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TrusT: Triangle Counting Reloaded on GPUs

Santosh Pandey, Zhibin Wang, Sheng Zhong, Chen Tian™, Bolong Zheng, Xiaoye Li, Lingda Li,
Adolfy Hoisie, Caiwen Ding, Dong Li, and Hang Liu

Abstract—Triangle counting is a building block for a wide range of graph applications. Traditional wisdom suggests that i) hashing is
not suitable for triangle counting, ii) edge-centric triangle counting beats vertex-centric design, and iii) communication-free and
workload balanced graph partitioning is a grand challenge for triangle counting. On the contrary, we advocate that i) hashing can help
the key operations for scalable triangle counting on Graphics Processing Units (GPUs), i.e., list intersection and graph partitioning, ii)
vertex-centric design reduces both hash table construction cost and memory consumption, which is limited on GPUs. In addition, iii) we
exploit graph and workload collaborative, and hashing-based 2D partitioning to scale vertex-centric triangle counting over 1 000 GPUs
with sustained scalability. In this article, we present TrusT which performs triangle counting with the hash operation and vertex-centric

mechanism at the core. To the best of our knowledge, TrusT is the first work that achieves over one trillion Traversed Edges Per

Second (TEPS) rate for triangle counting.

Index Terms—GPGPU, triangle counting, graph algorithms, parallel processing

1 INTRODUCTION

HE number of triangles (i.e., three-vertex clique) is a key

metric to extract insights for a wide range of graph
applications, such as, anomaly detection [1], [2], community
detection [3], [4], [5], [6], and robustness analysis [7]. For
more thorough studies about the applications surrounding
triangle counting, we refer the readers to recent surveys [8],
[9], [10]. Further, triangle counting is also a basic primitive
for an array of graph algorithms, e.g., clustering coeffi-
cient [11], k-truss [12], [13], [14], and transitivity ratio calcu-
lation [15]. Ultimately, the significance of triangle counting
is pronounced by the GraphChallenge competition [16],
where participants are ranked by how fast they perform tri-
angle counting on a collection of graph datasets.

Recent years have witnessed a surge of projects in trian-
gle counting. Briefly, triangle counting efforts fall into three
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categories, that is, list intersection, matrix-multiplication,
and subgraph matching. List intersection further encom-
passes two system implementation methods, i.e., edge- and
vertex- centric options. In terms of how to intersect the lists,
one can exploit merge-path, binary-search, and hashing-
based algorithms. Note, the bitmap is an extreme case of
hashing where the number of buckets equals to the number
of vertices. All the details about these methods are thor-
oughly discussed in Section 2.

The efforts of seeking suitable hardware platforms to
accelerate triangle counting has also gain momentum. Pop-
ular attempts include multi-core CPUs [17], [18], [19], [20],
many-core GPUs [21], [22], [23], [24], [25], and external
memory devices [26], [27], [28], [29], [30]. Of all these plat-
forms, GPUs are particularly tempting for the following rea-
sons. First and foremost, GPUs come with unprecedented
computing and data delivering capabilities. Using recent
NVIDIA Tesla V100 [31] GPU as an example, it provides 80
streaming multiprocessor (SM) and 64 FP32 cores/SM,
which can reach 15.7 TFLOPS peak performance. Along
with High Bandwidth Memory (HBM2) on the device, this
GPU can retain 900 GB/s memory bandwidth. The massive
parallelism and fast memory support are well suited for tri-
angle counting. Second, GPUs are equipped with configura-
ble on-chip shared memory where users can store
frequently accessed data structures. As we will discuss
shortly, shared memory can significantly improve the effi-
ciency of triangle counting. Last but not least, GPUs feature
a hierarchical thread organization, e.g., thread, warp, and
Cooperative Thread Array (CTA), which fits graphs that
come with inherent workload imbalance across various
vertices.

1.1 Related Work and Challenges
Reviewing the recent literatures centering around triangle
counting, we arrive at the following challenges faced by ver-
tex-centric hashing-based triangle counting, along with
brief discussions about our resolutions.

1045-9219 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on May 15,2021 at 23:51:54 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
mailto:spande1@stevens.edu
mailto:hang.liu@stevens.edu
mailto:wzbwangzhibin@gmail.com
mailto:sheng.zhong@gmail.com
mailto:tianchen@nju.edu.cn
mailto:bolongzheng@hust.edu.cn
mailto:xsli@lbl.gov
mailto:lli@bnl.gov
mailto:ahoisie@bnl.gov
mailto:caiwen.ding@uconn.edu
mailto:caiwen.ding@uconn.edu
mailto:dli35@ucmerced.edu

PANDEY ET AL.: TRUST: TRIANGLE COUNTING RELOADED ON GPUS

Challenge 1. The hashing-based list intersection is not
suitable for triangle counting resulting from the concern of
collision. Particularly, hashing-based intersection can count
triangles as hashing puts identical elements into the same
bucket. However, with limited buckets, hashing also puts
different elements into the same bucket, known as colli-
sions. To lower the collision cost, [17] allocates a gigantic
memory space that is Ix the original graph size. Afterwards,
each vertex u would take [ x d(u), i.e., degree of u, space
from the gigantic memory space to build u’s hash table.
Empirically, ! could be 2 - 4 if we want the cost of the colli-
sion to be low. Given this design needs a large memory
space for hash table, [17] observes high cache misses for
hashing-based designs and thus claims merge-path based
method is better for triangle counting on CPUs. Later, [32],
[33], [34] use bitmap to represent the hash bucket which still
suffers from high cache pressure. We also notice that Yacsar
et al. [35], [36], [37], [38] switch between dense and sparse
representations of a hash table in their matrix-multiplication
effort which is, however, complex in nature.

In this paper, by reordering the graph and adjusting GPU
hardware resources with respect to the vertex degree, we
turn collisions into a tolerable issue. Further, we fully
unleash the potential of hashing, that is, using hashing for
not only intersection, but also rapidly distributing workload
across many-threads in one GPU, as well as across GPUs.

Challenge 2. Vertex-centric triangle counting is worse than
the edge-centric counterpart on GPUs due to more severe
workload imbalance issues [21], [22], [23], [25]. Particularly,
vertex-centric design [17], [32], [35], [36], [37] iterates
through each vertex, loads the 1- and 2- hop neighbors, and
intersects them to arrive at the triangles. Edge-centric
design [21], [22], [23], [25] does that for each edge thus only
1-hop neighbors are needed. As a result, workload imbal-
ance would arise from both inter- and intra- vertex aspects
in vertex-centric design while the edge-centric counterpart
only experiences workload imbalance across edges. Mathe-
matically, the time complexity of vertex-centric design is
O(d(u) + 3= ey d(v)) for vertex u while that of edge-cen-
tric design is merely O(d(u) + d(v)) between u and v, where
d(u),d(v) and N(u) are the degrees of u and v, and the
neighbor list of u, respectively. Hence, the workload differ-
ence between vertices is often higher than that of edges. In
terms of intra-vertex imbalance, for each vertex u, we need
to intersect u’s neighbor list with all its 2-hop neighbor lists,
where the workloads of different 2-hop neighbor lists are
also likely to be dissimilar. Note, both vertex-centric and
edge-centric designs perform accurate triangle counting
and result in the same number of triang]les.

While the vertex-centric design comes with the concern
of imbalance, it also exhibits unique advantages. First, the
vertex-centric design avoids the need of the graph in edge
list format, which saves % of space and data movement traf-
fic [21]. Second, for hashing-based intersection, the vertex-
centric design largely reduces the cost of constructing the
hash table compared to the edge-centric method [25]. Fur-
thermore, we find that the innate GPU thread and memory
hierarchy is a great remedy for workload imbalance.

Challenge 3. The vertex-centric design makes distributed
triangle counting a grand challenge stemming from the
hardship of achieving communication free and workload
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balanced graph partitioning. As graphs continue to grow, a
single machine (or device) will eventually fail to accommo-
date a large graph in the memory. As a result, researchers
rely upon either external memory options [9], [26], [39], [40]
or distributed settings [21], [22] to resolve this problem. In
order to achieve better performance, both designs need
communication free and workload balanced graph parti-
tioning. However, even for edge-centric design which only
requires 1-hop neighbor lists, achieving both goals is chal-
lenging, which is evident both theoretically [22], [41] and
practically [19], [22], [23], [27], [42]. The vertex-centric
design requires 2-hop neighbors, which further exacerbates
the imbalance and communication problems.

In this work, we separate the goal of achieving communi-
cation free and workload balance during graph partitioning.
For the first goal, we propose a 2D graph partitioning algo-
rithm, that partitions the 1-hop neighbors and uses the 1-
hop neighbor partitions to build the 2-hop ones so that the
vertex range partitions of 1-hop neighbors are the same as
the 2-hop ones. The workload balancing goal is achieved by
hashing-based partitioning over our reordered graphs. And
we further partition the workloads in order to scale Trust
up to 1,000 GPUs.

1.2 Contributions

This paper designs and implements a vertex-centric hash-
ing-based triangle counting system on GPUs that can
achieve beyond the trillion TEPS performance on random,
rMat, and 3Dgrid graph datasets. Particularly, this work not
only reveals and leverages the unique advantages of hash-
ing and vertex-centric designs for scalable triangle counting
on GPUs but also carefully designs optimizations to over-
come the key challenges faced by the vertex-centric hashing
method. In summary, this work makes the following
contributions.

First, vertex-centric hashing presents great potentials for
GPU-based triangle counting. In spite of collision concern,
hashing-based intersection exhibits advantageous features
over both merge-path [43] and binary-search [21] based
counterparts [44], [45]. Particularly, merge-path suffers
from workload partitioning hardship, while hashing does
not. Binary-search experiences high time complexity at
O(logN'), and hashing lowers that cost to O(1). Furthermore,
binary-search requires random access to the binary tree,
while our interleaved hash table layout and linear search
enjoys coalesced memory access. For vertex- versus edge-
centric design comparison, vertex-cenric design only needs
the graph in adjacency list format while the edge-centric
design requires both edge list and adjacency list formats of
a graph. Putting hashing and vertex-centric designs
together, Trust avoids repeated hash table construction in
edge-centric design [25]. On average, the vertex-centric
design reduces the hash table construction time by 92x.
When deployed on GPUs, we interleave the entries from all
buckets and exploit GPU shared memory to lower the hash
table lookup cost.

Second, admittedly, vertex-centric hashing also comes
with drawbacks, i.e., collisions and workload imbalance,
which require optimizations. Towards collision reduction,
we propose a graph reordering technique that reorders the
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TABLE 1
Closely Related Projects for TRusT
. . Hashi . e .
Binary-search Merge-path Bitmap Vertex-centr;cs “}Egdge-centric Matrix-multiplication Subgraph-matching
Ccru [13] (CPU+GPU) [17], [27], [30] [26], [29] [17] [32], [33], [34], [35], [36], [37] [38], [39]
GPU | [21], [22], [23], [24], [40] [41] [42], [43], [44] TRUST [25] [45], [46] [46]

vertex IDs of a graph. Since optimal reordering is NP-com-
plete, we find two effective heuristics. The intuition behind
these heuristics is that we should prioritize the high-degree
vertices and their neighbors when lowering the collisions.
This approach enhances the performance by up to 75 per-
cent. For intra-vertex workload imbalance, we introduce a
virtual combination method to virtually combine the 2-hop
neighbors in order to ultimately balance the intra-vertex
workload. This yields, on average, 50 percent speedup
across all graphs. Taken collision and inter-vertex workload
imbalance together, we introduce degree-aware resources
allocation mechanisms that give large degree vertices more
hash buckets, shared memory, and threads. This design
yields, on average, 7x speedup across all the graphs.

Third, we introduce graph and workload collaborative,
hashing-based 2D partitioning scheme to scale triangle
counting beyond 1,000 GPUs. Particularly, we use hashing,
instead of vertex range, to partition the graph into 2D (.e.,
partition both source and destination vertices) so that each
partition comes with similar amounts of workload, thanks
to our graph reordering method. Subsequently, for each 1-
hop neighbor partition used for hash table construction, we
use the 1-hop neighbor partitions to build up the 2-hop
neighbor partitions because our hashing-based 2D partition
ensures the source and destination vertices are evenly parti-
tioned. The partitioning approach is detailed in Fig. 9b.
Since different 2-hop partitions can enumerate the triangles
independently, we further introduce workload partitioning,
which distributes various 2-hop neighbor partitions across
more GPUs. Taken together, our graph and workload col-
laborative partitioning can saturate 1,024 GPUs with merely
64 graph partitions. This design is not only space and work-
load balanced but also communication free. Particularly, for
extremely large graphs, we achieve 1.9x speedup from 512
to 1,024 GPUs and beyond 600x speedup for medium
graphs from 1 to 1,024 GPUs.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2
presents the background. Section 3 describes the novel Trust
designs. Section 4 presents the optimization techniques for
hash collision and workload imbalance. Section 5 presents our
workload and graph collaborative partition methods. Section 6
evaluates the performance of TrRust and Section 7 concludes.

2 BACKGROUND

2.1 Notation and Terminology

Let G(V, E)) be an undirected and unweighted graph, V and E
be the vertex and edge sets of G, respectively. Graphs are often
stored in the array style data structures, among which edge list
and Compressed Sparse Row (CSR) formats are the main-
stream options. Particularly, an edge list is a collection of all
the edge tuples in G, where each tuple (u,v) is an edge from u

to v in G. CSR format uses two arrays, i.e., begin position and
adjacency list. The adjacency list is a concatenation of the out
neighbor lists of all vertices, and the begin position specifies
the starting position of the neighbor list of each vertex.

2.2 Triangle Counting Algorithms

This section describes the mainstream triangle counting
algorithms, i.e., intersection and other alternatives - matrix-
multiplication and subgraph matching based methods.
Table 1 categorizes these closely related projects.

Intersection based approach encompasses three algorithm
options, i.e., merge-path, binary-search, and hashing, which
could be implemented in either vertex-centric or edge-cen-
tric fashion. Merge-path based intersection uses two pointers
to scan through two lists from beginning to end in order to
find the intersection between them. During scanning, the
pointer that points to a smaller value will be increased. A
triangle is enumerated if both pointers increase (i.e., they
point to the same vertex). [17], [27], [30] observe that merge-
path suits CPU based triangle counting due to lower time
complexity compared with binary-search and higher cache
hit rate compared with hashing. Binary-search based intersec-
tion organizes the longer list as a binary tree, and uses the
shorter list as search keys. For each search key, it descends
through the binary-search tree in order to find the equal
entry, which is a triangle. Hu et al. [21], [22], [23] indicate
that edge-centric binary-search fits GPU based triangle
counting because of higher parallelism and more balanced
workloads. Hashing-based intersection constructs a hash table
for one list, then uses the other list as search keys to find the
common elements in the hash table. Particularly, [17] only
allows one element in each hash bucket of the hash table,
which is also referred to as open addressing. When collision
surfaces, this method uses linear probing mechanism. To
avoid the high cost of linear probing, this method creates
many hash buckets in the hash table, leading to overwhelm-
ing space consumption. Bitmap can be thought of as a hash
table with |V| buckets, which eliminates collision but con-
sumes significantly more memory. Bisson et al. [33], [34],
[51] also perform vertex-centric GPU-based triangle count-
ing. However, these projects use bitmaps to implement
hash tables, which suffer from high memory consumption
and are hence only suitable for small graphs. Several trian-
gle counting projects [26], [29] also explore the bitmap
option since they rely upon large external memory storage
for triangle counting.

Fig. 1 explains how the aforementioned three intersection
algorithms work on two lists M and N. As shown in Fig. 1b,
merge-path uses the vertical and horizontal pointers to scan
through these two lists. Since the first elementin M, i.e., 2, is
smaller than that of N, the vertical pointer is increased. Fur-
ther, because both M and N have 3 as their elements, both
pointers are increased, and one triangle is enumerated. Simi-
larly, we can enumerate all the triangles. In binary-search
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Fig. 1. Four triangle counting methods. (a) M and N are the neighbor lists used by (b) - (d) which are merge-path, binary-search, and hashing-based
intersection. And (e) uses matrix-multiplication to perform triangle counting for graph A.

based method, as shown in Fig. 1c, we use each element of M
as the search key to search against the binary tree of N. For
element 3 of M, the search keeps descend on the left side of N
in order to find all the triangles. Fig. 1d depicts the hashing-
based solution in [17]. This method first constructs a hash
table for longer list N. Since HAsH(18) = 8, element 18 first
searches the index 8 in hash table, then linear probes to the
next element which is 18, where a triangle is identified.

Existing intersection based approaches often exploit
graph orientation to reduce the number of edges in the
graph by half in order to reduce redundant work [17], [18].
For a pair of undirected edges, rank-by-degree method, a rep-
resentative graph orientation approach, removes the edge
whose source degree is larger than the destination degree
and preserves the remaining edge.

Matrix-multiplication based approach decomposes the adja-
cency matrix (i.e., A) of the graph into lower and upper tri-
angular matrices L and U, respectively, as shown in Fig. 1e.
Then it performs B =L - U, which counts the number of
wedges. Further, the element-wise multiplication G.e.,
Hadamard Product) of A and B determines whether the
wedge is closed. Finally, we summarize the number of non-
zero elements in the resultant matrix. Since each edge is
counted by both vertices, the final sum is divided by 2 to get
the exact count of triangles. Using Fig. 1e as an example,
L[2][] = [1,0,0,0] multiplying U[][3] = [1,0,1,0] arrives at 1,
i.e., B[2][3] = 1, it means there is a wedge between (2,0) and
(0,3). Afterwards, element-wise product between A[2][3]
and B[2][3] can confirm whether there is an edge which
closes the wedge. Yacsar ef al. [35], [36], [37], [38], which
leverage KokkosKernels linear algebra library [53] to count
triangles, belong to this genre.

Subgraph matching based approach searches for all occur-
rences of a query graph in a data graph. Triangle counting
regards the triangle as that query graph. [52] implements a
two-step subgraph matching approach for counting the
number of triangles on undirected labeled graphs. First, the
query graph - triangle in this case - is factored into a tree
and the non-tree edges. Afterward, one finds all the vertices
from the data graph that matches the root of the query tree
using degree-based filtering. Subsequently, one traverses
the query tree as well as the data graph from the candidates
of the root with the matching rule. Finally, one joins the tree
candidates and non-tree edge candidates to arrive at all the
triangles in the data graph.

2.3 Approximate Triangle Counting
Since triangle counting in extremely large graphs is com-
putationally expensive, some researchers also explore

approximate triangle counting algorithms to reduce the
runtime [17], [41], [54], [55], [56], [57], [58], [59], [60], [61],
[62], [63]. Among them, [54], [58] estimate the number of tri-
angles by sampling the edges, and only counting triangles
for the sampled edges. [17], [55] first color the vertices, then
keep the edges that connect two same-colored vertices. Fur-
ther, they count the triangles in the sampled subgraphs and
estimate the total triangles in the graph. [64] approximates
the triangle count by wedge sampling. [60] performs a
detailed experiment to compare these different sampling
approaches. In addition to graph sampling-based method,
[61], [62], [63] approximate the count of triangles based on
spectral decomposition of the graph.

2.4 Hardware Platforms for Counting Triangles

In addition to only using either CPU or GPU to count trian-
gles, [36], [65] use CPU and GPU together to accelerate the
intersection computation. We also find out that [66] deploys
triangle counting on FPGAs, which presents better energy
efficiency.

2.5 Graph Partitioning Methods

Value-range based partitioning, such as 1D [67], [68] and 2D
partitioning [69], is one of the most popular approach for tri-
angle counting. In this direction, [70], [71] design a 2D graph
partitioning based on MapReduce, but suffer from workload
imbalance. [21], [22] balance the workload of 2D partitioning
by a runtime workload stealing scheme. However, this intro-
duces nontrivial overheads. [36] deploys 2D partitioning on
matrix-multiplication based triangle counting. Whereas, the
workload imbalance problem still exists. [19], [24] distribute
edges of graph among different machines and cache the ver-
tices requiring communication among the machines during
triangle counting. METIS [72] is a well-known topology-
aware graph partitioning approach that aims to make bal-
anced vertex/edge yet with lower edge cuts. This method,
however, would require inter-worker communication when
counting triangles. Recently, LiteTe [42] also attempts to use
value-range based 2D partitioning for triangle counting, but,
again, experiences workload imbalance.

2.6 Graph Dataset

Table 2 presents all the graphs that are used to evaluate TRruUsT.
Broadly, these datasets fall into three types, that is, synthetic
graphs, regular real-world graphs and extremely large real-
world graphs. Particularly, RA, RM, and 3D are generated by
the Problem Based Benchmark Suite (PBBS) [73]. In the regular
real-world graph categories, MA is the Internet traffic
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TABLE 2

Graph Datasets
Dataset Abbr. V| |E| # Triangles
3Dgrid 3D 99,897,344 299,692,032 0
random RA 100,000,000 999,999,892 1,221
rMat RM 129,594,758 996,771,953 4,114,616
Cit-Patents CP 3,774,768 16,518,947 7,515,023
Friendster FS 65,608,366 1,806,067,135  4,173,724,142
gsh-2015-host GH 68,660,142 1,502,666,069  520,901,310,734
it-2004 IT 41,290,682 1,027,474,947  48,374,551,054
MAWI MA 128,568,730 135,117,420 10
Orkut OR 3,072,441 117,185,083 627,584,181
Twitter TW 41,652,230 1,202,513,046  34,824,916,864
Wikipedia WK 12,150,976 288,257,813 11,686,212,734
clueweb12 CW 955,207,488 37,372,179,311 1,995,295,290,765
uk-2014 UK 787,801,471 42,464,215,550 7,872,561,225,874

archive [74]. CP, OR, and FS are from Stanford Network Anal-
ysis Project SNAP) datasets [75]. TW [76] is the Twitter graph,
and WK [77] is the English Wikipedia link graph. The remain-
ing are web graphs, i.e., IT and GH, as well as the extremely
large real-world graphs, i.e., CW and UK from WebGraph [78],
[79], [80]. Our evaluation transforms the graph by following
steps: i) removing the duplicate edges and self-loops; ii) trans-
forming directed graphs to undirected graphs; and iii) remov-
ing orphan vertices. The size of the graph and number of
triangles are also included in Table 2.

3 TRUST: VERTEX-CENTRIC HASHING-BASED
TRIANGLE COUNTING

The consensus from recent literatures [17], [21], [52] implies
that merge-path is the ideal option for multi-core CPU while
binary-search excels on many-core GPUs. Hashing is a poor
option stemming from the fact that existing attempts often
use large memory space to combat collisions, which ends
up with overwhelming memory consumption and poor
cache reuse. Further, due to the concern of workload imbal-
ance with vertex-centric design, the edge-centric design
appears as the mainstream option for triangle counting [21].

This work advocates vertex-centric based hashing for trian-
gle counting on GPUs because hashing can rapidly distribute
workload across threads and GPUs, and vertex-centric
approach reduces both the time for hash table construction
and the memory space for graph datasets.

3.1 Trust Algorithm

Algorithm 1 shows our vertex-centric hashing-based trian-
gle counting algorithm, which mainly contains two steps: i)
constructing hash table (hashTable) for the neighbor list
(neighborList) of current vertex wu, i.e., u.neighborList, ii) for
each neighbor v of u, searching whether v’s neighbors
appear in the hashTable. While the majority of the variables
in Algorithm 1 have self-explanatory names, we briefly
describe how TrusT handles collisions as follows.

Different from prior arts [17], [33], [34], [51], Trust
exploits a more efficient approach to handle collisions, that
is, we allow a bucket to contain more than one element.
Here, all the buckets are of the same size and allocated in a
continuous memory region, which is slightly different from
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the classical dynamic chaining strategy. In light of this
design, each bucket hashTable(i) has two fields, ie.,
hashTable(i).len and hashTable(i).element. The former field
is the number of elements in bucket . Here,
hashTable(t).len — 1 is also the number of collisions in this
bucket. The latter field is an array that contains all the ele-
ments in bucket 3, e.g., hashTable(i).element(j) is the j + 1th
element in this bucket. During hashTuble construction, we
use atomic operation to allow concurrent write to
hashTable, where atomicAdd(hashTable(i).len, 1) returns the
location for the new element. During intersection, to deter-
mine whether w is in a hashTable, we calculate HASH(w)
which returns the bucket to search against.

Algorithm 1. Vertex-Centric Hashing-Based Triangle
Counting

//main entry
1: forall v € V in parallel do //Main entry

2:  hashTable = HASHTABLECONSTRUCTION (u.neighbor List);
3:  forall v € u.neighborList in parallel do
4 count+ = INTERSECTION (hashTable, v.neighborList);
5:  end for
6: end for
7: function hashTableConstructionneighbor List
8: fori =0 to bucketNumber — 1 in parallel do
9: hashTable(i).len = 0
10:  end for
11:  for all v € neighborList in parallel do
12: i = HASH(v);
13: len = atomicAdd(hashTable(i).len,1);
14: hashTable(i).element(len) = v;
15:  end for

16:  return hashTuable;

17: end function

18: function intersectionhashTable, neighbor List
19:  forall w € neighborList in parallel do

20: i = HASH(w);
21: count+ = LINEARSEARCH(hashTable(i), w);
22:  end for

23:  return count;

24: end function

25: function linearSearchbucket, w
26:  for j=0 to bucket.len — 1 do

27: if bucket.element(j) = w then
28: return 1;

29: end if

30: end for

31: returnO;

32: end function

33: function hashz

34:  return x%bucket Number;
35: end function

TrusT relies upon linear-search (line 25 of Algorithm 1) to
search within the bucket of interest, which counters the tra-
ditional wisdom that often prefers binary-search stemming
from two reasons. First, binary-search needs to sort all the
elements in each hash bucket while linear-search does not.
Second, since our hashTable stores the elements of the same
index across all buckets together (detailed in Section 3.2),
linear-search enjoy coalesced global memory access while
binary-search does not.
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Fig. 2. Linear- versus binary- search for hash bucket search.

Considering the memory cost of hashTable, we assign a
fixed size of GPU global memory for each warp, subse-
quently reuse this space for each processing vertex. In
implementation, we use 1,024 CTAs, each of which has 32
warps. Each hashTable in a warp contains 32 buckets with
the maximum collision number as 128. In this case, the total
memory consumption for hashTable is 512 MB.

3.2 GPU-Friendly hashTable Layout

As shown in Fig. 2, Trust further optimizes hashTable lay-
out including hashTable(i).len and hashTable(i).element.
First, we cache hashTable(i).len in the shared memory. Sec-
ond, we interleave the hash buckets of each hashTable and
cache the first few items of each bucket in shared memory.

We store hashTable(i).len in shared memory because a
significant number of buckets are empty, and storing
hashTable(t).len in shared memory avoids expensive global
memory access. Further, hashTable(i).len is frequently
accessed during both construction and linear-search. Dur-
ing construction, atomicAdd() in shared memory is much
faster than in the global memory.

For hashTable(i).element, we optimize it in two ways.
First, we store each level of a bucket consecutively instead
of storing all the elements of a bucket consecutively so that
consecutive threads access consecutive addresses. This
leads to coalesced global memory access in linear-search.
Using Fig. 2 as an example, the four hash buckets are {4, 8,
12, 20, 24}, {5, 10}, {6, 18, 22}, and (3, 7, 11, 19}. We store
them as {4,5,6,3,8,10,18,7,12,-,22,11, 20, -,-,19, 24, -, -,
-} in memory. In this example, one GPU global memory
access transaction can load four adjacent elements, which is
one row in this particular case. During binary-search, the
four threads accesses 5, 7, 12, and 18 in the first round,
which leads to three global memory transactions. In con-
trast, linear-search accesses 4, 5, 6, and 3 in the first round,
which is merely one global memory access transaction.
Overal], in this example, linear-search performs four global
memory access transactions while binary-search needs
seven. Second, we store the first several elements of each
bucket in the shared memory. Note, it is not always better
to cache more elements in shared memory due to the occu-
pancy concern [81]. Further, recent GPU architectures, such
as, V100, adopts a unified shared memory/L1 cache [31].
Using more shared memory reduces the L1 cache size thus
hurts the overall performance.

Fig. 3 shows the performance of Trust with respect to the
number of elements cached in each bucket. We observe that
the performance climbs with the increase of cached ele-
ments for RA, RM, CP, and GH while the remaining graphs
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Fig. 3. Hash memory optimizations.

retain similar or worse performance. In this work, Trust
caches 6 elements in shared memory for each bucket.

In an unlikely case, the hashTuble may reach the max colli-
sion threshold. In that case, linear probing is used to determine
the next bucket for storing the neighbor. Consequently, during
triangle counting, when a bucket is full, we need to perform
linear-search in more than one bucket. Since linear probing is
expensive, our optimizations (Section 4) and partitioning
schemes (Section 5) are designed to avoid this. In our tests, the
max collision across all graphs is often no more than 16 while
our bucket size threshold is 128.

3.3 Vertex-Centric Hashing

We observe hashing-based intersection favors the vertex-
centric design despite that traditional efforts prefer the
edge-centric design. The reason lies in that we need to con-
struct hashTable before intersection, and hashTable construction
time is also included in the total execution time [25]. Note, if that
time is excluded, the comparison between Trust and other
related works would be unfair. We further find that even if
we were permitted to construct the hashTable before count-
ing triangles, hashTable often consume significantly more
memory than the neighborList format, which is not suitable
for GPUs that install limited memory space.

Algorithm 2. Edge-Centric Hashing-Base Triangle
Counting

—_

: forall (u,v) € E in parallel do
hashTable = HASHTABLECONSTRUCTION (u.neighborList);
count+ = INTERSECTION (hashTable, v.neighborList);
end for

Vertex-centric design consumes significantly shorter time
than edge-centric design on hashTable construction since
vertex-centric option only constructs hashZuble once for
each vertex, while the edge-centric counterpart needs to do
that repeatedly. As shown in Algorithm 2, for each destina-
tion vertex v of u, we need to construct the hashTable for u,
which is time consuming. As shown in Fig. 4, the time

100%

80%

60%

40%

Percentage
Percentage

[ INTERSECTION
20% [ HASHT ABLECONSTRUCTION

0%
3D RARM CP FS GH IT MAORTWWK

(a) Edge-centric design

3D RARM CP FS GH IT MAOR TWWK
(b) Vertex-centric design

Fig. 4. Time consumption percentage of hashTable construction, inter-
section, and the remaining for (a) edge-centric and (b) vertex-centric
designs, respectively.
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consumption ratio of hashTable construction is 1-57 percent
in edge-centric option [25]. In contrast, our vertex-centric
design reduces the hashTable construction time ratio to
0.007-16 percent. When it comes to absolute time consump-
tion, hashTable construction time of vertex-centric design is
reduced by 12.9x (RM) to 199.6x (GH), on average, 92x
when compared to that of edge-centric design.
Vertex-centric hashing reduces the memory consumption
for graph data. Particularly, vertex-centric hashing does not
require the edge list format of the graph which is needed by
edge-centric counterpart. Note, edge list consumes about 2 x
memory compared with CSR format. Alternatively, Tri-
Core [21] proposes to stream the edge list from CPU to GPU
memory in order to reduce the memory consumption for the
edge list. However, this design significantly affects the triangle
counting performance as pointed by the recent study [23].

4 CoLLISION REDUCTION AND WORKLOAD
BALANCING OPTIMIZATIONS

Once the hashTable construction time is significantly
reduced by Section 3, intersection becomes the bottleneck as
shown in Fig. 4b. This section optimizes the intersection
through collision reduction and workload balancing.

4.1 Graph Reordering for Collision Reduction
According to Algorithm 1, the cost of intersection can be
formulated as Equation (1), assuming each 2-hop neigh-

bor w of u needs to search through the entire bucket
hashTable,(HASH(w))

Z Z Z hashTable, (HASH(w)).len, @))

u€V veN (u) weN (v)

where hashTable,, N(u) and N(v) represent the hashTable
for u, u.neighborList and v.neighborList, respectively.

Putting the analysis of Equation (1) in the GPU context,
where a warp of threads work on 32 2-hop neighbors in Sin-
gle Instruction Multiple Thread fashion, the cost of linear-
search is approximately decided by the max collision of all
the buckets in a hashTable. Consequently, we arrive at the
following estimation:

Z Z degree(v

ueV vEN (u)

u - max(hashTable,.len) u

Max collision of

Collective degree of

(2)

Simply put, for each vertex u, the cost is proportional to
the collective degrees of all neighbors of wu, ie,
> ven(w degree(v), as well as maximum collision of this
hashTable of u. Optimizing the order of the entire graph to
arrive at the minimal cost for Equation (2) is NP-complete,
according to similar efforts for locality improvement [82].
Given the complex nature of this problem, we explore the
following two heuristics to reduce the maximum hash colli-
sion guided by Equation (2). Particularly, since reordering
does not affect the collective degree of v in Equation (2), our
reordering can only change the maximum collision. Note,
these two techniques are separate and can not be used
together.
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Fig. 5. The intra-vertex workload imbalance.

e  Reordering by indegree is guided by the fact that a ver-
tex with higher indegree is more likely to appear in
the neighborList of other vertices. Consequently, this
indegree method proposes to assign continuous IDs
to vertices based upon their indegrees. In this way,
large indegree vertices will have different hash val-
ues because their IDs are continuous. During
hashTable construction, these vertices are more likely
to appear in the same neighborList and less likely to
be hashed into the same bucket, leading to a lower
chance of maximum collision. For reordering, the
vertices need to be sorted by their indegree. So, the
time complexity is O(|V]log|V]).

e  Reordering the neighbors of the largest collective outde-
gree first is guided by the collective degree of u in
Equation (2). Particularly, we observe that if we
choose to minimize the maximum collision of the
vertices with the largest collective degree, the cost ¢
will reduce: i) This collective method sorts the verti-
ces based upon their collective degrees. ii) For each
v € u.neighborList, if it does not have an assigned
ID, we assign a new ID to it, where the new ID grows
continuously. During hashTable construction, the
continuous IDs of the neighbors in the largest outde-
gree vertex will experience minimum collision in
neighbor List. For reordering, the vertices need to be
sorted by collective degree, and each edge needs to
be scanned once. So the time complexity is
O([Vllog| V| + | E))-

4.2 Virtual Combination for Workload Balancing
Intra-vertex workload imbalance hampers the performance
of vertex-centric hashing. Fig. 5 shows the workload imbal-
ance with a boxplot of the ratio of maximum degree
(v)/minimum degree (v) for each wu, where wve
u.neighborList. Particularly, the average of all the medians
is 16 across graphs, with the average of the maximum as
2,648. We consequently need to accommodate each v €
u.neighborList distinctly.

There mainly exist two conventional resolutions to solve
such an intra-vertex workload imbalance problem. i) Warp-
centric uses a warp of threads to work on one vertex so that
the workload imbalance issue can be mitigated across all
threads in a warp. However, this approach would suffer
from thread under utilization since the average of the
median is 16 which is smaller than the size of a warp. ii)
Subwarp [83], [84] is a straightforward optimization to miti-
gate the idling thread problem in the warp-centric
approach. Basically, this method divides a warp into several
subwarps and assigns each subwarp to one neighborList.
This technique reduces the number of idling threads, but
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Fig. 6. Virtual combination.

not entirely. Furthermore, some neighbors might have
neighbor List whose sizes are larger than the subwarp sizes,
leading to yet another workload imbalance concern.

TrusT aims to ultimately resolve the workload imbalance
and thread idling issues. We introduce two possible
designs, i.e., physical and virtual combinations. The former
one copies all the neighborList of v into a single combined
array and processes them together. However, copying all
the neighborLists of v into one array could consume both
nontrivial time and memory [85]. Virtual combination avoids
copying the neighborList of v into a combined array via on-
the-fly calculation of the 2-hop neighbor indices for each thread.
Particularly, assuming we are working on vertex u, because
thread i copies the 2-hop neighbors of u to indices 1, i + 32,
etc., in the combined array, we simply need to find which
v € neighborList(u) contains neighbors that will be copied
to those indices. Once v is identified, we can further calcu-
late which neighbor of v will be copied by thread . This
way, we find the neighbors for thread 1.

Fig. 6 uses an example to aid the understanding. Assum-
ing vertex u has neighbors {2, 3, 4, 5, 7} and their degrees are
{7, 3, 2, 6, 5}, leading to the inclusive prefix-sum of these
degrees as {7, 10, 12, 18, 23}. For thread 11, its index of inter-
est is 11. At step 1, this thread finds v = 4 which contains
the neighbors that this thread will process because v = 4’s
neighbor range is [10, 12) in the combined array. At step 2,
this thread computes that the second neighbor of vertex v =
4 becomes the neighbor stored at index 11 in the combined
array. Thus, the second neighbor, i.e., 7, will be processed
by thread 11.

4.3 Collision and Workload Imbalance
Co-Optimization

This part is motivated by the key observation in Fig. 7, that
is, even after orientation [17], various vertices present differ-
ent degrees. Particularly, the difference of maximum and
minimum degrees can reach as high as 10,005 for GH graph.
These degree differences manifest as differences in
hashTable construction cost, collision, and workload.

We advocate assigning different computing and shared
memory resources for vertices with dissimilar degrees.

10*
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Fig. 7. Degree distribution of each graph after orientation.
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Particularly, we assign a CTA with more shared memory
for larger degree vertices, a warp and a smaller amount of
shared memory for smaller degree vertices. Based upon our
evaluation, we label vertices with degree > 100 as a large
vertex for better performance. Note that we do not need to
process vertices with degree < 2 since a vertex needs at
least two neighbors to enumerate a triangle. It is important
to note that large degree vertices obtain not only more
threads to construct hashTable and conduct intersection, but
also more shared memory to cache hash buckets.

Table 3 studies the maximum collision changes with
respect to various optimizations. Particularly, the maximum
collision in the baseline version is larger than our threshold
(128) in TW (146), and GH (335) graphs. However, after our
collision-reducing optimizations, the maximum collision is
no more than 16. For the extremely large graphs (i.e., CW
and UK) whose sizes are bigger than GPU memory, the par-
titioning scheme can reduce the maximum collision below
16, in addition to the help from CO and RO optimizations.

While degree-aware resource assignment can mitigate the
workload imbalance, there still exists inter-vertex workload
imbalance. We further introduce an atomic operation-based
dynamic workload assignment to balance the workload. In
this design, each warp/CTA gets a chunk of vertices atom-
ically at a time. Depending upon the graph, the chunk size can
be dissimilar. Fig. 8 shows the performance impacts of various
chunk sizes. For sparse graphs, e.g., 3D, CP, and MA, a larger
chunk size leads to 27 percent (3D, chunk size = 7), 5 percent
(CP, chunck size = 3) and 19 percent (MA, chunk size = 3)

TABLE 3
Max Collision, Where BS, CO, RO (IN), RO (OUT), and PA Stand for Baseline, Co-Optimization, Reordering, Indegree-Based
Reordering, Outdegree-Based Reordering, and Partition, Respectively

RM RA 3D MA CP OR WK FS W IT GH CW UK
BS 10 8 5 12 9 29 50 42 146 114 335 156 358
CcO 10 8 5 12 9 15 14 17 15 14 18 16 23
CO + RO (IN) 10 8 4 9 8 15 15 16 17 13 16 15 22
CO + RO (OUT) 9 8 4 9 6 14 15 16 15 12 15 15 20

CO + RO (OUT) + PA -

- 11 13
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Fig. 9. 2D partition for vertex-centric triangle counting as well as hashing-based 2D partition.

speedup. For the rest of the graph datasets, chunk size = 1
gives the best performance.

5 ScALABLE TRIANGLE COUNTING VIA GRAPH
AND WORKLOAD COLLABORATIVE PARTITIONING

This section tackles the scalability challenge for triangle
counting via a graph and workload collaborative partition-
ing design. As shown in Table 4, with n? graph partitions,
as long as each of them can fit in GPU memory, TRUST can
scale up to m - n* GPUs, where m and n are the numbers of
workload and graph partitions, respectively.

5.1 Workload Partitioning

Workload Partitioning assumes the entire CSR format of the
graph can fit in a GPU memory so that we can directly
duplicate the entire graph across all the GPUs. Subse-
quently, we only need to focus on the workload distribution
across GPUs. An intuition of workload partition is to dis-
tribute all the vertices into m subsets. Afterward, each GPU
can work on one such subset and count the triang]les.

Trust achieves balanced workload assignment through
hashing on a slight modification to our aforementioned
graph reordering techniques (Section 4.1). Particularly,
instead of assigning continuous IDs to all ve€
u.neighborList in the prior design, we first divide v into
three subsets: [0, 2), [2, 100] and (100, +oc0). Subsequently,
we assign continuous IDs to v € (100, +00) from wu first,
then v € [2, 100], and finally v € [0, 2). One can exploit
radix hashing to distribute the vertices to various GPUs
evenly. For instance, assuming there are g GPUs, for GPU
i, we let it process vertex u such that u%g = i. Because our
reordering approach assigns continuous IDs to vertices
with similar degrees, radix hashing ensures that vertices of
similar workloads are evenly disseminated to across GPUs.
Note, this design is distinct from the traditional 1D/2D
partitioning efforts [21], [22], [86] that assign a continuous

TABLE 4
Graph and Workload Collaborative Partition Versus Traditional
Workload Alone, and Graph Partition Alone Methods, Where m
and n are Numbers of Workload and Graph Partitions,
Respectively

Partition approach Workload Graph Workload&Graph

#Tasks (i.e., GPUs) m n3 m-nd
#Graph partitions 1 n? n?
Average #edges/task |E| 3’;‘? ! STJJE !

range of vertices to each GPU. And, in this case, the collec-
tive reordering becomes an collective-degree-then-outde-
gree based reordering.

5.2 Graph Partition

Chances are the entire CSR of a graph might not fit in the
GPU memory, e.g., UK graph [80] evaluated in this paper
consumes more than 160 GB memory. When this happens,
we need to partition the graphs into smaller subgraphs so
that each of them can fit in GPU memory. This also under-
scores the weakness of prior projects [21], [22] that need
both edge list and neighborList for triangle counting. To bet-
ter illustrate the design, we first review what information is
needed in vertex-centric hashing-based triangle counting on
a single GPU. Particularly, we need three neighbor List:

(i)  u’s 1-hop neighborList to construct hashTable.
(ii)  u’s 2-hop neighborList.
(iii) s 1-hop neighborList as sources to fetch the 2-hop

neighbor List of bullet (ii).

It is important to note that vertex-centric triangle count-
ing focuses on the range of vertices. Particularly, for a vertex
u falling in a specific range, we can use all the partitions of
that row to construct the hashTable, as well as the 1-hop
neighbor to fetch the 2-hop neighbors. As shown in Fig. 9,

2|V
using uc [5-,|V]) as an example, we can use P, P and
Py to build the hashTable and fetch 2-hop neighbors. How-
ever, using Py, P»; and P together to fetch the 2-hop
neighbor would result in fetching the entire graph.

Partitions for 2-Hop Neighbors. The good news is — in order
to extract a triangle, we only need the vertex range of the
hashTable to overlap that of the 2-hop neighbor. This helps
reduce the number of fetched 2-hop neighbor partitions tre-
mendously. For instance, for P, that is used for hashTable
construction, only 2-ho ‘/F neighbor partitions whose destina-
tion vertices fall in _—,2 Iy are needed. In this example,
only Py, Py and P are needed for 2-hop neighbors. Simi-
larly for Py and P.

Partitions for 1-Hop Neighbors. We further need to fetch
the 1-hop neighbor partitions that are used to index the 2-
hop neighborList. The key is that u's 1-hop neighbors used to
construct the hashTable and the 1-hop neighbors used to index
the 2-hop neighbors can be different. If we force them to be the
same, we will end up only 1ntersect1ng the hashTable with
the diagonal partitions. Using u’s range of [2 VI 1V]) as an
example, the second partition, that is, P from Fig. 9b is
used to construct the hashTable. We can use any partitions
whose source vertices are in the range of [2 v ,|V]) as the
sources to index the 2-hop neighbors. In thls case, Py, Py
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Fig. 10. Integrating graph partitioning with collision and workload bal-
ance co-optimization in Section 4.3.

and P are the qualified partitions to index the 2-hop
neighbor Lists.

In addition to soundness, this design is also complete
because we exhaust all the possible 2-hop neighbor parti-
tions for each hashTable partition. As shown in Fig. 9b, for
the 1-hop neighbor partition P that is used to construct the
hashTable of the vertices under processing u € [@, V),
we use all the possible 1-hop neighbors, that is, P, P»1 and
Py, as sources to index the 2-hop neighbors.

5.3 Workload and Graph Collaborative Partition

This section further integrates our graph partitioning tech-
nique with our workload partitioning design. Particularly,
for the same hashTable, we distribute each 2-hop neighbor
partition to one GPU, so that all GPUs work on different
workloads of the same hashTable. We distribute three 2-hop
neighbor partitions Py, P»; and P»; - of the hashTable parti-
tion Py, across three GPUs. With total n® subtasks, we fur-
ther divide each subtask into m workload partitions in
order to scale to m - n® GPUs.

It is worthy of mentioning that, instead of using vertex
range-based 2D graph partitioning as shown on the left side
of Fig. 9a, TrusT exploits hashing to generate the partitions
in Fig. 9c. For partition P;j, it contains the edges (u, v) where
u%n = i and v%n = j. As shown in Fig. 9¢c, we first exploit
hashing to decide which row partition u belongs to, subse-
quently, another hashing towards v € u.neighborList to
decide which column partition each v belongs to. Thanks to
our reordering, our hashing-based partition warrants a
roughly similar number of vertices and edges for each
partition.

However, since using hashing to partition vertex set will
lead to noncontinuous IDs for each partition that is detrimen-
tal to hashTable construction, we reassign IDs by newID =
|oldID/n]. In this way, the vertices IDs in each partition
become continuous. And partitioning only needs to scan
each edge once, resulting in a time complexity of O(|E}).

Integrating Partitioning With Aforementioned Optimizations.
Here, the aforementioned optimizations are “reordering”,
and “collision and workload imbalance co-optimization”.
First, “reordering” is performed to ensure that the vertices in
the same subset have continuous IDs. Then, hashing-based
partitioning can evenly partition the vertices in each subset.
Second, “co-optimization” performed after partitioning in
Section 4.3 divides the vertices of each partition into three
subsets by their degrees. The subsets (i.e., large vertices, small
vertices, and omissible vertices) represent their workload.
Since partitioning divides the neighborList of each vertex, a
vertex originally belonging to large vertices subset might
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change to the small vertices subset. To track which subset a
vertex belongs to after partitioning, we propose a mapping
between the partitioning and co-optimization steps.

Fig. 10 uses the subtask 1 from Fig. 9b to explain the idea.
The neighborList of vertex u is divided into three partitions
(i.e., Py, P> and Py) as show in Fig. 10. For this specific
subtask vertex u, Py determines the workload of vertex w.
We assume v, in total, has 200 neighbors and belongs to the
large vertices subset before partition. Because partitioning
distributes u’s neighborList across Py, Py and Py, we
assume u has 67 neighbors in Py. In this case, u should
belong to the small vertices subset after partition. Therefore,
for subtask 1 in Fig. 9b, we treat u as small vertex during co-
optimization step.

6 EVALUATION

TrusT® is implemented with around 1,500 lines of C+
+/CUDA code and compiled with CUDA Toolkit 10.2, g++
7.4.0, MPICH-3.3, and the optimization flag is set to -O3. We
evaluate TRusT on two servers: i) a server with Intel(R) Xeon
(R) Gold 6248 CPU with 40 cores, 512 GB main memory,
and 8 V100 GPUs, each with 32 GB memory; ii) Summit
supercomputer [87] with 512 GB memory, powered by
dual-socket 22-core POWER 9 processor along with 6 V100
GPUs, each of which installs 16 GB GPU memory. We use
Summit only when evaluating the scalability of medium
and extremely large graphs in Section 6.5. For the remaining
experiments, we use server (i). The runtime of triangle
counting is measured once the graph is loaded on GPUs for
comparison with state-of-the-art systems.

For MPI-based implementation with multi-GPUs, we use
the maximum kernel time across all participating GPUs as
the triangle counting time. Unless otherwise specified, the
reported statistics are the average of ten runs.

6.1 TrusT Versus State-of-the-Art

This section compares Trust with two state-of-the-art trian-
gle counting systems, i.e., Ligra [17], [88] and TriCore [21].
Particularly, Ligra is a lightweight graph processing frame-
work. We compile the Ligra source code with Intel CILK
library to achieve peak performance and test Ligra on Intel
(R) Xeon(R) Gold 6248 CPU with 40 cores and 512 GB main
memory. TriCore is regarded as the optimal GPU-based tri-
angle counting system that won the 2018 GraphChallenge
champion [23]. TriCore and TrusT run on a single V100
GPU. Comparing the prices, one Intel(R) Xeon(R) Gold 6248
CPU costs around $6,600 [89] while a single V100 GPU costs
around $11,500 [90].

As shown in Fig. 11, Trust achieves 50.1x and 4,177.4x
speedup on average over TriCore and Ligra, respectively.
Comparing to TriCore, TrusT achieves 465.0x speedup on
the MA graph. For the remaining graphs, the speedup
ranges from 3.4x (TW) to 17.2x (3D). TriCore enjoys irregu-
lar graphs (like power-law graphs) but suffers from regular
graphs like 3D, RA, and RM. The reason lies in the fact that
TriCore is designed upon binary-search, which is more effi-
cient when the degree differences between vertices are
larger. Comparing to Ligra, Trust beats Ligra by 43,697.3x

1. https:/ /github.com/wzbxpy/TRUST
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Fig. 11. The runtime of TrusT, TriCore, and Ligra.

on the MA graph. For the remaining graphs, the speedup
ranges from 7.4x (3D) to 919.7x (IT). The general trend is
that Trust has significant margins over Ligra when the
graph is larger and more irregular.

6.2 Trust Versus GraphChallenge Champions

This section compares TrusT against H-INDEX [25], Bisson
et al. [34], and Yacsar et al. [35] which are the champions in
2018 and 2019 GraphChallenge [16]. Yacsar et al. follow
matrix-multiplication approach for triangle counting. Since
Yacsar et al. [36] is the updated and faster version of 2018
GraphChallenge champion [35], we only choose [36]
among [35], [36] for comparison. H-INDEX proposes to
hash the shorter neighborList for triangle counting while
Bisson et al. relies upon bitmap-based intersection to do tri-
angle counting. Table 5 shows the speedup achieved by
TrusT over these three related works. Since Bisson et al. and
Yacsar ef al. have not open-sourced their source code, Table 5
only includes three large graphs for Bission et al. and two
large graphs for Yacsar et al. that are presented in manu-
scripts [34] and [36], respectively. In the manuscripts, Bis-
sion et al. is evaluated on one V100 GPU, and Yacsar et al. is
evaluated on a DGX machine equipped with eight V100
GPUs and CPU with 40 cores. Yacsar et al. also utilizes both
CPU and GPUs to count the triangles. We run Trust and H-
INDEX on one V100 GPU.

As shown in Table 5, TrusT constantly outperforms the
champions. On average, TrusT achieves 7.1x and 21.3x
speedup over Bission et al. and H-INDEX, respectively. We
also notice that the margin of TrusT over Bisson et al. on TW
and FS is relatively small as bitmap tends to work well for
graphs with a relatively small number of vertices. Because
of large bitmap sizes, Bisson ef al. fails to handle the
extremely large graphs (such as CW and UK), which are all
supported by Trust. Comparing with Yacsar et al., Trusr,
even with % of the GPUs, is 1.4x faster on average. Further,
comparing with DistTC [24], a recent distributed triangle
counting on GPUs, DistTC with 16 P100 GPUs is slower
(3.92s in TW and 2.49s in FS) than Trust with 1 V100 GPU.
Note, since DistTC is not a GraphChallenge champion, we
do not include this result in Table 5.

TABLE 5
TrusT Versus GraphChallenge Champions
TRUST | Bissonetal. Speedup | H-INDEX = Speedup | Yasaretal.
FS | 2.24091s 3.93467s 1.75584 x 12.00068s 5.35528 x 3.133s
MA | 0.00126s 0.02331s 18.44146x | 0.04404s  34.84177x -
TW | 3.15788s 3.62582s 1.14818 x 74.42350s  23.56757 x 4.582s

Note, Yacsar et al. uses eight V100 GPUs, while the rest of the projects use one
V100 GPU.

(a) Smaller impacts.

(b) Larger impacts.

Fig. 12. Performance impacts of VH (vertex-centric hashing), CO (co-
optimizing workload imbalance and hash collision), VC (virtual combina-
tion), and RO (vertex reordering). H-INDEX is used as the baseline (BS)
for comparison.

6.3 Impact of Various Optimizations

Figs. 12a and 12b show the impacts of various optimizations
categorized in terms of speedup. VH (vertex-centric hash-
ing) achieves, on average, 2.0x speedup comparing with
the baseline and upto 3.5x for FS graph. In contrast, for MA
graph, VH is 5 percent slower as most of the vertices in MA
graph have degree < 2. The reason is that the overheads of
handling workload imbalance in vertex-centric design out-
weigh the benefit of hashTable construction. CO (co-opti-
mizing workload imbalance and hash collision) achieves
only 1 percent speedup on small impact graphs but achieves
18.0x speedup on large impact graphs as it balances the
workload of highly skewed graphs. But CO is slower on FS
(18 percent) and OR (6 percent) graphs as using CTA to pro-
cess vertex leads to more idling threads due to the small
workload. With the addition of VC (Virtual Combination),
we observe another 50 percent speedup on average across
all graphs. However, as the degree distribution of RM and
RA graphs are suitable for warp-centric processing, VC
affects the performance for those graphs slightly. Further-
more, we test two RO (vertex reordering) methods: Inde-
gree (IN) and Outdegree (OUT). IN and OUT achieves 11
and 18 percent speedup on average across all graphs,
respectively. In most of the graphs, OUT outperforms IN.

6.4 Profiling Reordering and Workload Balancing

Profiling Vertex Reordering. Fig. 13 further profiles IN and
OUT reordering techniques. Degree sorting technique [91]
is used as the baseline (BS). We use Nvprof [92] to profile
Trust’s reordering techniques. The performance gain of
reordering can be measured from two aspects: i) reduction
of max collision in hashTable and ii) improvement in the
data locality of the neighborList. We profile max collision
with warp level instructions for shared loads (INST), with
the general idea being fewer collisions results in fewer
memory reads. For profiling improvement in data locality,
we use L2 cache hit rate (L2). Fig. 13 shows that IN reduces

150%

: ; : : ; ; ; ; ; ; T
[EEEBs-L2 BEEIN-L2 [CJOUT-L2 —— BS-INST —*— IN-INST ——OUT-INST

Percentage
S
(=3
x

v
<
B

0%

3D RA RM CP FS GH 1T MA OR TW WK

Fig. 13. Percentage of L2 cache hit rate (L2) and warp level instructions
for shared loads (INST) compared with baseline (BS) for IN and OUT
reordering techniques.
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Fig. 14. Profiling intra-vertex workload balancing methods.

INST by 6.8 percent and improves L2 by 5.2 percent on aver-
age. Similarly, OUT reduces INST by 8.1 percent and
improves L2 by 6.3 percent on average.

Profiling Workload Balancing. We perform another experi-
ment to test TRusT’s four intra-vertex workload balancing
methods - warp-centric (WC), subwarp (SW), physical com-
bination (PC), and virtual combination (VC). For SW, we
test SW of size 8 and 16.

Fig. 14 shows the speedup for different methods with WC
as the baseline. On average, SW provides 40 and 45 percent
speedup for subwarp of size 8 and 16, respectively. But we
also observe that different graphs prefer dissimilar subwarp
sizes, making it hard to pick one method for all graphs.
When it comes to PC, it is 45 percent worse than the base-
line on average, blaming the cost of moving various
neighborLists into a gigantic array. VC achieves 55 percent
speedup over WC on average. Note that VC is slightly worse
than SW (8) for relatively small degree graphs, such as 3D,
and CP graphs and SW (16) for IT, RA, and RM graphs. How-
ever, SW (8) and SW (16) are significantly worse than VC for
the rest of the graphs. Although the optimal SW sizes could
yield the best performance, considering the difficulty with
SW in selecting the correct SW size (8 or 16), Trust chooses
the VC for intra-vertex workload balancing.

6.5 TrusT Scalability
In this section, we discuss the scalability of Trust with the
increase of GPUs. For small and medium graphs, the num-
ber of workload partitions is equal to the number of avail-
able GPUs, i.e.,, m = #GPUs. For extremely large graphs,
each graph needs to be partitioned into smaller partitions
which can fit in the GPU global memory. To achieve the
best performance, we compute the smallest n that satisfies
% x edge size < GPU memory size. Then, we set m =
#GPUS/ n?. For the experiment, we set n = 8, m = 1 for 512
GPUs, and n = 8, m = 2 for 1,024 GPUs.

Small Graphs. As shown in Fig. 15a, TrusT achieves 3.3x
to 6.8x speedup from 1 to 8 GPUs for four small graphs. For

——cp

OR
WK

—+— Ideal -

Speedup
e

Speedup (logscale)

— W

1 2 3 4 5 6 7 8
GPUs

1 2 4 8 16 32 64 128 256 5121024
GPUs

(a) Small graph scalability. (b) Medium graph scalability.

Fig. 15. Scalability for small and medium graphs.
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TABLE 6
Scalability of Extremely Large Graphs With 512 and 1,024
GPUs
#GPU 512 GPUs 1024GPUs  spaceIR  LiteTe
Measure  Time TimeIR  Time Time IR Time IR
CW 0.15532s 1.10734 0.08181s 1.10647 1.06411 -
UK 0.21023s  1.11559 0.10942s 1.11919 1.01359  1.70

Here, IR is short for imbalance ratio. Thus, Time IR = max time/min time. And
Space IR = max partition size/min partition size.

OR and WK graphs, TrusT achieves almost linear scalability.
In case of smaller workloads, like the MA graph, the scal-
ability is limited when the computation resource is more
than the number of tasks. In this situation, the runtime time
is limited by the specific warp or CTA that processes the
largest vertex.

Medium Graphs. Fig. 15b shows the scalability of TrRusT
for graphs of medium size. Particularly, Trust achieves
649.3x and 660.3x speedup for RA and RM graphs with
1,024 GPUs, respectively. For the rest of the graphs, the
speedup is limited by their smaller workloads as discussed
earlier.

Extremely Large Graphs. As shown in Table 6, Trust
achieves, on average, 1.9x speedup on CW and UK graphs
while scaling from 512 to 1,024 GPUs. Further, looking into
the imbalance ratio (IR), we observe that TrusT’s graph par-
titioning achieves desirable workload (Time IR) and space
(Sapce IR) balance. Particularly, both time IR and space IR
lie between 1 and 1.1 for both graphs on 1,024 GPUs. In con-
trast, LiteTe [42], which uses range-based partitioning
scheme, has a much higher time IR, i.e., 1.7 for UK graph.

7 CONCLUSION

This paper introduces TrusT that reloads triangle counting
on GPUs. Particularly, it introduces vertex-centric hashing-
based algorithm, collision and workload balancing optimi-
zations, and workload and graph collaborative partitioning
techniques. Taken together, TrusT, to the best of our knowl-
edge, is the first work that advances triangle counting
beyond the trillion TEPS rate.
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