
network connection. The initiator u1 then locally verifies if
received sj satisfies hj = hash (sj) and rejects fake sj .

𝑢2: Bob 𝑒2:Escrow on
Tourism Chain

𝑢3: Carol 𝑢1:Alice

𝑇𝑋𝑙𝑜𝑐𝑘
𝐵𝑜𝑏 Vouchers,𝐻, …

𝑠3

Observe whether 𝑇𝑋𝑙𝑜𝑐𝑘
𝐵𝑜𝑏 has been

confirmed by tourism chain

Verify if received 𝑠3 satisfies
ℎ3 = hash 𝑠3

Set the unlocking conditions
for vouchers using 𝐻

Fig. 3: Workflow of Prepare Phase

As an instance, Fig.3 illustrates the workflow of Lilac when
Bob locks his vouchers. Bob broadcasts a locking transaction
TXBob

locking into the network of the tourism chain b2. This
transaction locks his vouchers into the escrow e2, and sets
the unlocking conditions using H , ensuring Carol can only
obtain the vouchers before T (2). The client of Carol monitors
the events occurring on the tourism chain, and releases s3 to
Alice once observing TXBob

locking has been confirmed.

Similarly, if Alice locks the photo copyrights on the copy-
right chain b1, Bob will release his random value s2 to Alice.
As the initiator, Alice also monitors whether Carol has locked
the game credits on the game chain b3, but needn’t release s1
during the prepare phase.

3) Commit Phase:
If the initiator Alice receives s2 and s3 from Bob and Carol,

and confirms that Carol has locked the game credits on the
game chain b3, she will know all assets involved in this swap
have been locked. Moreover, she can construct the complete
sequence S = 〈s1, s2, s3〉.

Vouchers

 𝑇𝑋𝑢𝑛𝑙𝑜𝑐𝑘
Alice 𝑆, …

 𝑇𝑋𝑢𝑛𝑙𝑜𝑐𝑘
Carol 𝑆, …

 𝑇𝑋𝑢𝑛𝑙𝑜𝑐𝑘
Bob 𝑆, …

𝑢1: Alice 𝑒3: Escrow on
Game Chain

𝑢3: Carol
𝑒2: Escrow on
Tourism Chain

𝑢2: Bob 𝑒1: Escrow on
Copyright Chain

Judge if the time from
now to 𝑇 3 covers 𝑡3

𝑟

Check the unlocking
conditions

Read 𝑆 from Game
Chain

Check the unlocking
conditions

Read 𝑆 from Tourism
Chain

Check the unlocking
conditions

Game Credits

Copyrights

Fig. 4: Workflow of Commit Phase

Fig.4 illustrates the workflow of the commit phase. Before
releasing S, Alice judges whether remaining time is adequate
to unlock the game credits on the game chain (i.e., whether
the time from now to T (3) covers tr3). If the time remained
by T (3) is adequate, Alice will broadcast an “unlocking
transaction” TXAlice

unlocking containing S into the network of
the game chain. After this transaction is recorded on the game
chain, the escrow e3 will check whether following unlocking
conditions are satisfied:
1. Whether current time is earlier than T (3).
2. For ∀k ∈ [1, n], whether sk in S and hk in H satisfy

hk = hash (sk).
If the “unlocking transaction” broadcast by Alice passes the

above checks, e3 will transfer the game credits to Alice. Carol
then reads the sequence S from the game chain, and forwards
S to the tourism chain b2 before T (2) to obtain the vouchers
locked by Bob. Similarly, Bob forwards the sequence S from
the tourism chain to the copyright chain b1 before T (1) to
obtain the photo copyrights locked by Alice.

Compared with HTLC, the evidence that all assets in this
swap have been locked changes from “the asset required by
the initiator Alice has been locked ” to “Alice has received
all random values and Carol has locked her game credits”.
Alice can construct and then release the complete credential
S only in the commit phase, which avoids the adverse situation
where only some of the transfer operations in a swap are
executed. Moreover, the credential construction process is
independent of the order in which assets are locked,

so Lilac guarantees atomicity when assets are locked in
parallel.

In the above swap, if Bob fails to lock his vouchers, Alice
will not receive s3 so she cannot construct complete S, and
if Carol fails to lock her game credits, Alice may obtain all
random values but is not motivated to release S. In both cases
any locked asset ai will be withdrawn by ui after T (i).

Finally, the commit phase can be further accelerated: After
constructing S, Alice proactively sends S to Bob and Carol
through the off-chain network, and then all users can broadcast
the “unlocking transactions” in parallel.

4) Timeout Moment T (i):
T (i) is the key factor that determines whether all transfer

operations in a swap are executed. If we assume all users si-
multaneously broadcast the “locking transactions” at an initial
time T0, and ignore the network delay between two nodes
(generally less than 1s), then T (i) is defined by Equation 1:

T (i) = (T0 + tcmax + ∆p) +

n∑
k=i

(trk + ∆k) (1)

Equation 1 consists of two parts. (T0 + tcmax + ∆p) is the
expected ending time of the prepare phase (i.e., the time
when all “locking transactions” are confirmed by different
blockchains).

∑n
k=i (trk + ∆k) guarantees Equation 2 holds,

so in the commit phase ui+1 (1 ≤ i<n) has adequate time
to forward S from bi+1 to bi by broadcasting an “unlocking
transaction”.

T (i)− T (i + 1) = tri + ∆i, 1 ≤ i<n (2)

The offsets ∆p and ∆k in Equation 1 determine the tol-
erance of Lilac to abnormal events. If the offsets are small,
once a user encounters a device crash the remaining time
will be inadequate to support the device recovery, resulting
in the failure of this swap. However, current research [6] on
HTLC shows that if the time during which assets are locked in
escrows is excessively long, users will be motivated to wait and
observe the fluctuation of asset price during this time window,
and then decide whether to continue the swap. This slows
down the swap process and reduces the swap success rate. We
leave the design of more accurate T (i) as our future work.

C. Swap Latency & User Waiting Time

Lilac optimizes HTLC in two aspects: 1) lowering the swap
latency; 2) reducing the waiting time gap between different
users and thus improving the fairness. In this subsection we
will theoretically analyze and compare the swap latency and
user waiting time of HTLC and Lilac.

1) Swap Latency:
The swap latency is defined as the time from the broadcast

of the first “locking transaction” to the confirmation of all
“unlocking transactions”. Ignoring the abnormal events such as
device crashes, we only focus on the minimum swap latency,
and use LH and Llic to denote the minimum swap latency of
HTLC and Lilac respectively.

HTLC. In the prepare phase, users serially broadcast the
“locking transaction” into different blockchains starting from
the initiator u1. In the commit phase, we assume the initiator
proactively sends the credential to other users, and then all
users broadcast the “unlocking transactions” in parallel. A
swap ends when all “unlocking transactions” are confirmed.
LH thus satisfies Equation 3:

LH =

n∑
k=1

tck + tcmax (3)

Lilac. In the prepare phase, we assume users simultaneously
broadcast the “locking transactions”, and the prepare phase
ends when all “locking transactions” are confirmed. In the
commit phase, the workflow of Lilac is the same as that of
HTLC. Llic thus satisfies Equation 4:

Llic = 2tcmax (4)

As tcmax<
∑n

k=1 t
c
k, Lilac effectively lowers the swap la-

tency compared with HTLC.
2) User Waiting Time:
For each user ui, the waiting time is defined as the time

from the broadcast of her/his “locking transaction” to the
confirmation of her/his “unlocking transaction”. We use WH

i

and W lic
i to denote the minimum waiting time of ui in HTLC

and Lilac respectively.
HTLC. In the prepare phase, users serially broadcast the

“locking transactions”, and when the commit phase begins, all
users can broadcast the “unlocking transactions” in parallel, so
WH

i satisfies Equation 5:

WH
i =

{∑n
k=i t

c
k + tci−1, 1<i ≤ n∑n

k=i t
c
k + tcn, i = 1

(5)

Lilac. If all users simultaneously broadcast the “locking
transactions”, W lic

i will satisfy Equation 6:

W lic
i =

{
tcmax + tci−1, 1<i ≤ n

tcmax + tcn, i = 1
(6)

Equation 5 indicates in HTLC the waiting time of ui

during the prepare phase (i.e.,
∑n

k=i t
c
k) is prolonged with the

decrease of i. By contrast, Equation 6 indicates in Lilac the
waiting time of all users during the prepare phase is equal
to tcmax. Lilac thus reduces the waiting time gap between
different users and improves the fairness of a swap.

Equations 5 and 6 also show W lic
i >WH

i may occur if
tcmax>

∑n
k=i t

c
k. To avoid this, in Lilac ui can defer broadcast-

ing the “locking transaction” for a period of time. In the most
ideal case, the waiting time of ui during the prepare phase is
reduced from tcmax to tci , which leads to W lic

i <WH
i .

III. SECURITY ANALYSIS AND DISCUSSION

This section introduces the changes of Lilac compared with
HTLC, and analyzes security issues caused by such changes.

The main difference between two protocols is that in Lilac
all users can lock their assets in parallel. By contrast, in HTLC
ui+1 locks her/his asset ai+1 only after ai has been locked by

ui. To support parallel asset-locking, Lilac further makes two
changes: 1) The credential is generated by all users instead
of the single initiator. 2) Off-chain network connections are
established between the initiator and other users to transmit
sub-credentials (i.e., random values). The above changes cause
following security issues.

Long-term locking problem [6] [7]. If a user refuses to
lock her/his asset midway due to price fluctuations, assets of
other users may be locked in the escrows for a long time
and cannot be used until T (i). This problem does not violate
atomicity but affects user experience. More users are likely
to encounter this problem in Lilac than in HTLC. When um

refuses to lock her/his asset am, in HTLC any ui (m<i ≤ n)
will also not lock ai, so n−m−1 users encounter this problem.
By contrast, in Lilac the misbehavior of um causes up to n−1
users to suffer from this problem. However, Lilac accelerates
the swap process, so we can set T (i) closer to the current time,
thereby shortening the time during which assets are locked
in escrows. Moreover, Lilac compresses the time window for
users to observe the price fluctuations, and thus reduces the
probability that users quit a swap.

Failure of Random Value Transmission Link. The net-
work link between ui (i 6= 1) and the initiator u1 may en-
counter a failure, causing the random value si to be lost or
tampered with. This issue results in the abort of a swap, but
does not violate atomicity. Aiming at this issue, the initiator
u1 should return a confirmation message to ui after receiving
si. Moreover, users can reduce the impact of such failure by
switching network links and retransmission.

Attack using fake random values. A malicious user
ui (i 6= 1) may send a fake random value s′i to the initiator
u1. Once u1 releases the sequence containing s′i, all users
except ui cannot unlock their required assets. However, ui

can secretly construct the correct S, and obtains ai−1 without
loosing ai after T (i). Therefore, the initiator should locally
verify whether hi = hash (si) is satisfied for each received si
and reject fake si. To prevent malicious users from sending
a large number of fake random values and thus wasting the
computation resources, u1 should only verify random values
from authenticated users. If a user continuously sends fake
random values, the connection from this user will be cut off.
We can achieve secure user authentication by decentralized
identification mechanisms [8].

Besides the above issues, if the device of ui+1 crashes
and fails to recover before T (i) − tri , this user may lose
ai+1 without obtaining ai. However, HTLC adopts the same
timeout mechanism as Lilac, so the security level of Lilac
is not reduced compared with HTLC. Moreover, Lilac is
lightweight and ui+1 can easily switch to a new device.

IV. IMPLEMENTATION AND EVALUATION

We implemented Lilac and HTLC based on Ethereum. The
escrows were developed with Solidity 0.5.0 [9], and the
user client was developed with Python 3.6. We deployed
both protocols on the platform in Table II, and used PoA (Proof
of Authority) consensus to flexibly adjust the block interval of

each blockchain (i.e., the time interval between the generation
of two adjacent blocks in each blockchain). We conducted
following experiments to evaluate the performance of Lilac.

TABLE II: Platform of Experiments

Platform Configuration

CPU Intelr Xeonr Silver 4114 Processor
(2.2 GHz×40 cores)

Operating System CentOS Linux 7.9 (2009)
Memory Size 64G
Disk Capacity 1T

A. Experiment1: Swap Latency under Different Blockchain
Numbers and Block Intervals

In this experiment, we compared the swap latency of HTLC
and Lilac under different combinations of blockchain numbers
and block intervals. 18 combinations were constructed in total:
The blockchain number n was gradually increased from 2 to 4,
and the block intervals were set to 25s, 30s, 35s, 40s, 45s and
50s respectively. For each combination we ran two tests, one
of which was for HTLC and the other was for Lilac. In each
test the block intervals of all n blockchains were equal, and
we launched 3 swaps in total. The time interval between each
swap was picked up randomly because in practice we cannot
predict when a swap occurs. Moreover, once a transaction was
recorded on the blockchain, we waited one more block before
this transaction was considered confirmed. To accelerate this
experiment, in both HTLC and Lilac we let the initiator
proactively send the asset-unlocking credential to other users
during the commit phase.

25 30 35 40 45 50
Block Interval/s

100
150
200
250
300
350
400
450

Av
er

ag
e

Sw
ap

 L
at

en
cy

/s

HTLC, n = 4
HTLC, n = 3
HTLC, n = 2
Lilac, n = 4
Lilac, n = 3
Lilac, n = 2

Fig. 5: Swap Latency of HTLC and Lilac

Our experiment results are reflected in Fig.5. For the same
blockchain number, the solid line is always located above the
dotted line, indicating the swap latency of Lilac is lower than
that of HTLC in any combination. Moreover, the swap latency
of HTLC grows with the block interval, and the solid lines
with larger blockchain numbers are located in the upper part
of this figure, indicating the swap latency of HTLC depends on
both the transaction confirmation latency and the blockchain
number. By contrast, although the swap latency of Lilac also
grows with the increase of the block interval, all dotted lines
roughly overlap, which indicates the swap latency of Lilac

is independent of the blockchain numbers. This is consistent
with Equations 3 and 4. In general for the same block interval,
the optimization effect of Lilac becomes more obvious with
the increase of the blockchain number. When a swap involves
2 blockchains, Lilac reduces the swap latency by 36.75% on
average compared with HTLC, and when 4 blockchains are
involved, the average reduction reaches 62.20%.

Lines in Fig.5 are not rigorously straight. This is because
the transaction confirmation latency tci depends on multiple
factors including the block interval and the time at which this
transaction is broadcast. We randomly launched the swaps
in our experiment to simulate real situations, which added
uncertainty to the value of tci . Moreover, after a transaction
is sent to the network of bi, it usually needn’t wait the
entire block interval before being recorded on bi if bi is not
congested, so tci is less than two block intervals when one more
confirmation block is required. Therefore, the swap latency of
Lilac is less than four block intervals given Llic = 2tcmax. For
instance, Llic<200s holds in Fig.5 when the block interval
reaches 50s.

B. Experiment2: User Waiting Time under Different Block
Intervals

Experiment2 compared the user waiting time of HTLC
and Lilac. We considered the cross-chain swaps involving
4 blockchains, and constructed 3 combinations in total: The
block intervals in each combination were (40s, 40s, 40s, 40s),
(20s, 30s, 40s, 50s) and (50s, 40s, 30s, 20s) respectively. We
ran 2 tests for each combination, one of which was for HTLC
and the other was for Lilac. 3 swaps were launched in each
test, and we measured the waiting time of ui (1 ≤ i ≤ 4)
in these swaps. Finally, we took the average of each user’s
waiting time. Our experiment results are reflected in Fig.6.

As shown in Fig.6, Lilac effectively reduces the waiting time
gap between different users, and thus improves the fairness
compared with HTLC. According to our calculation, in Lilac
the population variances of user waiting time are 36.32s2,
644.78s2 and 754.88s2. By contrast the population variances
in HTLC are 3229.45s2, 4251.34s2 and 5518.64s2. For HTLC,
the waiting time of the initiator u1 in all 3 combinations is
significantly longer than that of other users, which may make
users unwilling to become the initiator and thus reduce the
swap success rate.

Fig.6a shows the waiting time of all users in Lilac is close
when the combination is (40s, 40s, 40s, 40s), indicating our
protocol performs best in terms of the fairness when block
intervals of all involving blockchains are equal. Fig.6b shows
in Lilac the waiting time of u1 is the longest among all 4 users,
because the waiting time of all users during the prepare phase
is equal to tcmax (Equation 6) and u1 will send an “unlocking
transaction” to b4 with the block interval of 50s, causing u1

to wait the longest time during the commit phase. Similarly,
Fig.6c shows the waiting time of u2 in Lilac is the longest
among all 4 users.

The waiting time of u4 in Lilac is longer than in HTLC
for all 3 combinations. This is because in Lilac the waiting

HTLC Lilac0

50

100

150

200

250
W

ai
tin

g
Ti

m
e/

s
273.82

153.71

200.21

137.56
160.29

143.22
119.91

148.67

u1
u2
u3
u4

(a) User Waiting Time of (40s, 40s, 40s, 40s)

HTLC Lilac0

50

100

150

200

250

300

W
ai

tin
g

Ti
m

e/
s

292.09

192.04200.36

126.37
150.09 141.27

120.10
136.53

u1
u2
u3
u4

(b) User Waiting Time of (20s, 30s, 40s, 50s)

HTLC Lilac0

50

100

150

200

250

W
ai

tin
g

Ti
m

e/
s

254.71

114.44

199.96
187.87

120.13
143.15

60.38

129.13

u1
u2
u3
u4

(c) User Waiting Time of (50s, 40s, 30s, 20s)

Fig. 6: User Waiting Time of HTLC and Lilac

time of u4 during the prepare phase is equal to tcmax while
in HTLC such value is equal to t̄c4, the average transaction
confirmation latency of b4 (Equation 5). Generally tcmax>t̄c4
holds. Nevertheless, the average user waiting time of Lilac is
shorter than that of HTLC in all 3 combinations. Moreover,
u4 can defer broadcasting the “locking transaction” in Lilac to
shorten her/his waiting time as specified in Subsection II-C2.

V. RELATED WORK

Achieving atomic cross-chain swaps has become a common
concern in the blockchain industry. A variety of protocols
supporting atomic swaps have been proposed, which are
divided into two categories:

1. Protocols based on the third-party coordinator. The
coordinator owns the global view of each swap and triggers
correct transfer operations on involving blockchains. Such
protocols are further categorized into two approaches. One

uses a single notary as the coordinator, and its typical instances
include centralized cryptocurrency exchanges and Tesseract
[10], a protocol based on Trusted Execution Environment
(TEE). This approach supports efficient asset swaps, but
requires the notaries be highly credible, otherwise the notaries
may be malicious or hacked. The other introduces a third-party
blockchain as the coordinator, and its typical instances are
XCLAIM [11] and AC3WN [12]. This approach reduces the
security risks compared with centralized notaries, but highly
relies on third-party facilities: A new “coordinating chain”
needs to be introduced, and multiple “relay nodes” should
be set up to deliver the coordinating messages and necessary
verification information (such as block headers) between the
“coordinating chain” and other blockchains.

2. Hashed Timelock Contract (HTLC). This protocol
was first proposed in 2013 and initially used for asset-swaps
between two blockchains [1]. In 2018 Herlihy [2] extended this
protocol to the swaps between multiple blockchains. HTLC
does not rely on third-party coordinators1 and achieves swaps
only by the cooperation of participating users. Currently it has
served as the core components of various asset-swapping plat-
forms [13] [14]. Lilac optimizes HTLC while the advantage
of HTLC is not compromised.

As is specified in Section III, in a swap where the asset
price fluctuates significantly, a user may quit this swap and
thus causes the “long-term locking problem”. Recently this
issue has attracted increasing attentions. Using game theory,
Xu et al. [6] obtain the quantitative relation between the swap
success rate and other factors including the degree of price
fluctuation. Han et al. [15] and Xue et al. [7] introduce the
pledge mechanism into HTLC. If a user refuses to lock the
asset, pledge of this user will be confiscated, thus weakening
users’ motivation to quit. Lilac provides another solution to
this issue: It compresses the time window for users to observe
price fluctuations, so the swap success rate is increased.

VI. CONCLUSION

In this paper, we optimize HTLC, and propose Lilac, a
novel protocol that supports parallel asset-locking. Compared
with HTLC, Lilac effectively reduces the swap latency and
improves the fairness in terms of user waiting time. In our
future work, we will design a more accurate timeout moment
T (i) to increase the swap success rate.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and
Development Program of China (2020YFB1005403); National
Natural Science Foundation of China (61972382); Natural
Science Foundation of Inner Mongolia (2020MS06017); Key
Research and Development Program of Hainan Province
(ZDYF2021GXJS008).

1The matching platform in HTLC is different from the coordinators because
this platform does not control the transfer operations on any blockchain.

REFERENCES

[1] T. Nolan. (2013) Re: Alt chains and atomic transfers. [Online].
Available: https://bitcointalk.org/index.php?topic=193281.msg2224949#
msg2224949

[2] M. Herlihy, “Atomic cross-chain swaps,” in ACM PoDC 2018, Egham,
United Kingdom, Jul. 2018, pp. 245–254.

[3] B. W. Lampson and H. E. Sturgi, “Crash recovery in a distributed data
storage system,” Xerox Palo Alto Research Center, Palo Alto, CA, USA,
Tech. Rep., Jun. 1979.

[4] R. Anderson, I. Ashlagi, D. Gamarnik, and Y. Kanoria, “A dynamic
model of barter exchange,” in Proceedings of the 2015 Annual ACM-
SIAM Symposium on Discrete Algorithms, San Diego, CA, USA, Jan.
2015, pp. 1925–1933.

[5] R. M. Kaplan, “An improved algorithm for multi-way trading for
exchange and barter,” Electronic Commerce Research and Applications,
vol. 10, no. 1, pp. 67–74, 2011.

[6] J. Xu, D. Ackerer, and A. Dubovitskaya, “A game-theoretic analysis of
cross-chain atomic swaps with htlcs,” in 2021 IEEE 41st International
Conference on Distributed Computing Systems, Washington DC, USA,
Jul. 2021, pp. 584–594.

[7] Y. Xue and M. Herlihy, “Hedging against sore loser attacks in cross-
chain transactions,” in ACM PoDC 2021, Virtual Event, Italy, Jul. 2021,
pp. 155–164.

[8] (2021) Decentralized identifiers (dids) v1.0. [Online]. Available:
https://www.w3.org/TR/did-core/

[9] (2021) Solidity v0.5.0. [Online]. Available: https://docs.soliditylang.org/
en/v0.5.0/

[10] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels,
“Tesseract: Real-time cryptocurrency exchange using trusted hardware,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, London, United Kingdom, Nov. 2019, pp.
1521–1538.

[11] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knot-
tenbelt, “Xclaim: Trustless, interoperable, cryptocurrency-backed as-
sets,” in 2019 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, May 2019, pp. 193–210.

[12] V. Zakhary, D. Agrawal, and A. E. Abbadi, “Atomic commitment across
blockchains,” Proceedings of the VLDB Endowment, vol. 13, no. 9, pp.
1319–1331, 2020.

[13] (2020) Atomicdex and atomic swaps. [Online]. Avail-
able: https://developers.komodoplatform.com/basic-docs/start-here/
core-technology-discussions/atomicdex.html#introduction

[14] (2017) Decred: Atomic swaps. [Online]. Available: https://docs.decred.
org/advanced/atomic-swap/

[15] R. Han, H. Lin, and J. Yu, “On the optionality and fairness of atomic
swaps,” in Proceedings of the 1st ACM Conference on Advances in
Financial Technologies, Zurich, Switzerland, Oct. 2019.

https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://www.w3.org/TR/did-core/
https://docs.soliditylang.org/en/v0.5.0/
https://docs.soliditylang.org/en/v0.5.0/
https://developers.komodoplatform.com/basic-docs/start-here/core-technology-discussions/atomicdex.html#introduction
https://developers.komodoplatform.com/basic-docs/start-here/core-technology-discussions/atomicdex.html#introduction
https://docs.decred.org/advanced/atomic-swap/
https://docs.decred.org/advanced/atomic-swap/

	Introduction
	Design of Lilac
	Formal Notations and Assumptions
	Workflow of Lilac
	Pre-Swap Phase
	Prepare Phase
	Commit Phase
	Timeout Moment T(i)

	Swap Latency & User Waiting Time
	Swap Latency
	User Waiting Time

	Security Analysis and Discussion
	Implementation and Evaluation
	Experiment1: Swap Latency under Different Blockchain Numbers and Block Intervals
	Experiment2: User Waiting Time under Different Block Intervals

	Related Work
	Conclusion
	Acknowledgments
	References

