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Abstract—Compared with traditional cloud computing, edge-
cloud computing brings many benefits, such as low latency, low
bandwidth cost, and high security. Thanks to these advantages,
a large number of distributed machine learning (ML) jobs are
trained on the edge-cloud network to support smart applications,
adopting the parameter server (PS) architecture. The scheduling
of such ML jobs needs to consider different data transmission
delay and frequent communication between workers and PSs,
which brings a fundamental challenge: how to deploy workers
and PSs on edge-cloud networks for ML jobs to minimize the
average job completion time. To solve this problem, we propose
an online scheduling framework to determine the location and
execution time window for each job upon its arrival. Our
algorithm includes: (i) an online scheduling framework that
groups unprocessed ML jobs iteratively into multiple batches;
(ii) a batch scheduling algorithm that maximizes the number of
scheduled jobs in the current batch; (iii) two greedy algorithms
that deploy workers and PSs to minimize the deployment cost.
Large-scale and trace-driven simulations show that our algorithm
is superior to the most common and advanced schedulers in
today’s cloud systems.

Keywords—online scheduling; machine learning job; parame-
ter server architecture; edge-cloud network

I. INTRODUCTION

Compared with traditional cloud computing, edge-cloud

computing has many advantages, such as low latency, low

bandwidth cost and high security. To support smart applica-

tions (e.g., autonomous driving and smart city), a large number

of distributed machine learning (ML) jobs adopt the parameter

server (PS) architecture to train models on large datasets by

deploying workers and PSs on the edge-cloud network. The

existing ML model training mainly uses data parallelism or

model parallelism [1] [2]. Data parallelism maintains multiple

copies of the model between servers, while model parallelism

stores some copies of the dataset. Since the scale of the model

* Ruiting Zhou is the corresponding author. This work is supported
in part by the NSFC Grants (62072344 and U20A20177), Hubei Science
Foundation (2020CFB195) and Compact Exponential Algorithm Project of
Huawei (YBN2020035131).

is much smaller than the dataset, the data parallel method is

more popular in edge training with limited resources. The PS

architecture collaborating with data parallelism is one of main

methods for training ML models [3]–[5].

However, the existing researches on scheduling distributed

ML jobs in edge-cloud networks have a lot of limitations. First
of all, the differences between the cloud and edge play an

important role in job scheduling. Compared to the cloud, the

edge has low transmission delay, which makes ML jobs prefer

to run at the edge. However, the scarcity of resources in edge

servers makes it impossible to deploy all workers and PSs of

an ML job on the same edge server. As a result, the frequent

communication between workers and PSs will slow down

the training. The situation of the cloud is just the opposite.

Therefore, how to make a trade-off between transmission

delay and computing power is significant to model training.

Secondly, the resources on the edge server are limited, which

need to be reasonably allocated to meet the needs of jobs as

much as possible. Therefore, in the case of limited resources,

how to allocate resources to jobs to minimize the average job

completion time is an important issue. At last, the training of

ML models is time-consuming and resource-intensive [6]. The

online scheduling does not know the arrival time and resources

required for future jobs, the jobs that arrive early have a better

chance of being favorably scheduled. If the input dataset of

the later job is very large, there may not be enough resources

to allocate to them, and they can only be assigned to the

cloud. As a result, the high transmission delay may become

the bottleneck of model training.

To this end, we study the online scheduling problem that

minimizes the average job completion time of all ML jobs

in the edge-cloud network, taking the above challenges into

consideration. Our main contributions are listed as follows:

First, we analyze the scheduling scenario of distributed ML

jobs in edge-cloud networks in details, and model the problem

as a mathematical optimization problem that minimizes the

total completion time. This model accurately describes the
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characteristics of distributed ML jobs and considers all factors

that affect scheduling jobs.

Second, we propose an online scheduling framework

Aonline. The time horizon is divided into small time intervals

in a geometrically increasing manner, and the original problem

is transformed into multiple batch scheduling problems. Then,

each batch scheduling problem is transformed into the problem

of processing as many jobs as possible in this time interval.

Next, we formulate the dual of the problem. Finally, we design

a greedy algorithm along with two subroutines to deal with

the dual problem, and further solve the original one.

Third, we carry out large-scale and trace-driven simulations

to evaluate the proposed online scheduling algorithm, and

compare it with existing schedulers of ML jobs in cloud

systems. The results further confirmed the superiority of our

algorithm.

In the rest of the paper, we review related work in Sec.

II, and introduce system model in Sec. III. The design of the

online scheduling algorithm are presented in Sec. IV and Sec.

V. Performance evaluation is presented in Sec. VI and Sec.

VII concludes the paper.

II. RELATED WORK

Job Scheduling for Distributed ML System. Bao et al. [7]

design an online job scheduling algorithm with the goal of

maximizing the overall jobs’ utility, and determine the adjusted

number of concurrent workers and PSs according to each

job’s completion time. Zhang et al. [8] consider the demand

elasticity and resource allocation of ML jobs to design the

scheduling algorithm. Li et al. [9] study an ML proxy service

that aggregates geographically distributed ML jobs into a cloud

data center, and dynamically places and expands workers and

PSs online in a single job to realize batch discounts. Hsieh

et al. [10] introduce a geographic distributed ML system,

and propose a new ML synchronization model to dynamically

eliminate unimportant communication between data centers.

Different from the above researches, our goal is to schedule

ML jobs in the edge-cloud network to get good performance.

Job Scheduling in Edge-cloud. A considerable amount of

researches [11]–[14] has focused on how to implement real-

time inference or develop edge intelligence enabling technolo-

gies. Zeng et al. [11] design an on-demand collaborative DNN

reasoning framework for edge intelligence. Li et al. [12] pro-

pose a framework for DNN collaborative reasoning using edge

computing through device-edge collaboration. Wang et al. [13]

propose an algorithm that effectively schedules multiple train-

ing jobs and minimizes the job completion time. Mcmahan

et al. [14] propose a deep network federated learning method

based on iterative model averaging.

In addition, computing/data offloading from mobile users

to the cloud/edge servers have been widely investigated [15]–

[18]. Meng et al. [15] propose an online algorithm that

takes into account the management of network bandwidth

and computing resources to meet the maximum number of

deadlines. Xu et al. [16] propose an efficient online algorithm

for the service caching problem in the MEC system, which

jointly optimizes dynamic service caching and job offloading.

Both Zhang et al. [17] and Tan et al. [18] consider the upload

and download delay when dispatching and scheduling jobs.

The above researches well studied the characteristics of edge

system, but they did not focus on ML job scheduling.

Different from above literature, our work studies the online

scheduling and deployment of workers and PSs on the edge-

cloud network for distributed ML jobs to reduce the average

completion time of jobs.

III. SYSTEM MODEL

A. System Overview

Edge-Cloud System. As shown in Fig. 1, we consider an

edge-cloud network consisting of multiple heterogeneous edge

servers and a remote cloud, denoted as a set [S]. The number of

types of workers and PSs are denoted as U and V , respectively.

Each server s ∈ [S] has Wsu type-u workers and Psv type-v

PSs. A set of ML jobs arrive online within a large time span

[T ] = {1, 2, ..., T}, with large input datasets. Job j has specified

the type of worker and PS to be used when it arrives at time

aj , denoted by uj and vj . Let [X] denote the set of integers

{1, 2, . . . , X}.

Remote Cloud

Edge Server 1 Edge Server 2 Edge Server S

Job 1 Job J

Time Span

PSs workers Data Chunks of  Jobs

1 1

2
2

3

4
5

3
5

1

2

3

4

5

Upload Data Chunks

Train Mini-batches

Push Gradients

Update Parameters

Pull Parameters

Fig. 1. Edge-cloud System.

Training Process with PS Framework. We adopt the PS

architecture [19] to train models. In this architecture, each

worker inputs a dataset to train an ML job model. Then the

gradient generated by worker is passed to all the PSs for

model parameter update. Next, the workers synchronously or

asynchronously pull the updated parameters from the PSs.

The entire dataset is traversed once means one epoch is

completed, and model training is completed after sufficient

epochs. Compared to asynchronous mode, the synchronous

stochastic descent gradient method (S-SGD) [20] is used

widely due to the better performance on convergence.

Information of ML Job. The dataset of job j ∈ [J ] is divided

into Dj equal-size data chunks, and each data chunk is further

divided into Mj equal size mini-batches. Each data chunk d ∈
Dj is allocated to at most one worker [7] [8]. The delay of

transmitting one data chunk in job j to server s is �↑js, which

is the same for all workers on the same server s. Job j requires

Ej epochs to complete its training.

To quantify the number of mini-batches that a worker of

type uj and a PS of type vj can train for job j in one time

slot, denoted by pj , we need to calculate the time to train a
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mini-batch. This time consists of the following three parts:

(i) the time that a worker processes a mini-batch, denoted as

nj ; (ii) similarly, the time that a PS updates the parameters

is indicated by Hj ; (iii) the communication time for pushing

gradients and pulling parameters, denoted as
2kj

Bj
, where kj is

the size of gradient/parameter [6] and Bj is the bandwidth.

When all the workers and PSs of job j are placed together,

this communication time can be eliminated. We introduce and

set a variable ξj = 1 to represent this case, otherwise ξj = 0.

Therefore, pj can be expresses as follows:

pj =

⎧⎨
⎩
1/(nj +Hj +

2kj
Bj

), if ξj = 0

1/(nj +Hj), if ξj = 1

(1)

Decision Variables. For each job j, we need to decide

yjsuj (t) ∈ {0, 1, 2, ...} (zjsvj (t) ∈ {0, 1}), which represents the

number of type-uj worker (type-vj PS) on server s allocated

to job j at time t. We assume that there is only one PS for

each job, which can represent a number of PS instances placed

on the same server. Important notations are listed in Table I.

B. Problem Formulation

Problem Formulation. Let aj , hj and cj be the arrival,

start and completion time of job j, respectively. The total

completion time of all jobs is
∑

j∈[J](cj − aj). The objective

is equivalent to minimize the average job completion time,

which is formulated as below.

minimize
∑
j∈[J]

(cj − aj) (2)

subject to: ∑
s∈[S]

yjsuj (t) ≤ Dj , ∀j, ∀t (2a)

∑
s∈[S]

zjsvj (t) = 1, ∀j,∀t :
∑
s∈[S]

yjsuj (t) > 0 (2b)

yjsuj (t) = yjsuj (t+1), ∀j, ∀s, ∀t ∈ [hj , cj ] (2c)

zjsvj (t) = zjsvj (t+1), ∀j, ∀s, ∀t ∈ [hj , cj ] (2d)∑
t∈[T ]

∑
s∈[S]

yjsuj (t)pj ≥ EjDjMj , ∀j (2e)

ξj = 1, ∀j : s = s′, ∀yjsuj (t) > 0, ∀zjs′vj (t) > 0 (2f)∑
j∈[J]

yjsuj (t) ≤Wsu, ∀s, ∀u, ∀t (2g)

∑
j∈[J]

zjsvj (t) ≤ Psv, ∀s, ∀v, ∀t (2h)

yjsuj (t) = zjsvj (t) =0, ∀j, ∀s, ∀t < aj +�↑js (2i)

hj = arg min
t∈[T ]

{
∑
s∈[S]

yjsuj (t) > 0}, ∀j (2j)

cj = argmax
t∈[T ]

{
∑
s∈[S]

yjsuj (t) > 0}, ∀j (2k)

yjsuj (t) ∈ {0, 1, 2, ...}, zjsvj (t) ∈ {0, 1},
ξj ∈ {0, 1}, hj , cj ∈ [T ], ∀j, ∀s, ∀u, ∀v, ∀t. (2l)

To ensure one data chunk is processed by only one worker,

the number of allocated workers is limited to be at most Dj

in constraint (2a). Constraint (2b) indicates that each running

job has only one PS. The allocated workers and PSs remain

unchanged during the training process, as shown in constraint

(2c) and (2d). Constraint (2e) guarantees that job j can be

completed by allocating sufficient workers. Constraint (2f)

reveals that job j can ignore the communication time when its

all workers and PSs are deployed together. Constraints (2g)

and (2h) are resource capacities. Constraint (2i) implies that

the only after a job’s arrival can it begin to train. The start

time and completion time of job j is calculated by constraint

(2j) and constraint (2k).

Challenges. The problem in (2) is a mixed integer nonlinear

programming (MINLP). Even in the offline setting, MINLP

(2) is NP-hard [21].

TABLE I
NOTATIONS

Notation Description
[X] integer set {1, 2, ..., X}

J, S, T # of jobs, physical servers, time slots
aj , hj , cj arrival, start and completion time of job j

Ej , Dj ,Mj # of epochs, data chunks and mini-batches for job j
U(V ) # of worker (PS) types

Wsu(Psv) # of type-u workers (type-v PSs) on server s
uj(vj) the type of workers (PSs) job j specifies

�↑js delay to transmit one data chunk of job j to server s

pj # of mini-batches trained by one worker of j at a slot

ξj whether all workers and PS of j are placed together

yjsuj (t) # of type-uj workers serving job j in server s at time t

zjsvj (t) # of type-vj PSs serving job j in server s at time t

IV. ONLINE SCHEDULING FRAMEWORK

A. Algorithmic Framework

In order to meet the above-mentioned challenges, we design

an online scheduling framework, which is divided into two

parts, as shown in Fig. 2.

Online Scheduling 
Algorithm

Aonline

Job Scheduling
Maximization

Amaxsche

Cost 
Minimization

COST_C COST_D

Partition Subroutine

In two cases (ξ=1, ξ=0), 

find the schedule that 

minimizes the cost of 

placement

A dual LP problem

Dual variables:λsu (t),μsv (t),ηj  

Fig. 2. Algorithm framework.

• In Sec. IV-B, we introduce the online scheduling frame-

work Aonline, which groups unprocessed ML jobs into

multiple batches, thereby converting the total job com-

pletion time minimization problem into a series of batch

scheduling problems, i.e., maximize the number of sched-

uled jobs in a batch. Each batch scheduling problem

will be solved by the maximum job scheduling algorithm

Amaxsche.

• In Sec. V, we introduce the maximum job scheduling

algorithm Amaxsche. Amaxsche employs two subroutines

COST C and COST D to select the schedule with the

minimal resource placement cost for each job. The sub-

routines COST C and COST D deal with the problem

of minimizing the placement cost when the workers and

PS of job j are deployed on the same server or not.
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Algorithm 1 Online Scheduling Framework: Aonline

Input: T,Wsu, Psv, uj , vj , ∀s ∈ [S], u ∈ [U ], v ∈ [V ]
Output: xjt, yjsuj (t), zjsvj (t), ∀j ∈ [J ], t ∈ [T ]

1: Initialize τi = 2i−1, xjt = 0, fsu(t), gsv(t), yjsuj
=

0, zjsvj
= 0, ∀j ∈ [J ], t ∈ [T ], u ∈ [U ], v ∈ [V ], s ∈ [S]

2: while i = 1, 2, . . . do
3: while t < τi do
4: Ji = Ji ∪ {j}
5: end while
6: if t = τi then
7: {{xjt}, {yjsuj

(t)}, {zjsvj
(t)}, Js

i }j∈[Ji] =
Amaxsche(Ji, τi, uj , vj , {Wsu}, {Psv})

8: for job j ∈ [Js
i ] do

9: Run job j from time τi to time τi+1 according to

{xjt}, {uj}, {vj}, {yjsuj
(t)}, {zjsvj

(t)}
10: end for
11: Ji+1 = Ji+1 ∪ (Ji \ Js

i )
12: end if
13: end while

B. Online Scheduling Algorithm

The basic idea of our algorithm is to divide the entire

time span at geometrically increasing points, and iteratively

schedule ML jobs that have arrived but not processed until

a certain point. Let τi denote the time point that divides the

entire time horizon, τ0 = 1, τi = 2i−1. The time span between

two neighboring time points is defined as a time interval, such

as interval i’s time span is (τi−1, τi] (note that interval 1 is

[τ0, τ1]). Let Ji denote the set of jobs that have arrived before

time τi but have not been completed.

Algorithm Details. In Aonline, line 1 initializes the primal

variables and Js
i . When τ0 = 1, no job can be completed

in the first time interval. Lines 3-5 group jobs that arrived

before time point τi but have not been completed into the

set Ji. In line 7, this algorithm calls the batch processing

algorithm Amaxsche. According to the optimal scheduling

result generated by Amaxsche in lines 8-9, all jobs in the set

Js
i are run in τi−τi+1. In the line 11, the algorithm adds these

jobs that have arrived but not been scheduled in the round i

to set Ji+1, so that they can be processed in the round i + 1

or subsequent rounds.

V. BATCH SCHEDULING ALGORITHM DESIGN

A. The Maximum Job Scheduling Problem

In the online scheduling algorithm, the problem of minimiz-

ing the total completion time is transformed into maximizing

job scheduling in each round i, i.e., complete as many jobs as

possible between time τi to τi+1. Let xj denote whether accept

job j at the current round.

maximize
∑

j∈[Ji]

xj (3)

subject to:

xj ∈ {0, 1},∀j ∈ [Ji] (3a)

(2a)− (2l), yjsuj (t) > 0 and zjsvj (t) > 0 iff xj > 0,

∀j ∈ [Ji], ∀t ∈ (τi, τi+1] (3b)

This maximization problem involves integrality variables

and nonlinear constraints. In order to solve these challenges,

we first apply the compact-exponential technique [22] to

reformulate the problem (3) into an equivalent integer linear

program (ILP) with a packing structure:

maximize
∑

j∈[Ji]

∑
l∈[Lj ]

χl
j (4)

subject to:∑
j∈[Ji]

∑
l∈[Lj ]

γl
jsuj

(t) � Wsu, ∀s, ∀u, ∀t ∈ (τi, τi+1] (4a)

∑
j∈[Ji]

∑
l∈[Lj ]

δljsvj (t) � Psv, ∀s, ∀v, ∀t ∈ (τi, τi+1] (4b)

∑
l∈[Lj ]

χl
j � 1, ∀j ∈ [Ji] (4c)

χl
j ∈ {0, 1},∀j ∈ [Ji], ∀l ∈ [Lj ] (4d)

In ILP (4), Lj represents a set of feasible schedules (i.e.,
satisfy all constraints) for job j. For a feasible schedule l ∈
[Lj ], γ

l
jsuj

(t) and δljsvj (t) represent assigned workers and PSs

at each time t, respectively. The binary variable χl
j represents

whether to accept job j according to the schedule l or not.

Constraints (4a) and (4b) are equivalent to constraint (2g)

and (2h), respectively. Constraint (4c) guarantees that each job

is executed according to at most one schedule. The feasible

solutions of ILP (4) is exactly that of problem (3), and their

objective values are the same. However, such reformulation

introduces exponential variables. To tackle this problem, we

relax χl
j ∈ {0, 1} to χl

j ≥ 0 and introduce dual variables

λsu(t), μsv(t) and ηj to constrains (4a), (4b) and (4c), and

formulate the dual problem of the ILP (4) as follows:

minimize
∑

j∈[Ji]

ηj +
∑
s∈[S]

∑
u∈[U ]

∑
t∈(τi,τi+1]

λsu(t)Wsu+

∑
s∈[S]

∑
v∈[V ]

∑
t∈(τi,τi+1]

μsv(t)Psv

(5)

subject to:

ηj � 1−
∑
s∈[S]

∑
t∈(τi,τi+1]

λsuj (t)γ
l
jsuj

(t)−
∑
s∈[S]

∑
t∈(τi,τi+1]

μsvj (t)δ
l
jsvj (t), ∀j ∈ [Ji], ∀l ∈ [Lj ] (5a)

ηj , λsuj (t), μsvj (t) � 0, ∀j ∈ [Ji], ∀s, ∀u, ∀v, ∀t ∈(τi, τi+1] (5b)

The dual variables λsu(t) and μsv(t) can be interpreted as

the unit cost of type-u worker and type-v PS on server s at time

t, respectively. As a result,
∑

s∈[S]

∑
t∈[T ] λsuj (t)γ

l
jsuj

(t) +∑
s∈[S]

∑
t∈[T ] μsvj (t)δ

l
jsvj (t) represents the total resource cost

of the allocated workers and PSs placed according to schedule

l of job j, the right hand side (RHS) of (5a) is the weight of the

job (assuming that the weights of all jobs are the same and are

set to 1) minus the resource cost of job j, that is, the utility
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Algorithm 2 Maximum Job Scheduling Algorithm: Amaxsche

Input: Ji, τi, cj , uj , vj , fsu(t), gsv(t),Wsu, Psv, U, V, ∀s ∈
[S], t ∈ [T ]

Output: yjsuj
(t), zjsvj

(t), Js
i , ∀j ∈ [J ], t ∈ [T ]

1: Initialize yjsuj
= 0, zjsvj

= 0, λsu(t) = λsu(0), μsv(t) =
μsv(0), ∀j ∈ [J ], t ∈ [T ], u ∈ [U ], v ∈ [V ], s ∈ [S]

2: for job j ∈ [Ji] do
3: for cj = τi to τi+1 do
4: for Du = 1 to Dj do
5: Set (cost, l) =COST C(cj , uj , vj , Du, τi)
6: Set (cost d, l′) =COST D(cj , uj , vj , Du, τi)
7: if cost d < cost then
8: Set (min cost, l) = (cost d, l′)
9: end if

10: Update ηjl = 1−min cost
11: if ηjl > ηj then
12: l∗ = l, ηj = ηjl
13: end if
14: end for
15: if ηj > 0 then
16: Update Js

i = Js
i

⋃{j}
17: Set {yjsuj

(t), zjsvj
(t)}∀s,∀u,∀v,∀t according to l

18: Update fsuj
(t) = fsuj

(t) +
yjsuj

(t), gsvj (t) = gsvj (t) + zjsvj
(t), λsuj

(t) =
λsuj (fsuj (t)), μsvj (t) = μsvj (gsvj (t))

19: end if
20: end for
21: end for

of the job. To comply with the theorem of complementary

slackness, we set the dual variable ηj to the maximum value

between 0 and RHS of (5a) with the optimal schedule l∗:

ηj = max{0, max
l∈[Lj ]

RHS of (5a)}. (6)

If job utility ηj > 0, we process job j according to l∗,
otherwise, we postpone it into the next time interval for

scheduling.

Algorithm Details. In Amaxsche(Algorithm 2), the first line

initializes the primal and the dual variables. The algorithm

traverses each job j ∈ [Ji], the time to complete the job t ∈
(τi, τi+1], and the number of deployed workers Du ∈ [1, Dj ]

(Lines 2-4). It calls the subroutines COST C and COST D in

lines 5 and 6, and finds the schedule with the lowest placement

cost in the two cases (ξ = 1, ξ = 0). In lines 7-13, by comparing

the solutions obtained in the two cases, the optimal scheduling

of job j is obtained, and its utility ηj is the highest at this time.

If ηj > 0 is obtained, then all the primal and dual variables

are updated on lines 16-18, and Js
i is updated on line 16,

which is a set of jobs scheduled in the round i. In line 18,

fsu(t) represents the number of type-u workers allocated on

server s at time t, and gsv(t) represents the number of type-v
PSs allocated on server s at time t, the dual variable λsu(t)

represents the unit resource price of a type-u worker on the

server s at time t, which is a function of fsu(t), and the dual

Algorithm 3 Cost Under Centralized Placement: COST C

Input: ci, uj , vj , Du, τi
Output: cost, l

1: Initialize cost =∞, l = ∅, yjsuj
(t) = 0, zjsvj

(t) = 0, ∀s
2: Compute dj =

EjDjMj

pjDu , cj = τi + dj

3: Sort servers in [S’]={s|aj + �↑js < τi ∧
mint∈(τi,cj ]{Wsuj

− fsuj
(t) ≥ Du ∧mint∈(τi,cj ]{Psvj −

gsvj (t) ≥ 1}} according to λsuj
(τi)Du + μsvj

(τi) in

non-decreasing order into s1, s2, . . . , sS
4: if S′ == 0 then
5: return ∞, l
6: else
7: set yjs1uj

(t) = Du, zjs1vj
(t) = 1, ∀t ∈ (τi, cj ]

8: set cost =
∑

t∈(τi,cj ]{λs1uj (t)Du + μs1vj (t)}, l ←
{y, z}

9: return cost, l
10: end if

variable μsv(t) represents the unit resource price of the type-v
PS on the server s at time t, which is a function of gsv(t).

Price Function. To implement the above admission rule, there

are two sub-problems need to be solved, i.e., determine the

prices and the schedule with the minimum cost. To this end,

we first design the following two sets of price functions to

price workers and PSs, respectively.

λsu(fsu(t)) = θ
fsu(t)
Wsu

1 − 1, ∀s ∈ [S], u ∈ [U ], t ∈ [τi],

where θ1 = 2(TSUF1) + 1.
(7)

μsv(gsv(t)) = θ
gsv(t)
Psv

2 − 1, ∀s ∈ [S], v ∈ [V ], t ∈ [τi],

where θ2 = 2(TSV F2) + 1.
(8)

where fsu(t), gsv(t) denote the total number of workers and

PSs consumed, respectively. F1, F2 are the upper bound of

the unit price of per worker and PS, respectively, which can

be estimated according to the historical experiments. Next we

discuss how to determine the schedule with the minimum cost

in Sec. V-B.

B. Cost Minimization Problem

Since the weight of job j is 1, the problem of maximizing

the utility of job j is equivalent to the problem of minimizing

its scheduling cost:

min
∑
s

∑
t∈(τi,τi+1]

λsuj (t)yjsuj (t)+
∑
s

∑
t∈(τi,τi+1]

μsvj (t)zjsvj (t)

(9)
subject to:

yjsuj (t) ≤Wsuj − fsuj (t),∀s, ∀t ∈ (τi, τi+1] (9a)

zjsvj (t) ≤ Psvj − gsvj (t),∀s, ∀t ∈ (τi, τi+1] (9b)

(2a)− (2f), (2i)− (2l), ∀j ∈[Ji], ∀t ∈ (τi, τi+1] (9c)

For job j, we propose two algorithms COST C and

COST D to jointly find the optimal schedule with minimum

cost. In algorithm COST C, all the workers and PSs of job
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j are placed on the same server. On the contrary, the workers

and PSs of job j are distributively placed in COST D.

Algorithm Details. The COST C shown in Algorithm 3

returns the minimal placement cost and the optimal schedule l∗

at this time. Line 2 first calculates the training time according

to the number of workers and the number of data chunks for

job j. Line 3 sorts the candidate servers that can accommodate

all the needed workers and PSs of job j in the non-decreasing

order of total cost. Lines 4-9 determine whether there is

a qualified schedule. If it exists (S′ �= 0), the first server

[S′] is the target one, as a result, the decision variables and

placement cost are updated according to the corresponding

optimal schedule.

In COST D (Algorithm 4), line 2 is executed for the same

reason of line 2 in COST C. Line 3 lists the constraints that

the start time cannot be earlier than the arrival time, and all

possible selected servers are sorted in non-descending order

according to the price of the workers. Lines 4-7 start with the

lowest price server and deploy as many workers as possible.

Lines 12-38 divide the servers into two sets according to

the last used server [s1, sh−1] and [sz, S]. Only one server is

required to deploy the PS, we analyze the two situations to

obtain the solution with the least cost of resources, update the

decision variables and the placement cost.

VI. PERFORMANCE EVALUATION

Settings. We use Microsoft’s Philly Tracking [23], [24] for

trace-driven simulations. It contains information on 117,325

DNN jobs submitted between August 7, 2017 and December

22, 2017, as well as information on approximately 550 ma-

chines in more than 14 virtual clusters. Based on these data,

we simulate an edge cloud system consisting of 100-300 edge

servers and a cloud. The default number of edge servers is

200, and one time slot is one hour. Based on the trace, this

paper sets the number of GPUs and CPUs as that of workers

and PSs on each edge server, respectively. For other unknown

information, we use the reference [1] [7] [8] [6] to construct

configurations on each worker, PS, and ML jobs as follows.

U and V are set to be within [8, 10], respectively. Then we

randomly select the types of each worker and PS for servers.

The bandwidth of workers is set within [100, 5 ∗ 1024] Mbps,

and the bandwidth of PSs is set within [5, 20] Gbps. ML jobs

are configured as below: Ej ∈ [50, 100], Dj ∈ [20, 50],Mj ∈
[10, 50], xj ∈ [1, T/1.5], nj ∈ [0.001, 0.05] hour, Hj ∈ [10, 100]

milliseconds,kj ∈ [30, 575] MB and �↑js are within [1, 4] and

[10, 40] time slots for edge servers and cloud, respectively [25].

Comparison Algorithms and Performance Indicators. We

use simulations to verify Aonline, and compare it with the

following four most advanced and representative algorithms:

• FIFO [26]: The default scheduler in Hadoop [27] and

Spark [28]. Jobs are scheduled in the order of arrival,

and are dispatched to the server that can schedule the job

earliest.

• DRF [7]: The default scheduler in YARN [29] and Mesos

[30]. The maximum-minimum fairness is achieved by

counting the number of workers and PSs.

Algorithm 4 Cost Under Distributed Placement: COST D

Input: ci, uj , vj , Du, τi
Output: cost, l

1: Initialize min cost = ∞, l = ∅, L = ∅, yjsuj
(t) =

0, zjsvj
(t) = 0, cost = 0, costu = 0, ∀s

2: Compute dj =
EjDjMj

pjDu , cj = τi + dj , D
′
u = Du

3: Sort servers in [s]={s|aj+�↑js < τi} according to λsuj
(t)

in non-decreasing order into s1, s2, . . . , sS
4: for i = 1 to S do
5: set yjsiuj (t) = min{mint∈[τi,cj ]{Wsiuj −

fsiuj(t)}, Du −
∑i−1

i′ yjsi′uj(t), D
′
u}, ∀t ∈ (τi, cj ]

6: Update D′u = D′u − yjsiuj
(τi)

7: end for
8: if D′u > 0 then
9: return ∞, l

10: end if
11: Compute costu =

∑
t∈(τi,cj ]{

∑
s λsuj

(t)yjsuj
(t)}

12: record the last used server as ssz
13: for i = 1 to sz − 1 do
14: if mint∈(τi,cj ]{Psivj − gsivj (t)} ≥ 1 then
15: set z′js1vj

= 1, ∀t ∈ (τi, cj ], cost = costu +∑
t∈(τi,cj ]{

∑
s μsivj (t)}, L = L ∪ {cost, 1 ←

{y, z′}}
16: end if
17: end for
18: for i1 = sz to S do
19: set Du(si1) = mint∈(τi,cj ]{Wsi1uj

− fsi1uj
(t) −

yjsi1uj
(t)}, Dv(si1) = mint∈(τi,cj ]{Psi1vj

−
gsi1vj

(t)}, y′ = y, z′ = ∅
20: Compute cost = costu +

∑
t∈(τi,cj ] μsi1v

(t)
21: for i2 = sz to s1 do
22: if λsi1uj

(τi) − λsi2uj
(τi) − μsi1vj

(τi) � 0 ∧
Du(si1) > 0 then

23: set ΔW = min{y′jsi2uj
(τi), Du(si1)}, Du(si1) =

Du(si1)−ΔW
24: Compute cost = cost+(λsi1uj

(τi)−λsi2uj
(τi)−

μsi1vj (τi))ΔW
25: set y′jsi2uj

(t) = y′jsi2uj
(t) − ΔW, y′jsi1uj

(t) =

y′jsi1uj
(t) + ΔW, z′jsi1vj (t) = 1, ∀t ∈ [τi, cj ]

26: else
27: if Dv(si1) ≥ 1 then
28: L = L ∪ {cost, l← {y, z}}
29: end if
30: break

31: end if
32: end for
33: end for
34: if L = ∅ then
35: return ∞, l
36: end if
37: Sort L according to cost in non-decreasing order and

record the first element as L1

38: return L1
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• BatchSche [8]: The algorithm proposed for the elastic

resource requirements of ML jobs, mainly applies batch

processing to minimize the total cost of resources.

• Preemptive [31]: The preemptive scheduling algorithm let

jobs with a shorter completion time preempt other jobs on

the server, so that they can be completed first, to reduce

the total completion time. It ignores the time overhead of

preemption.

Results. First, we compare the total completion time of our

algorithm with the three representative algorithms under the

settings of different (J) and (S). As shown in Fig. 3, the

total completion time grows with the increase in the number

of jobs. This is because the increase in J will bring larger

workload. In Fig. 4, as the number of edge servers increases,

the total completion time decreases because of the increase in

S bringing richer computing power. We can conclude that the

performance of Aonline is obviously better than DRF , FIFO

and BatchSche.

Second, we study whether different resource price caps F

(i.e., max{F1, F2}) and different S will affect the number of

jobs received by the algorithm in each time slot. Fig. 5 shows

the total weighted completion time of Aonline under different

F . The fixed total number of jobs is 200, and the total job

weight is also unchanged. It can be seen that the larger the F ,

the larger the objective value. This is because cost is related

to F , and accepting the job will increase the unit price of

related resources, which means that accepting the job needs

to meet the value of F when the unit resource price increases.

Therefore, the larger the value of F , the more jobs that can be

served in the same time, so that the total weighted completion

time for completing the same amount of jobs will be smaller.

Fig. 6 shows the total weighted completion time of Aonline

under different S. It can be seen that the larger the value

of S, the smaller the total weighted completion time. This is

because as the number of servers increases, the total amount

of resources will also increase, and more jobs can be served

in the same time, making the total weighted completion time

smaller.

Third, we compare our algorithm with Preemptive under

different settings and scenarios. Fig. 7-8 and Fig. 9-10 are

plotted under different (J) and (S) when considering the pre-

emption cost or not, respectively. In Fig. 7-8, Preemptive per-

forms relatively better, because Preemptive does not consider

the upload delay and the preemption overhead. In Fig. 9-10,

the performance of Aonline is slightly better than Preemptive

considering preemption overhead. Fig. 11 shows the compar-

ison of Aonline and Preemptive under different parameter

sizes kj . As kj increases, the efficiency of Preemptive is

significantly better than Aonline. Because the increase of kj
makes pj small when ξ = 0, so jobs tend to be deployed on

the same server with minimal preemption cost. In addition,

non-preemptive scheduling may generate a lot of resource

fragments. The advantage of Preemptive is that the fragments

can be eliminated by preempting some workers of other

jobs, as a result, the total completion time is reduced. Fig.

12 and Fig. 13 demonstrate resource utilization of Aonline

and Preemptive. We observe that with the increasing of

the number of jobs, resource fragmentation are increased in

Aonline. As the number of edge servers increases, this situation

aggravates and thus harms the resource utilization. Preemption

is an effective method to eliminate fragmentation, therefore

Preemptive performs better in such case.

At last, Fig. 14 shows the performance ratio of Aonline. The

offline optimal algorithm knows all the information of jobs

before the start of the scheduling. The performance ratio is the

ratio of the total job completion time generated by Aonliine to

that of the offline optimal algorithm. It can be seen from the

figure that when the number of jobs increases, the performance
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Fig. 14. Performance ratio.

ratio of Aonline shows an increasing trend. When the number

of edge servers increases, the performance ratio also shows an

increasing trend. The overall performance ratio of Aonline is

close to 1, and its performance is relatively good.

VII. CONCLUSION

In this paper, we focus on the design of scheduling algo-

rithm for distributed ML jobs in edge-cloud networks. We

propose an online algorithm to schedule distributed ML jobs.

The online algorithm aims at minimizing the total completion

time of all jobs. We first transform the online scheduling

problem into a series of batch processing problems. For each

batch processing problem, we adopt the compact-exponential

technique and dual theory to reformulate it, and design a

maximum job scheduling algorithm to solve it. At last, we

design two greedy algorithms to jointly consider the job

completion time and the utility of jobs in order to find the best

schedule for each job. Large-scale simulations have proved that

our algorithm has good performance and resource utilization

compared with the benchmark algorithms.
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