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Abstract— Reducing Coflow Completion Time (CCT) has a
significant impact on application performance in data-parallel
frameworks. Most existing works assume that the endpoints of
constituent flows in each coflow are predetermined. We argue
that CCT can be further optimized by treating flows’ destinations
as an additional optimization dimension via reducer placement.
In this article, we propose and implement RPC, a joint online
Reducer Placement and Coflow bandwidth scheduling frame-
work, to minimize the average CCT in cloud clusters. We first
develop a 2-approximation algorithm to minimize the CCT of
a single coflow, and then schedule all the coflows following
the Shortest Remaining Time First (SRTF) principle. We use
real testbed experiments and extensive large-scale simulations to
demonstrate that RPC can reduce the average CCT by 64.98%
compared with the state-of-the-art technologies.

Index Terms— Computing clusters, reducer placement, coflow
scheduling.

I. INTRODUCTION

DATA transfer has a significant impact on application
performance in data-parallel frameworks such as MapRe-

duce [2], Pregel [3], and Dryad [4]. These computing para-
digms all implement a data flow computing model, in which a
group of data flows need to pass through a data transfer phase
(e.g., shuffle in MapReduce) before generating the final results.
For some applications, 50% of the job completion time is
spent on transferring data across the network [5]. Although [6]
claimed that reducing data transfer time does not significantly
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improve job performance, it is proven that this happens only
when the CPU becomes a system bottleneck [7]. Optimizing
network performance can significantly reduce job completion
time as long as the CPU is not a system bottleneck [7]. Accord-
ingly, in this article we focus on improving the performance of
data-intensive applications by reducing the data transfer time.
As in many previous works [8]–[12], we focus on the data
transfer phase of each job, but do not consider the computation
phase in our optimization framework.

In data-parallel frameworks, a data transfer phase is not
considered complete until all its constituent flows have fin-
ished. For example, in MapReduce [2], a computation stage
cannot complete, or sometimes even start, before it receives
all the flows from its previous stage. These flows between two
stages are known as a coflow. Minimizing the average Coflow
Completion Time (CCT) can improve both responsiveness and
throughput [11].

Prior works on minimizing data transfer time have focused
on either task placement or coflow bandwidth scheduling, but
not both. In such task placement schemes [13]–[16], the main
idea is to place each task close to its input data in order to
increase data locality, which can help reduce the amount of
data to be transferred and the associated transfer time. Coflow
scheduling schemes [8]–[12] control the priority and/or the
sending rate of each flow to minimize the average CCT. They
assume that the tasks have already been placed and hence the
endpoints of flows are predetermined.

We observe that the average CCT can be further reduced
by jointly optimizing reducer placement (i.e., task placement)
and coflow bandwidth scheduling. Fig. 1 shows an example.
There are two coflows, C(1) and C(2). In C(1), there are
three reducers to fetch flows of 1 Gb, 1.5 Gb, and 2 Gb,
respectively, while in C(2), there are three reducers to fetch
flows of 1.5 Gb, 2 Gb, and 2 Gb, respectively. Three hosts
(M1, M2, and M3) can be used to allocate the reducers.
The available incoming bandwidths at these three hosts are
2 Gbps, 1 Gbps, and 1 Gbps, respectively. (Note that such
a heterogeneous bandwidth scenario can happen if part of
the bandwidth has been assigned to other applications.) For
simplicity, we assume that the available outgoing bandwidths
at the hosts issuing these flows are 10 Gbps; the network
connecting all the hosts is nonblocking; and none of the hosts
used to allocate the reducers are the same as those issuing
these flows. Therefore, the only network bottleneck exists on
the incoming links to the reducers’ hosts.
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Fig. 1. Motivation example. All the flows belonging to C(1) are drawn in white, and all flows in C(2) are drawn in blue.

Fig. 1(a) shows the case that we schedule bandwidth to
these two coflows optimally, but with suboptimal reducer
placement. In this case, the reducers for the largest flow
in both coflows are placed on a host with only 1 Gbps
incoming bandwidth. By scheduling coflows following the
Shortest Remaining Time First (SRTF) principle to minimize
the average CCT [8], the completion times of these two
coflows are 2 s and 4 s, respectively. The average CCT is
3 s. For comparison, in Fig. 1(b), we place the reducers in an
optimal way but let all flows share bandwidth equally. Both
coflows finish in 3 s. Finally, we can optimize both reducer
placement and coflow bandwidth scheduling using the optimal
solution shown in Fig. 1(c). Here, the reducers to process
the largest flows in each coflow are placed on the host with
the largest incoming bandwidth, and we schedule these two
coflows following the SRTF principle. Now, C(1) completes
in 1.5 s and C(2) completes in 3 s. The average CCT is 2.25 s.

In this article, we propose and implement RPC, a joint
online Reducer Placement and Coflow bandwidth scheduling
framework, to minimize the average CCT. The key idea of
RPC is to first optimize the completion time of each single
coflow through reducer placement and flow transmission rate
control. Then, the coflow with the shortest remaining time
has the highest priority to occupy the bandwidth. In other
words, we schedule all coflows following the SRTF princi-
ple (Section III).

Though it is NP-hard to minimize the CCT of a single
coflow via reducer placement and flow transmission rate
control, we develop a 2-approximation algorithm (Section IV).
We use experiments on a real testbed and extensive large-scale
simulations to show that RPC can reduce the average CCT
by 64.98% compared with the state-of-the-art technologies
(Section V and Section VI).

II. BACKGROUND AND SYSTEM MODEL

A. Previous Works

There are a number of related works on task placement and
coflow scheduling. We review those most closely related to
our work.

Coflow Scheduling: Orchestra [5] is the first work to take
the coflow concept into consideration when optimizing flow
transfers in data centers. Varys [8] and Baraat [12] also apply
the coflow concept in their network optimization. D-CAS [10]

Fig. 2. Data center fabric with three ingress/egress ports.

proposes a distributed coflow scheduling scheme, and Aalo [9]
extends the coflow scheduling to scenarios where flow sizes
are not known in advance. All these works assume that task
placement has already been determined.

Task Placement: Most task placement approaches try
to maximize the data locality. Delay Scheduling [13] and
Quincy [14] try to place tasks on the hosts or racks where most
of their input data is located. ShuffleWatcher [17] attempts to
localize map tasks of a job to one or a few racks, and to
reduce cross-rack shuffling. But none of them take bandwidth
scheduling into consideration.

Given a bandwidth scheduling algorithm, NEAT [18]
chooses the best task placement for new requests. Without joint
optimization, its performance is suboptimal, as we will show
later in our evaluations. 2D-Placement [19] also leverages
task placement to balance network load for future scheduling.
It makes an impractical assumption that for a given job,
the amount of traffic in the shuffle phase is known before
the start of the map phase. Even if the amount of traffic in
the shuffle phase is known in advance, we argue that the
mapper placement should take into consideration the traffic
from Distributed File System (DFS), e.g., HDFS in Hadoop,
to mappers. Our evaluations demonstrate that, even if we know
the flow sizes in advance, without considering the traffic from
DFS to mappers, the performance of optimizing both mapper
and reducer placement can be even worse than that of NEAT,
which only considers reducer placement.

B. System Model

Network Model: Given the recent progress in data center
fabrics [20]–[22], we abstract the network as a giant non-
blocking switch that interconnects all physical hosts (as shown
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in Fig. 2). Such a nonblocking connection means that the inner
links of the clusters would never experience congestion, and
hence, as in many previous works [8], [9], [23], we assume
network bottlenecks only exist on the last hop (incoming links
to reducer hosts) or the first hop (outgoing links from mapper
hosts). Therefore, we focus on how to schedule outgoing
and incoming bandwidths, without paying attention to the
flow routing or bandwidth scheduling inside the clusters. It
should be noted that, since physical hosts in a cluster can be
heterogeneous, or some of the bandwidth can be occupied by
other applications, the available bandwidth on each link can
be different.

Placement Model: Different from [19], which optimizes
both mapper and reducer placement, we consider only reducer
placement in RPC. There are at least three reasons for this
setting. Firstly, the amount of traffic to be sent during a
shuffle phase is hard to estimate before the completion of its
corresponding map phase [24], [25]. Without this information,
it is difficult to optimize reducer placement. Secondly, after the
map phase (before the start of the shuffle phase), traffic infor-
mation already exists in the log and meta-data files [26], [27],
which provides sufficient information for optimizing reducer
placement and bandwidth scheduling. Last but not least, even
if we know the traffic information before the map phase starts,
considering mapper placement would significantly increase the
problem complexity. Mapper placement couples the sources
of shuffle traffic with the destinations of the traffic from DFS.
In addition, enumerating all the mapper placement possibilities
would be computationally expensive for an online system.
For example, when there are 10 mappers to be placed onto
10 hosts, there are up to 1010 possibilities to enumerate.
Accordingly, taking both mapper and reducer placement into
consideration is not suitable for an online system such as RPC.

Coflow Abstraction: After the map phase of a specific
job, we can extract the corresponding coflow information
from the log and meta-data files [26], [27], before its
shuffle phase starts. Accordingly, we use vector C(i) =<

v
(i)
1 , v

(i)
2 , . . . , v

(i)
Ki

> to denote the traffic requirement of

coflow i, where v
(i)
k is the amount of data that should be

transferred by the kth flow of coflow i and Ki is the number
of flows belonging to coflow i. For simplicity, we also use v

(i)
k

to denote the kth flow of coflow i. In addition, we use D
(i)
n

to denote the set of flows in coflow i that need to be fetched
by the nth reducer, and k ∈ D

(i)
n means that v

(i)
k should be

fetched by D
(i)
n .

III. DESIGN OVERVIEW

Given each coflow with information about its constituent
flows, such as flow sizes and sources, RPC determines where
to place the reducers, when to start and at which rate to serve
each individual flow. Inspired by [5], [8], RPC works in a
centralized, cooperative manner. This is also consistent with
many recent centralized data center designs such as those
in [2], [20], [21], [28], [29], etc.

At a high level, to achieve high scalability, RPC mainly
orchestrates large coflows of data-intensive applications. It
treats latency-sensitive individual flows and small coflows as

Algorithm 1 The RPC Framework
Input: Uncompleted coflows Ω; available bandwidth B
1: Sort all the coflows in Ω non-increasingly according to

their waiting time
2: while Ω �= Φ do
3: Tmin ←∞, Cmin ← Φ;
4: for C ∈ Ω do
5: Compute the minimum completion time for coflow

C, TC , reducer placement and bandwidth scheduling
scheme to achieve TC

6: if C.waitT ime() > δ then
7: Tmin ← TC , Cmin ← C;
8: break;
9: end if

10: if TC < Tmin then
11: Tmin ← TC , Cmin ← C;
12: end if
13: end for
14: Ω← Ω \ Cmin;
15: Assign all the flows in coflow Cmin using reducer

placement and bandwidth scheduling scheme derived
in Line 5, and then update B;

16: end while

background traffic, randomly places the reducers for the back-
ground traffic and sends out these flows with a high priority.
A site broker periodically predicts the usage of background
traffic on the incoming and outgoing links, and derives the
available bandwidth for coflow scheduling.

We describe the optimization framework of RPC with Algo-
rithm 1, which is invoked whenever a new coflow comes or an
existing flow finishes. More specifically, when a new coflow
arrives (e.g., when the map phase of a job completes and the
flows for shuffling are ready), since the source of each flow
is determined by the location of the mapper that generates
it, RPC is invoked to compute its reducer placement and the
transmission rate for its constituent flows. When an existing
flow finishes, RPC is invoked to determine which flows should
take up the released bandwidth. The underlying scheduling
policy taken by RPC is SRTF [8], [11], [30].

The inputs of Algorithm 1 are all uncompleted coflows Ω
and available bandwidth B. Even if a coflow is occupying the
bandwidth in the network, it may be preempted if a “smaller”
coflow arrives. In addition, if a coflow is partially served, its
remaining volume should be updated when we recompute the
bandwidth scheduling scheme. It should be noted that when
an individual flow starts, the location of the reducer to fetch
this flow can no longer be changed. To prevent starvation,
RPC first schedules the coflows that have been waiting for
a long time (Lines 6 – 9). Otherwise, it turns to the coflow
with the shortest remaining completion time (Lines 10 – 12).
When the coflow to be scheduled is selected, RPC sets up
corresponding reducers, assigns bandwidth to its constituent
flows and updates bandwidth utilization (Line 15). At this
point, one of the uncompleted coflows has been scheduled
and RPC continues to schedule the next one.
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In most flow scheduling systems, work conservation is an
important property to pursue. However, this is not the case
when reducer placement is introduced as an optimization
ingredient. When a host with a small incoming bandwidth is
released for reducer placement, and a waiting reducer needs to
fetch a large volume of data, placing such a waiting reducer on
this host would bottleneck the entire coflow. It would be better
to wait for another host with a larger incoming bandwidth
to place the waiting reducer. Recall the example discussed
in Fig. 1(c). At the time 1.5 s, the reducer on host M3

completes and there is still one reducer that has not started. To
pursue work conservation, we will place the reducer that has
not started onto host M3 to fully utilize network resources. As
shown in Fig. 1(d), though the completion time of C(1) is still
1.5 s, pursuing work conservation would delay the completion
time of C(2) to 3.5 s, which increases the average CCT.
Accordingly, work conservation is not an objective to pursue
when we joint the reducer placement and coflow bandwidth
scheduling to minimize the average CCT.

The key algorithm in RPC is to calculate the minimum
completion time for each coflow (Line 5). In the next section,
we will discuss this algorithm in detail.

IV. ALGORITHM DETAILS

In Section IV-A, we discuss how to minimize the completion
time for a single coflow by jointly optimizing the reducer
placement and bandwidth scheduling. After that, we ana-
lyze the approximation ratios of our proposed algorithms in
Section IV-B. Since the available bandwidth is dynamically
changing in practice, we discuss how to adjust the CCT for
more efficient scheduling in Section IV-C. Finally, we discuss
a few practical issues in RPC in Section IV-D.

A. Minimize Single Coflow Completion Time

In this section, we discuss the algorithms to minimize the
completion time of a single coflow, which are the key elements
in Algorithm 1. Since the algorithms we propose are based on
a series of optimization models, we first present the relation-
ship among these models, which can help understanding of
how these algorithms work and their efficiency.

Firstly, we formulate the problem of minimizing the CCT
of a single coflow in the most general way in (1), in which
not only the incoming and outgoing bandwidths of each
host can be varying, but every individual flow can also be
sent with a time-varying rate. To address the problem of
varying incoming and outgoing bandwidths, RPC considers
the CCT under two extreme cases: 1) a coflow first waits
for the completion of all previous ones, and then uses all the
available bandwidth; and 2) a coflow only uses the remaining
bandwidth at the time when it arrives to determine the reducer
placement, and then bandwidth adjustment is introduced to
calculate the minimum CCT. When considering these extreme
cases, the incoming and outgoing bandwidths can be treated
as constant in (2) – (6). After deep analysis, we find that even
if every individual flow is transmitted with a time-invariant
rate, the CCT can be minimized without any performance
degradation. Accordingly, (1) is reformulated as (2). Since

(2) is an Integer Linear Programming (ILP) which cannot be
solved in a timely manner, we relax it as (3) to get an upper
bound of the flow transmission rate.

The solution derived by (3) may not be feasible for our
problem. Therefore, (4) is formulated to derive a feasible
solution based on the flow transmission upper bound provided
by (3). If we can get the optimal solution of (4), the optimal
solution of (1) is also derived. Unfortunately, (4) is equivalent
to (5), a classic unrelated parallel machine scheduling problem,
which is known to be NP-hard. Hereby, we propose a 2-
approximation algorithm (Algorithm 2) based on relaxation
and rounding to solve it.

Based on all these optimization models, the algorithm to
solve (1) when each host has constant incoming and outgoing
bandwidths is summarized in Algorithm 3. Theorem 5 shows
that the approximation ratio of Algorithm 3 is 2, while
Theorem 6 ensures this approximation ratio is tight.

In the following, we present in detail the algorithms
designed to minimize the completion time of a single coflow.
Given the information of coflow i, we formulate the problem
of minimizing its completion time as follows:

minimize T (i) (1)

subject to
∑

k

r
(i)
kj (t) ≤ bin

j (t), ∀j, t (1a)

∑
j

∑
k:s(i,k)=u

r
(i)
kj (t) ≤ bout

u (t), ∀u, t (1b)

∑
j

∫ T (i)

0

r
(i)
kj (t)dt = v

(i)
k , ∀k (1c)

r
(i)
kj (t) ≤ x

(i)
nj b

in
j (t), ∀j, k, t, n : k ∈ D(i)

n (1d)∑
j

x
(i)
nj = 1, ∀n, j (1e)

x
(i)
nj ∈ {0, 1}, ∀j, n. (1f )

The objective is to minimize the CCT of coflow i, which is
denoted as T (i). With r

(i)
kj (t) denoting the rate of sending the

kth flow in coflow i to host j at time t, and bin
j (t) denoting

the remaining incoming bandwidth of host j at time t, the
first constraint states that the entire rate of all the individual
flows sent to host j cannot exceed the remaining incoming
bandwidth of host j at any time. (1b) is used to limit the rate
of all the flows sent by host u, where s(i, k) is the source
host of the kth flow in coflow i and bout

u (t) is the outgoing
bandwidth limitation of host u at time t. With v

(i)
k denoting

the volume of the kth flow in coflow i (also denoting this
flow), (1c) means that all the data of v

(i)
k should be sent out

before the coflow completes. In (1d), x
(i)
nj is a binary variable

to denote if reducer D
(i)
n is placed onto host j or not. This

constraint states that a flow can only be sent to the host where
its reducer is placed. (1e)–(1f ) are used to indicate that every
reducer should be placed onto one and only one host.

Problem (1) is NP-hard even if all the flows are issued by the
same host and the incoming and outgoing bandwidths of each
host are constant [31]. It is difficult to solve for the following
three reasons: 1) the remaining bandwidths (both incoming and
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outgoing) on each host are time varying; 2) the upper bound
of the integration in constraint (1c) is a variable; and 3) x

(i)
nj is

a binary variable. Hereafter, we present how to address these
issues.

To address the first issue, we consider two extreme cases:
1) the coflow only uses the remaining bandwidth left by the
coflows already scheduled, and can start transmission at once;
and 2) the coflow can use all the available incoming and
outgoing bandwidth, but it should wait for the completion
of previous flows. In each of these two cases, we calculate
the reducer placement and bandwidth scheduling scheme.
Then, we adjust the bandwidth scheduling to derive a better
minimum CCT estimation (see details in Section IV-C).

As to the second issue, we propose the following theorem:
Theorem 1: When the incoming and outgoing bandwidths

of each host j are constant (denoted as bin
j and bout

j ), suppose

r̂
(i)
kj and x̂

(i)
nj are the optimal solutions, and f̂ (i) is the objective

value of the following optimization problem:

maximize f (i) (2)

subject to
∑

k

r
(i)
kj ≤ bin

j , ∀j (2a)

∑
j

∑
k:s(i,k)=u

r
(i)
kj ≤ bout

u , ∀u (2b)

∑
j

r
(i)
kj = v

(i)
k f (i), ∀k (2c)

r
(i)
kj ≤ x

(i)
nj b

in
j , ∀j, k, n : k ∈ D(i)

n (2d)∑
j

x
(i)
nj = 1, ∀n (2e)

x
(i)
nj ∈ {0, 1}, ∀n, j. (2f )

Then, T (i) = 1

f̂(i) is the optimal objective value of (1).

r
(i)
kj (t) =

{
r̂
(i)
kj for t ∈ (0, 1

f̂(i) )

0 for t ∈ (f̂ (i),∞)
and x

(i)
nj = x̂

(i)
nj are the

solutions to achieve the optimal objective value.
Proof: Suppose Topt is the optimal objective of (1), and

ropt
kj (t) is the corresponding solution. By setting

r
(i)
kj =

∫ Topt

0 ropt
kj (t)dt

Topt
,

we have

∑
k

∫ Topt

0

ropt
kj (t)dt =

∑
k

r
(i)
kj Topt.

Since

∑
k

∫ Topt

0

ropt
kj (t)dt =

∫ Topt

0

∑
k

ropt
kj (t)dt

≤
∫ Topt

0

bin
j dt = Toptb

in
j ,

we know
∑

k r
(i)
kj ≤ bin

j . In the same way, we can verify that

r
(i)
kj also satisfies constraints (2b) and (2d).

For constraint (2c), we can see that

∑
j

∫ Topt

0

ropt
kj (t)dt =

∑
j

r
(i)
kj Topt = v

(i)
k .

Let f (i) = 1
Topt

, and we get

∑
j

ri
kj =

v
(i)
k

Topt
= v

(i)
k f (i).

The discussion shows that r
(i)
kj =

� Topt
0 ropt

kj (t)dt

Topt
and f (i) =

1
Topt

are feasible solutions of (2). Therefore, we have

f̂ (i) ≥ 1
Topt

.

In addition, we can easily verify that the variable settings
claimed in Theorem 1 are feasible solutions of (1). Therefore,
we have

Topt ≤ 1

f̂ (i)
.

Accordingly, Topt = 1

f̂(i) .

As f (i) is the inverse of the minimum CCT, we refer to
it as the coflow transmission frequency. Theorem 1 shows
that when the incoming and outgoing bandwidths of each
host are constant, we can solve problem (2) instead of (1) to
calculate the reducer placement and bandwidth scheduling for
each individual flow. With (2), we can eliminate the variable
in the upper bound of the integration in (1c)

However, there is still a binary variable in problem (2),
i.e., the third issue discussed above, which makes the problem
intractable in large size systems. To address this issue, we first
combine all the reducer hosts to be a single “big” host. Then,
reducers are to be placed onto the unique “big” host, and hence
the binary variable x

(i)
nj is eliminated:

maximize f (i) (3)

subject to
∑

k

r
(i)
k ≤

∑
j

bin
j (3a)

∑
k:s(i,k)=u

r
(i)
k ≤ bout

u , ∀u (3b)

r
(i)
k = v

(i)
k f (i), ∀i. (3c)

In this formulation, r
(i)
k is the transmission rate of v

(i)
k . Now,

problem (3) becomes a Linear Programming (LP) problem
which is easy to solve. After solving problem (3), r

(i)
k is

the upper bound of the transmission rate of the kth flow in
coflow i, since it is a relaxation of the original problem by
combining all the hosts that can be used for reducer placement
as a single “big” host. When we place reducers onto different
hosts, it is inevitable to scale down the flow transmission rate.
Say the scale-down ratio is α; then, v

(i)
k would be transmitted

at the rate r
(i)
k /α in the final solution. Hence, we should
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minimize such a scale-down ratio to reduce the CCT:

minimize α (4)

subject to
∑

n

(
∑

k∈D
(i)
n

r
(i)
k )x(i)

nj ≤ αbin
j , ∀j (4a)

∑
j

x
(i)
nj = 1, ∀n (4b)

x
(i)
nj ∈ {0, 1}, ∀n, j. (4c)

It should be noted that, in (4), r
(i)
k is a constant parame-

ter, which is derived by solving (3). By defining e
(i)
nj =∑

k∈D
(i)
n

r
(i)
k /b

(in)
j , (4) can be modified as

minimize α (5)

subject to
∑

n

e
(i)
njx

(i)
nj ≤ α, ∀j

(4b), (4c). (5a)

This is a classic unrelated parallel machine scheduling prob-
lem, which is NP-hard. To derive a high-performance solution
efficiently, we try to solve it based on a relaxation and
rounding method [32]. We first relax the binary variable
constraint on x

(i)
kj and get

minimize α (6)∑
n∈Ej(α)

e
(i)
njx

(i)
nj ≤ α, ∀j (6a)

∑
j∈Hn(α)

x
(i)
nj = 1, ∀n (6b)

x
(i)
nj ≥ 0, ∀n, j, (6c)

where Ej(α) is the set of reducers {n|e(i)
nj ≤ α}, and Hn(α) is

the set of hosts {j|e(i)
nj ≤ α}. For a fixed α, (6) is an LP model.

Thus it can be solved via binary search with logarithmic
iterations. Each iteration can be completed with polynomial
time complexity.

By solving (6), we may get a fractional reducer place-
ment solution, which is infeasible to the original problem.
Accordingly, we should round the fractional solution to derive
a feasible reducer placement scheme. To this end, we first
propose the following lemma:

Lemma 2: Suppose there are N reducers and M hosts for
reducer placement, then at most (N + M) variables will be
non-zero in the optimal solution of (6).

Proof: The objective α is the minimum value that makes
(6) feasible. When setting α to its optimal value, the feasible
region is a single point determined by v linearly independent
rows of the constraint matrix such that all of these constraints
hold with the equality, where v is the number of variables in
(6) for the given α.

Consider that there are v+M+N constraints in (6), but only
M constraints in (6a) and N constraints in (6b). Accordingly,
there are at least v−N −M constraints in (6c) that hold with
the equality. Therefore, at most N + M constraints in (6c)
do not hold with equality, which means that at most N + M
variables have non-zero values.

From Lemma 2, we can get the following corollary.
Corollary 3: We construct a bigraph G(x) = {U, V, E}

according to the solution of (6), x, where U =
{u1, u2, . . . , uM} is the set of nodes denoting hosts, called
host nodes, while V = {v1, v2, . . . , vN} is the set of nodes
denoting reducers, called reducer nodes. There is an edge
between vn and uj , iff x

(i)
nj > 0. In this case, any connected

component, P , in G(x) can be modified to a pseudo tree (a
tree or a tree plus one edge) without increasing the scale-down
ratio.

For brevity, hereafter, we refer to “reducer/host v” instead
of “the reducer/host associated with node v”. Proof: If
we solve (6) by only using the reducers and hosts associated
with P , say the solution is x′, it is obvious that the scale-down
ratio is smaller than or equal to that derived by using all the
reducers and hosts. According to Lemma 2, the number of
non-zero variables in the solution is at most the number of
nodes in P . Therefore, P can be modified to a pseudo tree by
changing the edges according to x′.

Based on Corollary 3, Algorithm 2 is designed for reducer
placement. Line 2 handles the reducers with only one host to
place according to the solution of (6). After that, each reducer
node in P has at least two node degrees. For each connected
component P ∈ BG, if |N(P )| = |L(P )|, where N(P ) is
the set of nodes in P and L(P ) is the set of edges in P ,
there must be a cycle in P . In this case, we first find out
this cycle with Depth-First Search (DFS), and determine the
reducer placement on this cycle (Line 6).

By removing this cycle from P , there must remain a forest
of trees, each of which contains at most one reducer leaf
node. If there is a reducer leaf node in the resulting tree,
we can root the tree at this reducer leaf node, and place
the reducer onto its child host that serves the largest fraction
of this reducer. Otherwise, we root the tree at an arbitrary
reducer node and place each reducer onto the child host that
serves the largest fraction of this reducer (Lines 8–11). In
this way, each host serves at most one reducer that is frac-
tionally placed onto multiple hosts according to the solution
of (6).

With Algorithm 2, we can find the reducer placement
that can minimize the CCT. However, it does not determine
the transmission rate of each individual flow. Algorithm 3
leverages Algorithm 2 to determine the reducer placement and
bandwidth scheduling. In this algorithm, we first calculate
the maximum coflow transmission frequency by combining all
the hosts into a “big” one (Line 1). Then, we place reducers
onto hosts according to Algorithm 2 (Line 2). Based on the
placement, we calculate the maximum transmission rate of
each individual flow in Lines 3–8. It should be noted that
in Lines 5–8, we only scale down the flow transmission rate
if the scale-down ratio is larger than 1. For a flow with
a scale-down ratio smaller than 1, we need to increase its
transmission rate to fully utilize the bandwidth at the reducer
host side. However, we should note that the bandwidth at the
mapper host side has been fully utilized before we increase
the flow transmission rate, and hence RPC cannot increase the
flow transmission rate when the scale-down ratio is smaller
than 1.
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Algorithm 2 Reducer Placement

Input: The solution of problem (6), {x(i)
nj}

Output: Reducer placement
1: Construct a bigraph BG according to {x(i)

nj} as in
Corollary 3

2: Remove all the reducer nodes with only one node degree
and place these reducers onto the connecting host

3: for all connected components P ∈ BG do
4: if |N(P )| = |L(P )| then
5: Find the unique cycle in P with Depth-First Search
6: Arbitrarily orient the cycle in one direction and place

each reducer onto the host succeeding it on the cycle

7: Remove this cycle from P , and what remains overall
is a forest of trees, each of which contains at most
one reducer leaf node

8: for all the remaining trees do
9: Rooting at the unique reducer leaf node (if there

is), or arbitrary reducer node
10: Place each reducer onto its child host that serves

the largest fraction of this reducer
11: end for
12: else
13: Treat an arbitrary reducer as the root to form a

tree and place each reducer onto its child host that
services most of this reducer

14: end if
15: end for

B. Approximation Bound Analysis

In this section, we analyze the approximation ratios of the
algorithms we proposed to optimize the CCT of a single
coflow. However, before we present the approximation ratio
of Algorithm 3, we first analyze the approximation ratio of
Algorithm 2, which is an important component to calculate
the reducer placement.

Theorem 4: The approximation ratio of Algorithm 2 is 2.
Proof: Let αmin be the optimal objective value of problem

(6), which is a lower bound of the optimal objective value
of problem (4). In the Line 2 of Algorithm 2, we place all
the unsplit reducers according to the solution of (6). All these
unsplit reducers contribute to the scale-down ratio by less than
αmin. In Lines 3–15, Algorithm 2 ensures that every host
serves at most one split reducer, which leads to a scale-down
ratio increase of at most αmin. Accordingly, the scale-down
ratio derived by Algorithm 2 is at most 2αmin.

Theorem 5: The approximation ratio of Algorithm 3 is 2.
Proof: There are two cascading bottlenecks in our sys-

tem, namely, the outgoing links from mapper hosts and the
incoming links to reducer hosts. When we solve problem (3),
we can get the optimal solution which solves the bottleneck
at the mapper side. Then, Algorithm 3 scales down the flow
transmission rate to solve the bottleneck at the reducer side,
which results in an approximation factor loss of 2. Accord-
ingly, the approximation ratio of Algorithm 3 is 2.

Algorithm 3 Minimize CCT Through Reducer Placement
and Coflow Bandwidth Scheduling

Input: The size of individual flows v
(i)
k , incoming/outgoing

bandwidth of each host {bin
j } and {bout

j }
Output: Reducer placement x

(i)
nj and flow transmission rate

{r(i)
kj }

1: Formulate and solve (3) and get the maximum transmis-
sion rate r

(i)
k

2: Based on the solution of (3), formulate model (4) and
solve it with Algorithm 2, say the solution is x

(i)
nj

3: for all host j do

4: r
(i)
kj ← r

(i)
k x

(i)
nj |n:k∈D

(i)
n

, αj ←
�

k r
(i)
kj

bin
j

5: if αj > 1 then

6: r
(i)
kj ←

r
(i)
kj

αj

7: end if
8: end for
9: return x

(i)
kj and {r(i)

kj }

Fig. 3. Flow completion time adjustment.

Theorem 6: The approximation bounds for both Algo-
rithm 2 and 3 are tight.

Proof: For Algorithm 2, suppose there are M(M−1)+1
reducers (reducer 0 to reducer M(M −1)) and M hosts (host
0 to host M − 1) that can be used to place the reducers.
Suppose for the reducers 0 ≤ n ≤ M(M − 1) − 1, we have
e
(i)
nj = T for all j and for the one remaining reducer,

we have e
(i)
M(M−1),j = MT for all j. The optimal solutions to

problem (5) are x
(i)
M(M−1),M−1 = 1 and x

(i)
n,n mod (M−1) = 1;

otherwise x
(i)
nj = 0, with the objective value of MT . However,

the optimal solutions of (6) are x
(i)
M(M−1),j = 1/M and

x
(i)
n,n mod M = 1; otherwise x

(i)
nj = 0. After the rounding

procedure of Algorithm 2, the objective value is (2M −
1)T . The approximation ratio is 2M−1

M . When M approaches
infinity, the approximation ratio approaches 2. Accordingly,
the approximation bound for Algorithm 2 is tight.

For Algorithm 3, we can see that the only step that intro-
duces an approximation is leveraging Algorithm 2 to determine
reducer placement. Accordingly, we can conclude that the
approximation bound for Algorithm 3 is also tight.

C. Coflow Completion Time Adjustment

In the last subsection, we calculated the CCT of a coflow
under the assumption that remaining incoming and outgoing
bandwidths are constant. However, this is not the case in
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practice. To solve this problem, we try two extreme cases with
Algorithm 3. The first one is that we assume every coflow
waits for the completion of previous ones, and transmits with
all the available bandwidth; the second one is that the coflow
starts at once, but each flow only uses the remaining bandwidth
when it arrives.

However, neither method fully utilizes the bandwidth. For
the first case, we can first transmit the flow at a smaller
transmission rate. As shown in Fig. 3(a), say the incoming
bandwidth is 2 Gbps and there has already been a flow
scheduled with 1 Gbps from 0 s to 2 s. If the later flow waits
for the completion of the previous one, it will end in 3.5 s.
Actually, we can transmit the later flow with the 1 Gbps
remaining bandwidth from 0 s to 2 s, and transmit it at 2 Gbps
after the first flow ends, the later flow will end in 2.5 s.

If we calculate the CCT only with the remaining bandwidth,
the flow scheduling may be as shown in Fig. 3(b). Actually,
we can increase the flow transmission rate when previous flows
end. After adjusting the transmission rate of all the individual
flows in a coflow, we set the completion time of the latest
flow as the CCT. The bandwidth adjustment can be done with
the classic water-filling algorithm [33]. After the bandwidth
adjustment, the smaller CCT will be used to determine which
coflow has the highest priority to be scheduled.

D. Discussions

Started Reducer: Since RPC updates the scheduling scheme
when a coflow arrives or a flow completes, some of the reduc-
ers may have already started on a certain host. If reducer n

has already started on host j, we add a constraint x
(i)
nj = 1

into the problem (4). None of the algorithms to calculate the
CCT of coflow i nor the approximation ratios will change.

Reducer Number Constraint: Sometimes, a host can support
only a few reducers in practice. In most cases, this would not
be a problem since we distribute the reducers among as many
hosts as we can to reduce the CCT, and hence not too many
reducers would be placed onto the same host. Even if we need
to limit the number of reducers per host, we can monitor the
number of reducers that have already been placed onto each
host. When the number of reducers placed on host j meets the
capacity constraint, we fix all the reducers whose placement
has already been determined, and then invoke Algorithm 2
once more. In order to prevent more reducers being placed
onto host j, we set x

(i)
nj = 0 in all the associate optimization

models for all yet to be placed reducer n.
Local Reducer: When the host issuing flows can also be

used to allocate reducers, we first place reducers onto the hosts
that contain most of their required data. If no such hosts exist,
we still use Algorithm 2 to calculate the reducer placement.

Multi-Wave Reducers: When there are not enough hosts
to place reducers for a single coflow, the reducers will be
executed in a multi-wave fashion [25]. Because the CCT is
determined by the completion of the shuffle traffic associated
with the last wave of reducers, we have at least two solutions to
deal with this problem. First, we can place all but the last wave
of reducers and transmit the corresponding flows by pursuing
work conservation, and only optimize the reducer placement

and bandwidth scheduling associated with the last wave of
reducers. Second, we can treat the flows belonging to one wave
of reducers as a coflow, and leverage our proposed algorithms
to minimize the average CCT.

System Overhead: There are five types of potential over-
heads introduced by RPC: 1) waiting for all the mappers
to finish; 2) collecting flow size information; 3) solving the
optimization problem; 4) placing and removing reducers; and
5) controlling flow rates. In current multi-job systems, such
as Spark and Hadoop 2.x, the shuffle phase of each job
will not start until all its associated mappers complete, and
hence RPC would not introduce overhead to wait for the
completion of the map phase. To collect flow size information,
the overhead should be several RTTs in a cluster, which is
typically hundreds of micro-seconds [34]. As we will see in
Section VI, the running time of Algorithm 1 is hundreds of
micro-seconds in a system with 500 mappers/reducers. With
container technology, the time to set up or remove a reducer is
several micro-seconds [35]. With Linux Traffic Control (TC),
the overhead to shape the flow rate is also in the micro-second
range [36]. In summary, the total overhead introduced by
RPC would be at most several milliseconds. Since RPC only
operates on large coflows, whose completion time should be at
least hundreds of milliseconds, the overhead can be considered
negligible.

Cost of Pursuing Minimum Average CCT: To pursue the
minimum average CCT in the system, we hold some of the
coflows that should be sent earlier in other scheduling schemes
such as Varys [8], NEAT [18], and 2D-Placement [19]. This
inevitably prolongs the completion time of some coflows.
However, we can imagine that this would not be a serious
problem. Firstly, the small coflows that are delivered first will
complete very soon, and hence it would not have a significant
negative effect on the coflows that are held. Secondly, when
multiple coflows are sharing the same incoming/outgoing link,
transmitting coflows sequentially could improve the perfor-
mance of the small ones without degrading that of the large
ones. Last but not least, a better reducer placement scheme
could discount the offside effect of holding the large coflows.
Actually, in Section VI-B, we will see that only a small
fraction of coflows (usually < 10%) suffer the CCT increase
in RPC.

V. IMPLEMENTATION

We implement RPC on a testbed with seven hosts. One of
them works as a job scheduler to execute the algorithms in
RPC, while the remaining six are used to transfer coflows.
All of these hosts are connected by a switch, and the NIC
bandwidth on each host is 1 Gbps.

Our scheduling algorithms are implemented on the sched-
uler with CPLEX 12.3 as an LP solver. Whenever a coflow
is issued, the corresponding hosts will notify the scheduler
through the coflow API [5]. The scheduler derives a reducer
placement and bandwidth scheduling scheme, and responds
to the hosts. Whenever a host receives the signal from the
scheduler, it sets up corresponding reducers to fetch data.

In addition, a Bandwidth Enforcement (BE) kernel module
is implemented between the TCP/IP stack and Linux Traffic

Authorized licensed use limited to: Nanjing University. Downloaded on February 18,2021 at 11:30:47 UTC from IEEE Xplore.  Restrictions apply. 



446 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

Control (TC). This module includes a netfilter hook, a flow
table, and a packet modifier. An enforcement daemon at the
user space communicates with the BE module via the ioctl to
manage the flow table. Based on the rules in the flow table,
the packet modifier leverages the netfilter hook to intercept all
outgoing packets and modifies the nfmark field of the socket
buffer. Then, the modified packets are sent to the TC for
rate limiting. A two-level Hierarchical Token Bucket (HTB)
is used in the TC. The root node classifies packets to their
corresponding leaf nodes based on the nfmark field, and the
leaf nodes enforce per-flow rates.

In our prototype, we have the Linux root privileges, and
hence we can control the TC tool. If we do not have the
root privileges, we can also realize such a rate limitation by
controlling the rate to write data into the socket buffer.

VI. PERFORMANCE EVALUATION

We evaluate RPC through two small-scale testbed experi-
ments as well as extensive large-scale simulations. We com-
pare the following schemes with RPC:

• Baseline: All the reducers are randomly placed and all the
flows are sharing the bandwidth fairly.

• Scheduling-only (Varys): All the reducers are randomly
placed, but coflows are scheduled according to SRTF. This
is the state-of-the-art scheduling scheme Varys [8].

• Scheduling-aware reducer placement (NEAT): Given
the scheduling scheme SRTF, the reducers are placed onto
the hosts that can minimize the impact on the completion
time of other coflows. This exactly follows the concept of
NEAT [18].

• Placement of both mapper and reducer (2D-Placement,
abbreviated as 2DP in all the figures): Both mappers and
reducers are placed following 2D-Placement [19] assuming
the size of each coflow is known before the completion of
associated mappers. Different from [19], the data transmis-
sion from DFS to mappers is counted in the CCT. All the
coflows are scheduled following SRTF.

Metrics: In this section, we define the performance improve-
ment of scheme 1 compared with scheme 2 as CCT2−CCT1

CCT2
,

where CCT1 and CCT2 are the average CCT derived by
scheme 1 and scheme 2, respectively.

The summary of the main results is as follows:

• Through the experiments on the small-scale testbed, we
observe that RPC reduces the average CCT by 43.76% and
16.67% compared with the baseline and NEAT, respectively.

• Compared with the random reducer placement, optimizing
the reducer placement reduces the average CCT by more
than 99% in a heterogeneous environment.

• RPC could reduce the average CCT by up to 64.98%, even
compared with the state-of-the-art technology that takes
both task placement and coflow scheduling into considera-
tion, namely, NEAT.

• To pursue the minimum average CCT, RPC prolongs the
CCT of less than 10% of the coflows.

Fig. 4. Testbed experiment results.

A. Testbed Experiments

In our experiments, we use three of the hosts as coflow
senders and place reducers on the remaining three hosts. To
emulate the heterogeneous hosts, we limit the bandwidths of
two of the switch ports connecting to the receivers (server D
and E) to be 500 Mbps. To study the performance of RPC
in detail, we first inject three coflows into the network and
assume every flow should be processed by a specific reducer.
The coflow information is shown in Tab. I. For comparison
purpose, we also evaluate the performances derived by the
baseline, Varys, NEAT, and 2D-Placement, respectively. The
results of this experiment are shown in Fig. 4(a). From this
figure, we can see that RPC can save 22.94−12.9

22.94 = 43.76%
of the average CCT compared with the baseline scheme, and
it can reduce the average CCT by 15.48−12.9

15.48 = 16.67%
compared with NEAT on our small-scale testbed. An inter-
esting observation is that NEAT achieves an average CCT
that is 21.79−15.48

21.79 = 28.96% smaller than 2D-Placement;
i.e., optimizing the placement of both mappers and reducers
yields a worse solution than only optimizing the placement of
reducers.

To study the reasons behind the above observations,
we show the reducer placement results in Tab. II. In the results
of 2D-Placement, the placement result C→E means placing the
mapper onto server C, while placing the reducer onto server
E. Beside each placement result in Tab. II, we present the
completion time of the corresponding flow in the parentheses.
Comparing RPC with NEAT, we can see that by reducing the
impact to future coflows, NEAT reduces the completion time
of coflow 2 (from 12.90 s to 12.04 s compared with RPC),
but it does not optimize the average CCT in the global view.
When coflow 3 is taken into consideration, the average CCT
increases.

Comparing NEAT with 2D-Placement, we can see that
if we only consider the time for the data transfer between
mappers and reducers, the average completion time induced
by 2D-Placement is (8.6+17.2+18.93)/3=14.91 s, which out-
performs NEAT. However, since we need to transfer data from
DFS to mappers, the CCT increases. We should also note
that since 2D-Placement solves the flow contentions, it fully
utilizes the network bandwidth, and hence it serves all the
flows quickest if the time to transfer data from DFS to mappers
is not taken into account.

For Varys, the random reducer placement may place a
reducer receiving large flows onto a server with a small
incoming bandwidth, e.g., placing the reducer of flow 2 in
coflow 1 onto server D, which results in a large CCT. As for
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TABLE I

COFLOWS INJECTED INTO NETWORK

the baseline scheme, though it may get a better reducer place-
ment than Varys with some probability, i.e., the completion
time of the last coflow is smaller, it still suffers a larger average
CCT as all the flows are sharing the bandwidth equally, which
hurts the completion time of all the coflows.

In addition to the above synthesized workload, we also
choose 10 jobs from the Facebook MapReduce traffic trace
in [37] to test the performance of RPC on our testbed. Since
we only have three hosts for the coflow senders and three hosts
for the reducer placement, each job is divided into nine flows
among three mappers and three reducers, and all these flows
belong to the same coflow. Repeating the above experiment
based on the real traffic trace, we get the results shown
in Fig. 4(b). Compared with the synthesized traffic results,
we can see that the baseline scheme performs worse, since
more coflows are sharing the bandwidth. We can also observe
that the performance improvement of RPC compared with
NEAT decreases from 16.67% to 73.84−65.32

73.84 = 11.54%. This
is due to the definition of the performance improvement. When
the CCT increases, the value of the performance improvement
decreases if the CCT reduction stays the same. In fact,
the average CCT reduced by RPC increases from 2.58 s to
8.52 s.

B. Large-Scale Simulations

Simulation Methodology: Similar to [8], [29], we build a
flow-level simulator, which records flow arrival and departure
events. Whenever such an event occurs, the simulator not only
updates the remaining amount of each existing flow, but also
invokes the algorithms we proposed to calculate the reducer
placement for newly arrived coflows and update the flow
transmission rate. To solve LP models in RPC, we embed
the API provided by CPLEX 12.3 into our simulator.

In the simulations, we use the Facebook MapReduce traffic
trace provided in [37]. Since our system is applied to data-
intensive applications, we pick out all 96 jobs whose shuffle
traffic amount is more than 20 Gbits. Based on the traffic
amount distribution, we generate 1000 candidate jobs to
inject into the system. Given the number of mapper hosts,
we randomly split the shuffle traffic onto these hosts and
generate coflows. Accordingly, the more mapper hosts that
are in the system, the more flows there are in a coflow,
and correspondingly, the average size of these flows will be
smaller. We assume the NIC bandwidth on each host is one
of the values in {0.1, 0.2, 0.5, 1, 10, 40} Gbps. We set such a
heterogeneous NIC bandwidth for two reasons: 1) in a cluster,

the hosts should be deployed with different kinds of NICs, with
different bandwidths; and 2) the network is shared by multiple
applications. Some of the bandwidth could be assigned to other
applications. We keep the hosts with a small bandwidth in the
system, since most of the flows in a cluster are very small.
The hosts with a small bandwidth can be used to serve the
small flows, and their computational resources can be fully
utilized. In addition, a good algorithm should avoid placing
a reducer that needs to receive large flows onto those hosts
with a small bandwidth. This setting can be used to show
the advantage of RPC. Since the flow source and host NIC
bandwidth distributions may impact the reducer placement and
coflow bandwidth scheduling, the simulation results in this
section are averaged over 20 trials. The overall simulation
results are shown in Fig. 5–7. In general, we can see that RPC
outperforms all other schemes in all scenarios. The baseline
scheme performs worst as there is no optimization in it, while
Varys performs better than only the baseline scheme since it
absolutely misses optimizing the mapper/reducer placement.
By introducing the placement of mappers and reducers, 2D-
Placement outperforms Varys. However, since it introduces
additional data transfer into the system, its performance is
worse than that of NEAT.

Impact of Coflow Width: The coflow width is defined as the
number of flows in a coflow [8]. In each simulation round,
we change the number of mapper and reducer hosts (keep the
number of mappers and reducers the same) in the system and
observe how the average CCT changes with the number of
mapper/reducer hosts in the system. The more hosts in the
system, the more flows the shuffle data should be split into,
and hence the wider the coflows are. In addition, we assume
the coflow arrival rate is 20 coflows/second.

The simulation results are shown in Fig. 5, and we make the
following observations. First, RPC outperforms the schemes
without optimizing reducer placement, i.e., baseline and Varys,
by more than 99%. This is because a suboptimal reducer
placement will result in an extremely large completion time for
some coflows, especially when they place a reducer receiving
large flows onto a host with a small incoming bandwidth.

Second, 2D-Placement leads to about 2–3x the average
CCT that NEAT achieves. For a given mapper placement, 2D-
Placement is almost the same as NEAT. However, to optimize
the mapper location in 2D-Placement, additional data transfer
is required, and this data transfer phase is not optimized.
Accordingly, it results in an average CCT more than 2x that
of NEAT.

Third, compared with NEAT, RPC reduces the average CCT
by 46.52%–64.98%. In order to consider the impact on other
coflows, NEAT optimizes the placement of reducers one by
one, rather than optimizing reducer placement from the global
perspective. Accordingly, it derives a performance worse than
RPC.

Fourth, regardless of which scheme is adopted, the aver-
age CCT reduces with the increase of coflow width. This
observation is intuitive since, when there are more hosts, more
bandwidth can be used to serve flows.

Last, Fig. 5(b) shows the CDF of CCTs when there are
500 mapper hosts and 500 reducer hosts in the system. From
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TABLE II

REDUCER PLACEMENT

Fig. 5. The impact of coflow width.

this figure, we can see that RPC does not result in a long-
tail effect on the CDF of CCTs. This means that RPC
optimizes the average CCT without significantly sacrificing
the CCT of some individual coflows. The simulation results
in Fig. 5(c) again demonstrate this conclusion. From this
figure, we can see that even compared with NEAT, which
performs the best among all the comparison schemes, less than
10% of the coflows suffer the CCT increase and the maximum
performance degradation is about 15%. However, more than
half of the coflows enjoy a performance improvement larger
than 50%.

Fig. 6. The impact of coflow arrival rate.

Impact of Coflow Arrival Rate: To investigate the impact
of coflow arrival rate, we send out 1000 coflows into a system
consisting of 200 mapper hosts and 200 reducer hosts, and
observe the relationship between the average CCT and the
coflow arrival rate. We investigate the coflow arrival rate from
10 coflows/second to 50 coflows/second, since if every coflow
can monopolize the network, the average CCT is 0.141 s, and
there is almost no remaining bandwidth in the network when
the coflow arrival rate is 50 coflows/second.
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Fig. 7. The impact of coflow number.

From Fig. 6, we make the following observations. Firstly,
the average CCT increases with the coflow arrival rate. When
more coflows are arriving in a specific interval, there are
more coflows queuing in the system as there are not enough
resources to deal with the coflows immediately when they
arrive. This results in a larger average CCT.

Secondly, as we have discussed above, NEAT outperforms
2D-Placement by 2–3x when the coflow arrival rate changes.
However, with the increase of the coflow arrival rate, the per-
formance gap between NEAT and 2D-Placement decreases.
When the coflow arrival rate increases, more coflows are
queuing in the system, and this results in a longer completion
time for the queuing coflows. Accordingly, the percentage
of time required to transfer data from DFS to mappers is
relatively reduced.

Thirdly, when the coflow arrival rate is small, the perfor-
mance of NEAT and RPC is close. With the increase of
the coflow arrival rate, the performance gap between these
two schemes also increases. When the coflow arrival rate
is small, the later coflow comes when the previous one
has almost completed. Both schemes optimize the average
CCT by placing the reducers receiving larger flows onto the
hosts with larger bandwidth. Accordingly, they derive similar

performance. When the coflow arrival rate is large, there are
more coflows in the network and we should carefully schedule
the bandwidth to different flows. Hence, RPC derives a better
performance.

Fourthly, comparing Fig. 6(b) with Fig. 5(b), we can see that
with a larger coflow arrival rate, the CCT spreads in a wider
interval. This is because more coflows queuing in the system
results in a longer completion time for the large coflows, while
it does not impact the completion time of small coflows as
RPC schedules coflows following the SRTF principle.

Lastly, comparing Fig. 6(c) with Fig. 5(c), a larger coflow
arrival rate results in performance degradation to more
coflows, and the largest performance degradation also gets
worse. However, such performance degradation is fairly slight.

Impact of Coflow Number: To investigate how the perfor-
mance of RPC is influenced by the number of coflows in the
system, we assume there are 200 mapper hosts and 200 reducer
hosts and inject different numbers of coflows into the network
simultaneously.

The simulation results are shown in Fig. 7. From this
figure, we make the following observations. First, the average
CCT increases with the number of coflows in the system.
This is obvious because, as explained above, more coflows
are injected into the system simultaneously, so there will be
more coflows queuing in the system, which results in a larger
average CCT. Furthermore, RPC can reduce the average CCT
by up to 56.52% compared with NEAT.

Second, the performance gap between NEAT and 2D-
Placement slightly reduces with the increase of the number of
coflows in the system. This is again because a longer queuing
delay mitigates the impact of data transfer between DFS and
mappers.

Third, from Fig. 7(b), we can see that the largest CCT
under RPC is similar to that under NEAT. This is because
when the system is heavily loaded and all the coflows arrive
simultaneously, the largest coflow cannot be sent out till
all other coflows complete or its waiting time exceeds the
threshold. Therefore, the largest coflow will wait for almost
the same amount of time before the system starts to serve it
under both schemes. Though RPC and 2D-Placement can still
reduce the completion time of the largest coflow, the queuing
time dominates the CCT, and hence the largest CCTs under
both schemes are similar.

In Fig. 7(c), we can see that even though all the coflows
arrive simultaneously, i.e., with the maximum work intensity,
the CCT of only about 20% of the coflows increases. This
shows that RPC can improve the average CCT without
incurring performance degradation to too many coflows in the
system.

Takeaways: To reduce the average CCT in a heterogeneous
environment, careful reducer placement is very important. In
addition, we should treat each coflow as a whole to optimize
the average CCT, and it is necessary to jointly optimize
reducer placement and bandwidth scheduling.

Work Conservation Issue: In RPC, we propose not to
pursue work conservation when we optimize the average CCT.
This is a proposition different from most of the previous
works. We verify this strategy through simulations. To this end,
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Fig. 8. Impact of pursuing work conservation.

Fig. 9. Algorithm running time.

we always serve more flows if there is remaining bandwidth.
To benefit the completion of a coflow, the flows with a
larger size have a higher priority to get the idle bandwidth.
A performance comparison between the schemes with and
without pursuing work conservation is shown in Fig. 8.

We can see that when the system is lightly loaded, RPC
achieves similar performance regardless of whether it pursues
work conservation or not. This is because there are very few
coflows sharing the bandwidth and the reducers for every
coflow can be optimally placed. However, when the system
is heavily loaded, to fully utilize the bandwidth may result in
suboptimal reducer placement and a larger average CCT. This
confirms that not pursuing work conservation is beneficial to
minimize the average CCT.

Algorithm Running Time: As an online system, RPC should
run Algorithm 1 in a timely manner. Fig. 9 shows the average
running time of Algorithm 1 with different numbers of mapper
and reducer hosts in the system (i.e., the average algorithm
running time when we study the impact of coflow width).
All the results are collected from a desktop carrying an Intel
i7-2600 CPU with 8 GB memory. From Fig. 9, we can see
that even when there are 500 mappers and 500 reducers in
the system, the average running time of RPC is only about
350 us. Accordingly, we can conclude that the computation
overhead introduced by RPC is negligible.

VII. CONCLUSION

This work has proposed RPC, a framework to minimize
the average CCT by jointly optimizing reducer placement and
coflow bandwidth scheduling. To the best of our knowledge,
RPC is the first solution that minimizes the average CCT by
integrating reducer placement and coflow bandwidth schedul-
ing. Through experiments on a real testbed and extensive
simulations, we demonstrate that RPC exhibits remarkable
performance advantages over existing technologies.

REFERENCES

[1] Y. Zhao, C. Tian, J. Fan, T. Guan, and C. Qiao, “RPC: Joint online
reducer placement and coflow bandwidth scheduling for clusters,”
in Proc. IEEE 26th Int. Conf. Netw. Protocols (ICNP), Sep. 2018,
pp. 187–197.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[3] G. Malewicz et al., “Pregel: A system for large-scale graph processing,”
in Proc. Int. Conf. Manage. Data, 2010, pp. 135–146.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distrib-
uted data-parallel programs from sequential building blocks,” in Proc.
2nd ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., 2007, pp. 59–72.

[5] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Man-
aging data transfers in computer clusters with orchestra,” in Proc. ACM
SIGCOMM Conf., 2011, pp. 98–109.

[6] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making sense of performance in data analytics frameworks,” in Proc.
USENIX NSDI, 2015, pp. 293–307.

[7] A. Trivedi et al., “On the [ir]relevance of network performance for data
processing,” in Proc. USENIX HotCloud, 2016, pp. 1–5.

[8] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with varys,” in Proc. ACM Conf. SIGCOMM, 2014, pp. 443–454.

[9] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior
knowledge,” in Proc. ACM Conf. Special Interest Group Data Commun.,
2015, pp. 393–406.

[10] S. Luo, H. Yu, Y. Zhao, S. Wang, S. Yu, and L. Li, “Towards practical
and near-optimal coflow scheduling for data center networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 11, pp. 3366–3380, Nov. 2016.

[11] Y. Zhao et al., “Rapier: Integrating routing and scheduling for coflow-
aware data center networks,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2015, pp. 424–432.

[12] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized
task-aware scheduling for data center networks,” in Proc. ACM Conf.
SIGCOMM, 2014, pp. 431–442.

[13] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay Scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. 5th Eur. Conf. Comput. Syst.,
2010, pp. 265–278.

[14] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: Fair scheduling for distributed computing clus-
ters,” in Proc. ACM SIGOPS 22nd Symp. Oper. Syst. Princ., 2009,
pp. 261–276.

[15] G. Ananthanarayanan et al., “Reining in the outliers in map-reduce
clusters using mantri,” in Proc. 9th USENIX Conf. Oper. Syst. Des.
Implement., 2010, pp. 1–16.

[16] J. Tan et al., “DynMR: Dynamic MapReduce with ReduceTask inter-
leaving and MapTask backfilling,” in Proc. 9th Eur. Conf. Comput. Syst.,
2014, pp. 1–4.

[17] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar,
“ShuffleWatcher: Shuffle-aware scheduling in multi-tenant mapreduce
clusters,” in Proc. USENIX, 2018, pp. 1–13.

[18] A. Munir, T. He, R. Raghavendra, F. Le, and A. X. Liu, “Network
scheduling aware task placement in datacenters,” in Proc. 12th Int. Conf.
Emerg. Netw. Exp. Technol., Dec. 2016, pp. 221–235.

[19] X. S. Huang and T. S. E. Ng, “Exploiting inter-flow relationship for
coflow placement in datacenters,” in Proc. 1st Asia–Pacific Workshop
Netw., Aug. 2017, pp. 113–119.

[20] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, Oct. 2008.

[21] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 51–62,
2009.

[22] M. Alizadeh et al., “CONGA: Distributed dongestion-aware load bal-
ancing for datacenters,” in Proc. ACM SIGCOMM, 2014, pp. 503–514.

[23] W. Wang, S. Ma, B. Li, and B. Li, “Coflex: Navigating the fairness-
efficiency tradeoff for coflow scheduling,” in Proc. IEEE Conf. Comput.
Commun., May 2017, pp. 1–9.

[24] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for eval-
uating mapreduce performance using workload suites,” in Proc. IEEE
MASCOTS, Dec. 2011, pp. 390–399.

[25] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of traces
from a production MapReduce cluster,” in Proc. 10th IEEE/ACM Int.
Conf. Cluster, Cloud Grid Comput., 2010, pp. 94–103.

[26] Y. Peng et al., “Towards comprehensive traffic forecasting in cloud
computing: Design and application,” IEEE/ACM Trans. Netw., vol. 24,
no. 4, pp. 2210–2222, Aug. 2016.

[27] H. Wang et al., “FLOWPROPHET: Generic and accurate traffic predic-
tion for data-parallel cluster computing,” in Proc. IEEE 35th Int. Conf.
Distrib. Comput. Syst., Jun. 2015, pp. 349–358.

Authorized licensed use limited to: Nanjing University. Downloaded on February 18,2021 at 11:30:47 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: JOINT REDUCER PLACEMENT AND COFLOW BANDWIDTH SCHEDULING FOR COMPUTING CLUSTERS 451

[28] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proc. 19th ACM Symp. Oper. Syst. Princ., 2003, pp. 29–43.

[29] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
USENIX NSDI, 2010, pp. 89–92.

[30] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in Proc. ACM SIGCOMM Conf. Appl., Technol.,
Archit., Protocols Comput. Commun., 2012, pp. 127–138.

[31] C. Banino-Rokkones, O. Beaumont, and H. Rejeb, “Scheduling tech-
niques for effective system reconfiguration in distributed storage sys-
tems,” in Proc. IEEE ICPADS, Dec. 2008, pp. 80–87.

[32] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algorithms
for scheduling unrelated parallel machines,” in Proc. IEEE FOCS,
Oct. 1987, pp. 217–224.

[33] D. P. Palomar and J. R. Fonollosa, “Practical algorithms for a family
of waterfilling solutions,” IEEE Trans. Signal Process., vol. 53, no. 2,
pp. 686–695, Feb. 2005.

[34] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 537–550, Sep. 2015.

[35] R. Cziva, S. Jouet, K. J. S. White, and D. P. Pezaros, “Container-based
network function virtualization for software-defined networks,” in Proc.
IEEE ISCC, Jul. 2015, pp. 415–420.

[36] J. Fulkerson. (2017). Traffic Shaping With TC. [Online]. Available:
https://www.badunetworks.com/traffic-shaping-with-tc/

[37] Y. Chen, S. Alspaugh, A. Ganapathi, R. Griffith, and R. Katz.
(2013). Statistical Workload Injector for Mapreduce (SWIM).
[Online]. Available: https://github.com/SWIMProjectUCB/SWIM/wiki/
Workloads-repository

Yangming Zhao (Member, IEEE) received the
B.Eng. degree in communication engineering and
the Ph.D. degree in communication and information
system from the University of Electronic Science
and Technology of China in 2008 and 2015, respec-
tively. He is currently a Research Scientist with the
University at Buffalo. His research interests include
network optimization, data center networks, edge
computing, and transportation systems.

Chen Tian (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the Depart-
ment of Electronics and Information Engineering,
Huazhong University of Science and Technology,
China, in 2000, 2003, and 2008, respectively. He
was an Associate Professor with the School of Elec-
tronics Information and Communications, Huazhong
University of Science and Technology. From 2012 to
2013, he was a Post-Doctoral Researcher with the
Department of Computer Science, Yale University.
He is currently an Associate Professor with the

State Key Laboratory for Novel Software Technology, Nanjing University,
China. His research interests include data center networks, network function
virtualization, distributed systems, Internet streaming, and urban computing.

Jingyuan Fan (Member, IEEE) received the B.Eng.
degree from Fudan University, China, in 2012,
the M.S. degree from the University of California
at Los Angeles, Los Angeles, CA, in 2014, and the
Ph.D. degree in computer science from The State
University of New York at Buffalo, Buffalo, NY,
in 2019. His research interest includes computer
networks.

Tong Guan received the Ph.D. degree from the
Department of Computer Science and Engineering,
University at Buffalo, in 2018. His research interests
include wireless sensor networks, mobile networks,
and social networks, with an emphasis on mathemat-
ical modeling and performance analysis.

Xiaoning Zhang received the B.S., M.S., and Ph.D.
degrees in communication and information engineer-
ing from the University of Electronic Science and
Technology of China, Chengdu, China, in 2002,
2005, and 2007, respectively. He is currently an
Associate Professor with the Key Laboratory of
Broadband Optical Fiber Transmission and Commu-
nication Networks, School of Communication and
Information Engineering, University of Electronic
Science and Technology of China. His research
interests include network design and optical and

broadband networks.

Chunming Qiao (Fellow, IEEE) is currently a
SUNY Distinguished Professor and also the current
Chair of the Computer Science and Engineering
Department, University at Buffalo. He has published
extensively with an H-index of over 73 (accord-
ing to Google Scholar). He also has seven U.S.
patents and has served as a Consultant for several
IT and Telecommunications companies since 2000.
His current research interest includes connected and
autonomous vehicles. His research has been funded
by a dozen of major IT and telecommunications

companies, including Cisco and Google, and more than a dozen NSF grants.
He was elected to an IEEE Fellow for his contributions to optical and wireless
network architectures and protocols. Two of his papers received the Best Paper
Awards from IEEE and Joint ACM/IEEE venues.

Authorized licensed use limited to: Nanjing University. Downloaded on February 18,2021 at 11:30:47 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


