
Journal of Parallel and Distributed Computing 152 (2021) 45–56

S

a
h
p
e
t
r
c
f
i
f
t
d

o
s
r
T
s

t

h
0

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Django: Bilateral coflow schedulingwith predictive concurrent
connections
Jiaqi Zheng ∗, Liulan Qin, Kexin Liu, Bingchuan Tian, Chen Tian, Bo Li, Guihai Chen
tate Key Laboratory for Novel Software Technology, Nanjing University, China

a r t i c l e i n f o

Article history:
Received 14 January 2020
Received in revised form 1 August 2020
Accepted 23 January 2021
Available online 17 February 2021

Keywords:
Coflow scheduling
Data center
Prediction

a b s t r a c t

For data-parallel frameworks, their communication is highly structured. Coflow is a networking
abstraction proposed for their all-or-nothing job-specific semantics. Minimizing coflow completion
time (CCT) decreases the completion time of corresponding jobs. However, state-of-the-art coflow
scheduling approaches suffer from several drawbacks. On the one hand, both sender-driven and
receiver-driven scheduling approaches fail to achieve optimal especially when the bandwidth bot-
tleneck exists. On the other hand, they fail to optimize the number of concurrent connections since
the CCT can be prolonged due to too many or too few concurrent connections.

In this paper, we propose Django, a bilateral coflow scheduling framework. We first use Support
Vector Machine (SVM) as the machine learning model to automatically identify the optimal number
of concurrent connections, i.e., the queue limitation in the switch. Based on the predicted results,
we further develop a set of distributed coflow scheduling algorithms in a scalable manner. Testbed
experiments and trace-driven simulations show that Django can estimate the number of concurrent
connections with an accuracy of 98%, reduce the average CCT and 95th percentile CCT by 15% and 40%,
respectively.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Motivation: For mainstream data-parallel frameworks such
s Hadoop [12,23] and Spark [28], network communication is
ighly structured. They usually implement a data-parallel com-
uting model, where each group of data flows is required to
xperience a successive communication stage before producing
he final results. At each communication stage, the parallel flows
equire to exchange data among a set of hosts. Usually such a
ommunication stage cannot complete until all its flows have
inished [10]. Hence, the network-level optimization like min-
mizing the individual flow completion time or improving the
airness among flows cannot respect the application-level seman-
ics and significantly degrade the performance, which misses user
emand in modern data centers [20].
Coflow [8] is a networking abstraction proposed for this all-

r-nothing job-specific application-level semantics. A coflow is a
et of correlated flows in a communication stage. Its completion
equires that even the last one of all these flows has finished.
his abstraction shortens the gap between the application-level
emantics and network-level optimization.
Existing work, especially Varys [11] and Aalo [9] propose

o minimize coflow completion time (CCT) thus decrease the

∗ Corresponding author.
E-mail address: jzheng@nju.edu.cn (J. Zheng).
ttps://doi.org/10.1016/j.jpdc.2021.01.006
743-7315/© 2021 Elsevier Inc. All rights reserved.
completion time of corresponding jobs [10,13]. Varys presents a
centralized optimization to schedule all coflows. Its calculation
procedure involves solving all flow variables with scalability chal-
lenges and introduces high overhead especially for small coflows.
Besides, its assumption that all flows start at the same time is not
practical due to the ignorance of the multi-wave flow arrival pat-
tern [9]. Aalo distributes the centralized scheduling to each host
and develops a sender-driven approach, where the sender hosts
can enforce the prioritization among coflows by differentiating
their flows into multiple prioritized or weighted shared sending
queues. Accordingly, each coflow is assigned with a priority that
is decreasing in the total number of its sent bytes and scheduled
following the least attained service (LAS) discipline. These two
approaches suffer from several drawbacks, however.

On the one hand, they fail to achieve the optimal scheduling.
For example, Aalo’s sender-driven coflow scheduling can be sub-
optimal when the bandwidth at the host ingress links is the
bottleneck. Correspondingly, moving to receiver-driven schedul-
ing is not a right choice as well. It can also be sub-optimal when
the bandwidth at the host egress links is the bottleneck. In a
real network, these two cases usually coexist together due to im-
balanced task distribution. An efficient scheduling approach can
be able to handle these two cases simultaneously (Section 2.2).
On the other hand, existing work fail to optimize the number
of concurrent connections at each host. It has been proven that

the good throughput has a strong correlation with the number of

https://doi.org/10.1016/j.jpdc.2021.01.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.01.006&domain=pdf
mailto:jzheng@nju.edu.cn
https://doi.org/10.1016/j.jpdc.2021.01.006

J. Zheng, L. Qin, K. Liu et al. Journal of Parallel and Distributed Computing 152 (2021) 45–56

c
f
w
i
t
l
a
a
s
d

t
o
t

l
c
a
n
c
p
t
l
p
b
s
a
l

u
d
s
T
c
s
a
1

2

2

R
s
c
c
r
l
l
d
o

t
t
e
w
c
i
B
d
c

i
n
i
k

N

h
s
u
n
e
b
h
o

oncurrent connections. Of the corresponding switch egress port
or each host ingress link, the queue length increases together
ith the number of concurrent connections even when DCTCP [3]

s used. When this number exceeds the limitation of queue buffer,
he switch starts to drop packets. As a result, the CCT can be pro-
onged due to re-transmission and even re-connection. We cannot
rbitrarily minimize the number of concurrent connections to
void packet loss, since this would shrink the feasible solution
pace of the first problem. In summary, the CCT can be prolonged
ue to too many or too few concurrent connections (Section 2.3).
Our contributions: In this paper, we propose Django, a dis-

tributed bilateral coflow scheduling framework. The optimal
number of concurrent connections is predicted in advance, which
avoids the cases that the congestion happens resulting from too
many connections and the bandwidth wastage resulting from too
few connections. Meanwhile, Django can combine the advantages
of both sender-driven and receiver-driven scheduling approaches
and achieve near optimal.

Our first contribution is that we can automatically estimate
the optimal number of concurrent connections during the flow
transmission, which will be used for jointly optimizing the coflow
scheduling. Considering that the packet loss rate is easy to mea-
sure and has a strong correlation with the buffer size, we use
packet loss rate as a key feature to predict the optimal number
of concurrent connections. We choose Support Vector Machine
(SVM) as the machine learning model and use C-SVC model as
he multi-class classifier [14,16]. By measuring the performance
f different setting, we establish a prediction model to determine
he optimal number of the concurrent connections.

Our second contribution is that we develop a distributed bi-
ateral coflow scheduling framework, where the sender and re-
eiver hosts can interact with each other independently and
synchronously. Taking the optimal number of concurrent con-
ections as an input, a receiver host has the authority to open or
lose the connections to the senders. Each receiver host allocates
ermitted number of connections among coflows according to
heir priority order. Once a receiver host detects that its ingress
ink becomes bottleneck, it moves the connections from low-
riority coflows to high-priority ones. When this link is not the
ottleneck, it moves connections in the reverse direction. In each
ender host, the coflows are prioritized as usual sender-driven
pproaches. Since it cannot control connection status, it throttles
ow-priority coflows when its egress link becomes the bottleneck.

Our third contribution is a concrete implementation and eval-
ation of Django. We evaluated our algorithms by replaying pro-
uction traces from Facebook, on a small-scale testbed with 8 Dell
ervers and a commodity Mellanox Spectrum Ethernet switch.
o complement our small-scale testbed experiments, we further
onducted large-scale trace-driven simulations on NS-3. The re-
ults show that, Django can estimate the queue limitation with
n accuracy of 98%. We can reduce the average CCT and tail CCT
5% and 40%, respectively.

. Background and motivation

.1. Background

elated work: We briefly review prior art on different coflow
cheduling approaches. Orchestra [10] first introduces the con-
ept of coflow and shows that even a simple FIFO discipline
an significantly improve the application performance. Later, Bar-
at [13] multiplexes multiple transfer jobs to prevent head-of-
ine blocking. Varys [11] develops a set of heuristic algorithms
ike smallest-effective-bottleneck-first and minimum-allocation-for-
esired-duration to schedule coflows. To reduce the high overhead
f centralized computation and improve the scalability, Aalo [9]
46
follows the classic least attained service scheduling discipline
and develops a distributed sender-driven approach, which uses
the total number of bytes that a coflow has already sent to
approximate the coflow’s total size [9].

Another line of this work focuses on designing approximation
algorithms to minimize the total weighted CCT. Qiu et al. [21]
first develop a 67

3 -approximation algorithm by linear relaxation
echniques. Khuller et al. [18] and Sharfiee et al. [22] improve
he approximation ratio to 12 and 5, respectively. Besides, Li
t al. [19] focus on combining coflow routing and scheduling,
hile Tian et al. [25] aim at scheduling coflows with dependen-
ies. However, their calculation requires involving all the flows
n the whole network, which is slow and does not scale well.
esides, most of these are offline algorithms and require the
etail information of all upcoming coflows in advance, which
annot be easily implemented in a real system.
The novelty of our work lies in designing a machine learn-

ng based scheduling framework that can predict the optimal
umber of concurrent connections and coordinate the network
nformation from both sender side and receiver side, which to our
nowledge has not been done before.

etwork topology and protocol: We consider the entire data
center fabric as one non-blocking switch in our paper. This as-
sumption is the same as that in previous work [9,11,21,22,25] and
can be established in practice [15], where the fabric is congestion-
free and the ingress and egress links (i.e, switch egress and
ingress links) for each host are always the bottleneck. In addition,
DCTCP is adopted as the congestion control protocol, which is a
default setting for most modern data center networks [17].

2.2. Sender-driven and receiver-driven scheduling approaches can
be sub-optimal

Sender-driven coflow scheduling, such as Aalo, can be sub-
optimal in performance. A toy example is shown in Fig. 1(a).
Assume that there are two coflows each with a single mapper
and a single reducer respectively. Coflow 1 has a mapper on host
A and a reducer on host C , and the shuffle size is 1 unit. Coflow 2
as a mapper on host B and a reducer on host C , and the shuffle
ize is 2 unit. We assume that each egress and ingress port has 1
nit bandwidth. In this case, the receiver host’s ingress link is the
etwork bottleneck. For a sender-driven scheduling algorithm,
ach sender host (i.e., A or B) observes only one coflow. Thus
oth coflows 1 and 2 have the highest local priority in its sender
ost and will transmit simultaneously. They finish at the time
f 2 and 3 respectively and the average CCT is 2+3

2 = 2.5 time
units. However, for a reducer-end scheduling algorithm, reducer
host knows all two coflows. Specifically, the prioritized coflow 1
finishes at the time of 1, while the other finishes at the time of
3, thus the average CCT is only 1+3

2 = 2 time units.
Receiver-driven scheduling can also be sub-optimal when

host-egress links are the bandwidth bottleneck. A toy example is
shown in Fig. 1(b). The only change is the topology. Coflow 1 has a
mapper on host A and a reducer on host B. Coflow 2 has a mapper
on host A and a reducer on host C . For a sender-driven scheduling
algorithm, sender host A would prioritize coflow 1 over coflow 2.
The average CCT is 1+3

2 = 2 time units. On the contrary, for a
receiver-driven scheduling algorithm, each receiver host (i.e., B
or C) observes only one coflow. Thus both coflows 1 and 2 have
the highest local priority and will start simultaneously and the
average CCT is 2+3

= 2.5 time units.
2

J. Zheng, L. Qin, K. Liu et al. Journal of Parallel and Distributed Computing 152 (2021) 45–56

2
c

n
m
a
c
o
s
h
r
o
p
c
e
C
l
u
l
t
s
b
e
h
t
w
i
c
l

Fig. 1. A motivating example.
Fig. 2. The optimal number of concurrent connections.
.3. CCT can be prolonged due to too many or too few concurrent
onnections

To show that the connection number of each host can be
either too large nor too small, we conduct extensive experi-
ents to thoroughly evaluate the CCT and each data point is
n average of more than 30 runs. At each run, we generate a
oflow with 64 mappers and 64 reducers uniformly distributed
n 16 hosts, which is connected by a 1 Gbps switch. As the
ame setting in Hadoop, the total connection resources at each
ost is uniformly distributed to each reducer. Each reducer will
andomly choose some hosts to connect and pull the output data
f mappers. Fig. 2 shows the CCT, maximum queue length and
acket loss rate variations with different number of concurrent
onnections. In Fig. 2(a), we can observe that the CCT can be
ffectively reduced when the number of connections is 11. The
CT is prolonged if the number of connections is less than or
arger than 11. The reason is that too few connections cannot fully
tilize the bandwidth resource to optimize the flow transmission,
eading to the uplink bandwidth wastage and longer CCT. When
he number of concurrent connections becomes too many, the
witch buffer can be filled up instantaneously, where large num-
er of packets can be dropped due to serious flash congestion and
ven reconnection behavior can frequently occur, which will also
arm the CCT. Looking more closely into Fig. 2(b), we can observe
hat the maximum queue length and packet loss rate increases
ith the number of concurrent connections when this number

s larger than 11. For example, when the number of concurrent
onnections is 13, the CCT, maximum queue length and packet
oss rate is about 2.4, 146 and 10−4, respectively, which indicates
re-transmission happens.

Hence the optimal number of concurrent connections needs to
be determined in advance to affiliate the coflow scheduling. We
47
develop a learning model to automatically identify the optimal
number of concurrent connections.

3. Django overview

On a high level, Django is a loosely-coordinated coflow
scheduling framework that does the following at each interval:
(1) predicts the optimal number of concurrent connections at
each host, (2) collects the mapper and the reducer information
and generates a global candidate list on the tracker, (3) deter-
mines the number of concurrent connections for each reducer
on a local scheduler according to a dynamic priority list and
(4) re-adjusts the connection states for each reducer on a micro
scheduler.

The architecture of Django is shown in Fig. 3. The local sched-
uler maintains a dynamic priority list for each reducer at this host.
When a new reducer arrived, the local scheduler will update the
priority list, then reallocate the number of connections to each
reducer and notify the new connection information to the mi-
cro scheduler. Once a micro scheduler received this notification,
it will request a candidate list from the global scheduler, and
open new connections or close old connections accordingly to
the resulting connection state from the local scheduler. At the
same time, the micro scheduler will report its current connec-
tion state to the global scheduler, which is used for information
synchronization.

Now using the running example as shown in Fig. 1, we il-
lustrate how Django works. The local scheduler first allocates a
priority for each reducer on the same host according to its coflow
size. As shown in Fig. 1(a), the reducer R1 is prioritized as its
coflow size is less than that of the reducer R2. Then the reducer
R searches the candidate list on the tracker to determine the
1

J. Zheng, L. Qin, K. Liu et al. Journal of Parallel and Distributed Computing 152 (2021) 45–56

m
r
i
s
w
2
b
t
c
M
b
S
t

Fig. 3. The architecture of Django.
apper M1. Next the connection between the mapper M1 and the
educer R1 can be established and the corresponding information
s sent to the tracker. Since the link bandwidth at the receiver
ide is fully consumed by the reducer R2, the reducer R2 has to
ait until the transmission of R1 is finished. The average CCT is
time units. As shown in Fig. 1(b), the reducers R1 and R2 are
oth prioritized as they are located on different hosts. Meantime,
he tracker generates a candidate list according to the remaining
oflow size at sender side. Here the remaining size of the mapper
1 is less than that of the mapper M2 and thus the connection
etween the mapper M1 and the reducer R1 can be established.
ince the link bandwidth at the sender side is fully consumed by
he reducer R1, the reducer R2 has to wait until the transmission
of R1 is finished. The average CCT is 2 time units as well.

The central challenge in designing Django is how to predict
the optimal number of concurrent connections and design a set
of distributed algorithms that can provide a reasonable trade off
between scalability and performance, which is our focus in the
following sections.

4. A scheduling framework

We introduce our scheduling framework with predicted num-
ber of concurrent connections in Django. As discussed, we first
obtain the optimal number of concurrent connections using a ma-
chine learning model. Based on the prediction results, we design
a set of distributed algorithms to perform coflow scheduling in a
scalable manner.

4.1. Prediction

Before building our prediction model, we first illustrate an im-
portant observation. For DCTCP, once the converged queue length
exceeds the switch buffer size, the packet loss rate of a group of
flows can indicate the switch buffer size. The smaller the buffer
size is, the more packets are dropped. Meanwhile, the switch
buffer size is a linear function of ECN marking threshold and
the number of concurrent connections as shown in Theorem 4.1,
which is captured by both theoretical analysis [3] and system
validation [6].
48
Theorem 4.1 ([3]). There exists a linear function mathematically
formulated by the following equation,

qmax = k+ n (1)

where qmax is the buffer size, k is the ECN marking threshold and n
is the number of concurrent connections.

Considering that the packet loss rate is easy to measure and
has a strong correlation with the buffer size, we advocate to use
packet loss rate as a key feature to predict the optimal number of
concurrent connections. However, the mathematical relationship
between the packet loss rate and switch buffer size is hard to
capture and seems nonlinear even when all other conditions are
fixed. We focus on machine learning method and choose Support
Vector Machine (SVM) as our learning model for its simplicity
and efficiency. Specifically, we use LibSVM library [5] to build a
machine learning system.
Algorithm 1: Training the prediction model

Input: The number of flows ξ ; the measured packet loss
rate r; the ECN marking threshold k; the set Q of
buffer size; the number of iterations t .

Output: The number of concurrent connections n
1 for i = 1 to t do
2 Generate an incast traffic with ξ flows
3 Choose a candidate yi randomly from the set Q of buffer

size
4 Measure the packet loss rate xi and chosen buffer size yi

as a data record.
5 Obtain the data set with t records where each data point xi
is scaled into the [−1, 1] interval

6 Partition the data set into training set and testing set
7 Apply C-SVC model [4] as the multi-class classifiers to
establish a prediction function f (·)

8 Apply Theorem 4.1 and obtain the number of concurrent
connections n = f (x)− k

9 return n;

The prediction algorithm is shown in Algorithm 1. First, we
generate an incast traffic with ξ concurrent small flows for t
times randomly (line 2). For the ith run, the buffer size is ran-
domly chosen from the set Q , then we record the packet loss rate

J. Zheng, L. Qin, K. Liu et al. Journal of Parallel and Distributed Computing 152 (2021) 45–56

x
o
i
t
c
t
m
i
e
c
I
w
e

4

i
a
e
t
r
c
s
o
p
t
t
c
r
o
a
a
t
s
f

s
i
p
e
o
t
a
t
1
i
N
s
m
C
r
w
n

4

r
l
r
a
c
b
r

i and chosen buffer size yi as a data record (lines 3–4). Totally, we
btain a data set with t records where each data point xi is scaled
nto the [−1, 1] interval (line 5). We partition the data set into
raining set and testing set and use C-SVC model [4] as multi-class
lassifiers (lines 6–7). Finally, we apply Theorem 4.1 to obtain
he number of concurrent connections (line 8). Note that C-SVC
odel is composed by |Q |×(|Q |−1)2 two-class classifiers, where |Q |

s the number of classes. For our problem, in training phase,
ach two-class classifier will try to find a hyperplane to divide
ertain two classes by solving a convex quadratic programming.
n testing phase, for a given input x, all of the two-class classifiers
ill vote to determine the class number y, which indicates the
stimated buffer size.

.2. Local scheduler

The local scheduler runs as Algorithm 2 on each host, which
s responsible for the connection reallocation between the sender
nd the receiver side according to a local priority list. We now
xplain the high level working of Algorithm 2. At the beginning,
o apply the shortest remaining time first (SRTF) principle, the
educers are sorted according to the remaining size of their
oflows and the remaining size of reducers (line 1). Here we
ay a reducer with highest local priority as a prioritized reducer,
thers are called non-prioritized reducers. We only schedule non-
rioritized reducers if the prioritized reducer keeps the same in
wo successive schedules (line 3). At the same time, we check
he vacant downlink bandwidth and the remaining number of
onnections (line 4). If the vacant bandwidth exceeds α ·b and the
emaining number of connections is larger than zero, we allocate
ne more connection to the first non-prioritized reducer. The
llocated number of connections for this reducer cannot exceed
half of the number of free connections (line 5). When these

wo conditions cannot be established simultaneously (line 4), we
top allocating connection to non-prioritized reducers, preventing
rom interfering with the prioritized reducer.

When the prioritized reducer changes, i.e., a reducer with the
maller size comes (line 8), we will close certain connections
nstantly to preserve a portion of β · m connections for current
rioritized reducer (line 10), which can be regarded as a pre-
mption. If the remaining number of connections is larger than
r equal to β · m (i.e., the free connections are large enough
o satisfy the requirements of the new prioritized reducer), the
llocated connections for previous prioritized reducer will be
aken back until the flow transmission is finished (lines 13–
4). For a non-prioritized reducer, the number of its connections
s approximately exponentially decreased with its local priority.
ote that we never allocate all of the connections to one reducer,
ince a prioritized coflow in the receiver side may not has a
atching priority in the sender side. This mismatch can also harm
CT. To address this problem, the priority between the sender and
eceiver side is dynamically balanced using Algorithm 4, which
ill be discussed soon. Finally, we apply Algorithm 3 to adjust the
umber of connections and compete the connection allocation.

.3. Micro scheduler

A micro scheduler runs Algorithm 3 on each reducer, which
eacts to the connection reallocation from the corresponding
ocal scheduler and adjusts the number of connections for each
educer. When the number of current connections exceeds the
llocated number of connections, the micro scheduler will close
ertain connections with the highest flow transmission rate one
y one until the number of current connections satisfies the
equirements (lines 1–4). Note that the release of allocated con-
49
Algorithm 2: Allocating connections at each host
Input: The reducer list R on the host; the predicted number

of connections m; the total number of current
connections n; the bottleneck link capacity b; the
parameters α, β , η ∈ [0, 1].

1 Sort reducer list R according to the remaining coflow size
(the first keyword) and the remaining reducer size (the
second keyword) in ascending order;

2 rem = m− n;
3 if R[0] keeps the same in recent two successive schedules then
4 if the vacant downlink capacity exceeds α · b and rem > 0

then
5 Allocate one more connection to the first

non-prioritized reducer in R whose connection
number does not exceed η ∗ rem;

6 rem = rem− 1 ;

7 else
8 Set R[0] as the only prioritized reducer in this host;
9 if rem < β ·m then

10 Close the connections from previous prioritized
reducer instantly to guarantee that there are β ·m
free connections;

11 rem = max{rem, rem− β ·m}
12 else
13 Close the connections once the transmission of

previous prioritized reducer finished;
14 Update rem;
15 Allocate at most β ·m connections to current prioritized

reducer;
16 Notify all reducers whose connection number changed

(then these reducers will apply Algorithm 3 to adjust the
number of connections) ;

Algorithm 3: Adjusting the number of connections for each
reducer

Input: The reducer id r; the number of current connections
n for reducer r; the number of new connections n∗
for reducer r .

1 while n > n∗ do
2 Close the connection with the highest flow transmission

rate in reducer r to release more bandwidth for the
newly prioritized reducer;

3 Notify the tracker that a connection is closed;
4 n← n− 1;
5 while n < n∗ do
6 Request the candidate list CL from the tracker;
7 if reducer r is prioritized then
8 Connect to the mapper in CL which has the largest

vacant uplink capacity;
9 else

10 Connect to the mapper in CL which has the largest
remaining size to transmit;

11 Notify the tracker that a new connection is created;
12 n← n+ 1;

nections usually indicates that a preemption happens, which is
used to leave more bandwidth resource to the prioritized reducer
as fast as possible. It is necessary to close the connections with
the highest flow transmission rate firstly.

J. Zheng, L. Qin, K. Liu et al. Journal of Parallel and Distributed Computing 152 (2021) 45–56

b
c
n
c
s
t
s
t
c
w
w
1

4

t
b
h
t
o
w
i
s
w
w

c

w

5

5

m
a
c
s
d
a
H
c
w
t

t
w

When the allocated number of connections exceeds the num-
er of current connections, the micro scheduler will request a
andidate list from the tracker scheduler to open more con-
ections. The candidate list is a subset of sender hosts for this
oflow maintained by the tracker, and we can only choose the
ender from this list to connect. The procedure of generating
his candidate list will be discussed soon in Algorithm 4. More
pecifically, if this reducer is prioritized, we will choose the host
hat has the largest vacant uplink capacity to connect, which
ould prevent from bandwidth wastage (line 8). Otherwise, we
ill choose the host that has largest remaining size to transmit,
hich could balance the non-uniformly distributed mappers (line
0).

.4. Global scheduler

The global scheduler runs Algorithm 4 on the tracker
Algorithm 4: Generating the candidate list on the tracker

Input: The reducer id r; the maximum size of candidate list
m; the balance ratio λ ∈ [0, 1]; the vacant uplink
capacity u on each host i; the link capacity b; the
parameter θ .

Output: The candidate list CL
1 Define array L as the pending sender host list
corresponding to the reducer r;

2 l = |L|;
3 CL← ∅;
4 if reducer r is prioritized then
5 foreach sender host i do
6 Define si as a prioritized mapper whose remaining

coflow size is the smallest in its sender host list;
7 if r and si belong to the same coflow then
8 ui ← ui + λ · b;

9 Sort L according to their balanced bandwidth u such
that uL[0] ≤ · · · ≤ uL[l];

10 Add the first min(m, l) elements in L to CL;
11 else
12 Define bw as the vacant downlink capacity of the host

that the reducer r belongs to;
13 if bw > θ · b then
14 Sort L according to their vacant uplink capacity u

such that uL[0] ≤ · · · ≤ uL[l];
15 p← argmini |bw − ui|;
16 Add L[max(p−m+ 1, 0)], · · · , L[p] to CL;

17 return CL;

that can monitor network state of each host and dynamically
generate a candidate list once a request from the micro scheduler
is received. When a micro scheduler requests for a candidate list,
the global scheduler will first query the pending sender hosts for
this reducer. Here a sender host is said to be pending if it has
not transmitted any packets to the reducer, or the transmission
procedure has already been terminated due to the preemption.

For a prioritized reducer, we choose the sender host according
o its vacant uplink bandwidth, i.e, its balanced vacant uplink
andwidth. We have stressed that a prioritized reducer may not
ave a matched priority on each sender host, thus we have to
ake the priority of sender host into consideration to jointly
ptimize the CCT. To trade off the complexity and performance,
e introduce a concept in Algorithm 4 called balance ratio, which

s defined as a real number that ranged from 0 to 1. Now we
how that how balance ratio affect the coflow scheduling. When
e sort the set of sender hosts in the candidate list, a constant
ill be added to the free uplink bandwidth if the coflow that
50
this reducer belongs to is prioritized in the sender host as well.
This constant is defined as the product of balance ratio λ and the
link capacity b corresponding to the sender host. Therefore, the
priority-matched sender host will be chosen into the candidate
list with high probability (lines 4–10).

For non-prioritized reducer, what is essential is bandwidth
matching between the sender and receiver side. That is to say, the
global scheduler should guarantee that the difference between
the downlink bandwidth at reducer host and the uplink band-
width at the possible sender host cannot be too large, since the
flow completion time is determined by the bottleneck bandwidth
(lines 12–16). Besides, the maximum size of candidate list (line
16) is usually much smaller than that for prioritized reducer (line
10). Otherwise, either the bandwidth is wasted, or the prioritized
reducer is interfered (lines 12–16).

Before analyzing the performance of Django, we introduce the
following definition.

Definition 4.1 (Deadlock). A deadlock indicates that the network
throughput is zero, where all the reducers are waiting for each
other and stop transmitting any data.

Theorem 4.2. Django is deadlock-free.

Proof. Assume there is a deadlock, thus all reducers cannot
receive any data at the time. For an arbitrary prioritized reducer
(e.g., reducer R), according to Algorithm 4, it must have been
onnected to at least one mapper host (e.g., host H). However,
only when all of the uplink bandwidth of host H is occupied by
other reducers, can network throughput of reducer R be zero,
hich is against the definition of deadlock. □

. Implementation

.1. Framework design

We develop a prototype of our scheduling framework, which is
ainly composed of the prediction modules, the tracker modules
nd worker modules. The tracker maintains the host information
orresponding to all the mappers and reducers and dynamically
chedules the jobs. At the same time, the workers conduct the
ata transmission function. As we know, Akka [2] has the master
nd worker modules and is in line with our framework design.
ence we use Akka for the communications and define two
ategories of new Akka messages for tracker–worker and worker–
orker communication. We use the master modules to act as our
racker and the worker module to act as our hosts.

We now explain the designed messages in our implementa-
ion. For the communication between the tracker and the worker,
e defined two types of messages REQ_CANDIDATE and RE-

PLY_CHOSEN. When a reducer is launched, it first sends
REQ_CANDIDATE message to the tracker for searching candidate
hosts. The tracker then uses Algorithm 4 to generate the candi-
date list and reply to the reducer. The message REPLY_CHOSEN
is used when reducer tells the tracker which sender-host it will
choose using Algorithm 3. For the communication among work-
ers, we define three types of messages SEND_START, SEND_PAUSE
and SEND_RECOVERY. The SEND_START message is used for re-
questing data from the mapper. Once a reducer plans to obtain
data from the mapper, it will send SEND_START message to
the corresponding host. The worker periodically runs Algorithm
3 and the reducer on this worker adjusts the number of their
active connections. When the number of current connections is
larger than the expected number, the reducer sends SEND_PAUSE
message to make the mapper stop sending data. Otherwise, the
reducer sends SEND_RECOVERY message to increase the number

J. Zheng, L. Qin, K. Liu et al. Journal of Parallel and Distributed Computing 152 (2021) 45–56

o
s
t
i

5

l
a
e
R
r
p
p

6

6

t
u
c
a
[
t
p

w
d
2
G

f connections. The messages designed in our implementation are
hown in Table 1. Note that our system design is compatible with
he famous system YARN and can be seamlessly integrated into
t.

.2. Testbed setup

Our testbed consists of 8 servers connected to a 32-port Mel-
anox switch, where one of them acts as the tracker, the rest act
s the normal servers. Each server is a DELL PowerEdge R730,
quipped with a 12-core Intel Xeon E5-2650V4 CPU, 128 GB
AM and a Mellanox CX5 dual-port Ethernet NIC. Each server
uns Ubuntu Server 14.04. We use DCTCP as the transport layer
rotocol to ensure low latency and for comparison. We replay
roduction traces from Facebook on our testbed.

. Experimental evaluation

.1. Methodology

We evaluate our scheduling algorithm with both small-scale
estbed and large-scale simulation. The trace used in our eval-
ation is collected from Facebook log [11] that contains 526
oflows and over 30 TB transmission data, which has been widely
ccepted as a benchmark to evaluate coflow scheduling systems
9,11,19,21,22]. We use both the average CCT and tail CCT (e.g.,
he 95th/99th percentile) as metrics by default, and each data
oint is averaged from multiple runs.
We compare the following two algorithms with our frame-

ork. (1) DCTCP is a widely-used congestion control protocol in
ata centers. We set the ECN marking threshold to 30 kB (about
0 MTU) for 1 Gbps link, and 100 kB (about 65 MTU) for 10
bps link, as recommended in [3]. (2) Aalo+ is a modified version

of state-of-the-art coflow scheduling approach Aalo [9]. Here we
assume all the size information are known a prior to perform an
apples-to-apples comparison.

Unless stated otherwise, we configure the bottleneck link ca-
pacity b to be 1 Gbps, and α, β , λ, m to be 0.1, 0.7, 0.2 and 0.5,
respectively in Algorithms 2 and 4. To make the trace match our
topology, the size and (or) arrival time of coflows is scaled down
accordingly.

By using the appropriate connection number and the schedul-
ing algorithms to manage connection, Django improves the av-
erage CCT and tail CCT (95th and 99th percentiles) significantly
both in simulation and testbed. Specifically, Django reduces the
average CCT to 85% and 65% compared with Aalo+ and DCTCP. At
the same time, it reduces the 95th percentile CCT to 60% and 23%
compared with Aalo+ and DCTCP. And we investigate the CCT per-
formance of Django under various settings. Django can perform
good under small buffer size due to the appropriate connection
number setting. Besides, the results show that Django can scale
very well nevertheless the machine number scales, the network
load scales or the number of reducers per machine increases.

6.2. Queue buffer estimation

We generate an incast traffic with about 200 concurrent small
flows for 400 times randomly. We enumerate the number of
classes from 2 to 5 and set the number of iterations to be 400.
There are around 300 records for training and 100 records for
testing. To investigate how many records are needed for training,
we gradually increase the size of training set from 50 to 300. The
results are shown in Fig. 4, and we make several observations.

First, our model performs well when the number of classes is
less than or equal to 3. When the number of classes is equal to

4 and 5, the estimation accuracy is 87.7% and 73.6% respectively,

51
Table 1
Messages designed in our implementation.
Message Parameter Description

REQ_CANDIDATE — Search the candidate hosts
REPLY_CHOSEN — Choose the sender host
SEND_START HOST_ID Request the data from the mapper
SEND_PAUSE HOST_ID Make the mapper stop sending data
SEND_RECOVERY HOST_ID Increase the number of connections

Table 2
Testbed results.
CCT Django DCTCP

Average 15.7 18.1
95th percentile 10.9 30.1
99th percentile 133.6 1037.9

which is a great improvement compared with naive lower bound.
Second, one hundred records for the training are large enough,
which suffer only 3% accuracy loss. Third, C-SVC model runs quite
fast in our scenarios, which costs less than 20 ms in total in our
5-classification mission, and each estimation costs only 75 µs on
average.

One may wonder whether our system is robust to such non-
negligible estimation error. Recalling the CCT variation in Fig. 2(a),
a near flat interval can be observed, which indicates that our
system can tolerate estimation error in a relevant large range.

6.3. Testbed results

We perform testbed experiments to evaluate our algorithm in
real servers, and compare our algorithm with DCTCP. Results are
shown in Table 2. Each data is an average of at least 10 experi-
ments. We can see that Django decreases both the average and
tail CCT and is around 1.3x faster than DCTCP. The reason is that
DCTCP guarantees the max–min fairness among flows instead of
scheduling coflows, which will cause bandwidth competition and
congestion in egress port, thus resulting in prolonged CCT. We
observe the packet loss rate is almost zero when using Django,
and this is benefit from the appropriate connection number and
the scheduling algorithm on our master–worker system.

6.4. Simulation results

We also conduct extensive simulations to thoroughly evaluate
our algorithm at scale.

Experiment results: We first investigate the CCT variations for
Django, Aalo+ and DCTCP. Fig. 5(a) shows the CDF of CCT for
different schemes. Looking closely into this figure, we can observe
that Django performs well and in general decreases the tail CCT
by 40% and 77% compared to Aalo+ and DCTCP. More detailed
information – the average CCT, 95th percentile CCT and 99th
percentile CCT – can be shown in Fig. 5(b). This demonstrates that
the joint optimization on the number of concurrent connections
and coflow scheduling in Django can lead to perfect performance
on reducing both the average and tail CCT.

As discussed Django can improve the performance by predict-
ing the number of concurrent connections. We measure the 95th
percentile CCT and average CCT under different buffer size setting
as shown in Figs. 6(a) and 6(b), respectively. We can see that
Django can always perform perfect under all buffer size settings.
The reason is that the prediction model in Django can produce
an optimal number of concurrent connections and the hosts can
adjust this number accordingly when the buffer size changes.
However, Aalo+ and DCTCP are more rigid to the buffer size: they
perform poorly especially when the buffer size is less than 75

J. Zheng, L. Qin, K. Liu et al. Journal of Parallel and Distributed Computing 152 (2021) 45–56

p
c
A
k
t

r
m
o
d

Fig. 4. The prediction results.
Fig. 5. Basic performance.
Fig. 6. The CCT variation with different buffer size.
ackets (around 110 kB). Specifically, as shown in Fig. 6(a), we
an see that Django performs 2.3x and 1.9x faster compared to
alo+ and DCTCP when the buffer size is 50 packets (around 73
B), and performs 1.2x and 1.5x faster compared to them when
he buffer size is larger than 100 packets (around 146 kB).

Fig. 7 shows the CCT variation with different numbers of
educers per host. The number of reducers per host represents the
aximum concurrent jobs that a host can accommodate. We can
bserve that Django performs very stable even the number of re-
ucers becomes large, which indicates that Django can fully take
52
advantage of more resources in the host to optimize the reducers
scheduling. On the contrary, Aalo+ and DCTCP perform poorly
especially when the number of reducers increases. Specifically,
when the number of reducers exceeds 10, the CCT of Aalo+ and
DCTCP increase significantly, which will degrade the application
performance. The reason is that Aalo+ does not respect the link
bandwidth in the receiver side, always making the prioritized
mapper transmit the data firstly, which is inevitably not optimal.

To evaluate the performance with different workloads, we can
scale up or scale down the coflow arrival intervals to increase

J. Zheng, L. Qin, K. Liu et al. Journal of Parallel and Distributed Computing 152 (2021) 45–56

o
l
i
r
t
t
o
r
s
t
t

Fig. 7. The CCT variation with different numbers of reducers.
Fig. 8. The CCT variation with different workloads.
Fig. 9. The CCT variation with different numbers of hosts.
r decrease the workloads in the network. Here we use the
oad ratio in our simulations to capture different coflow arrival
ntervals. The standard load ratio is 1.0 when the coflow arrival
atio is 1 s. We change the load ratio ranging from 0.5 to 3 at
he increment of 0.5. Fig. 8 shows that the CCT variation with
he different workloads. When the load ratio increases, the CCT
f Django increases slower compared to Aalo+ and DCTCP. The
eason is that the reducer in Django takes the bandwidth at the
ender side into consideration when the connections between
hem will be established. For 95th percentile CCT, we can see
hat Django performs 1.3x and 2.2x faster compared to Aalo+ and
53
DCTCP, respectively when the load ratio is 3. For average CCT,
Django performs 1.2x and 1.38x faster compared to Aalo+ and
DCTCP.

We measure the performance of Django at large-scale topol-
ogy to investigate its scalability. As shown in Fig. 9, we increase
the number of hosts ranging from 8 to 128 and observe the CCT
variations for the different schemes. The CCT for Django changes
slightly when the number of host becomes large, which indicates
that it works well for both small-scale and large-scale networks.
However, for Aalo+ and DCTCP, the CCT decreases firstly when the
number of hosts becomes larger, and when this number exceeds

J. Zheng, L. Qin, K. Liu et al. Journal of Parallel and Distributed Computing 152 (2021) 45–56

o
a
0
o
t
i
n
d
t

I
F
e

Fig. 10. The running time of Django.

32, the CCT increases significantly. The performance of Aalo+ and
DCTCP cannot scale well when the number of hosts is large. Here
how to optimally scheduling the connections is a key factor and
leads to significant difference. We can see that the 95th percentile
CCT of Django is 2x and 2.1x faster than that of Aalo+ and DCTCP.
The average CCT of Django is 1.4x faster than Aalo+. When the
number of hosts increases, the gap between them is even more
larger. And the average CCT of Django is 1.75x faster than that
of DCTCP. This indicates that our scheduling algorithms can be
applied to the large-scale networks.

As shown in Fig. 10, we investigate the running time of algo-
rithms in Django. Looking closely into this figure, we can observe
that 94.1% running time is less than 10 ms and the average
running time is 4.8 ms.

As shown in Fig. 11, we did extensive experiments to show the
influence on the performance when using different parameters
in our algorithm. A smaller α value tends to allocate the con-
nections to the non-prioritized reducers, which can improve the
bandwidth utilization and CCT as shown in Fig. 11(a). Specifically,
we can select the non-prioritized reducer if the number of its
connections does not exceed the product of η and the number
f remaining connections. Regarding η, Fig. 11(c) shows that our
lgorithm performs better when its value is set to be around
.6. Furthermore, β is the maximum ratio between the number
f connections for the prioritized reducer and the number of
otal connections. As shown in Fig. 11(b), the CCT can be largely
mproved when β lies in the interval [0.7 0.9]. It means that the
umber of connections for the prioritized and non-prioritized re-
ucers should be balanced by adjusting the value of β to optimize
he performance.

nsights: These experiment results make two key conclusions.
irst, the number of concurrent connections significantly influ-

nces the CCT. Hence, it is necessary to choose an optimal number

54
of connections to jointly optimize the coflow scheduling. Second,
we reduce both the average and tail CCT using Django since
we allocate the number of connections taking both bandwidth
and remaining size of coflow into consideration. And the results
above also show that Django can perform well even in large-scale
topology including large number of hosts.

7. Related work

Sincronia [1] uses the sizes of individual flows to order coflows
and determine the network bottlenecks, which achieves the av-
erage coflow completion time (CCT) within 4x of the optimal and
can be implemented on top of any transport layer supporting
the priority-based scheduling. Utopia [26] considers the tradeoff
between minimizing the average coflow completion time and
providing optimal service isolation guarantee between contend-
ing coflows. Instead of enforcing strict guarantee to minimize
the completion time of ‘‘small’’ coflows, Utopia advocates long-
term isolation guarantee: as long as a coflow completes no later
than an isolation-optimal scheduler, its isolation is guaranteed in
a long run. The bandwidth allocation of subflows in one coflow
with higher priority helps determine the bandwidth allocation of
subflows in another coflow with low priority. In [27], the flaws of
coflow have also been discussed recently. It addresses the prob-
lem of scheduling weighted coflows, where weights are used to
indicate the importance of different coflows. Swallow [29] intro-
duces a coflow compression mechanism to minimize completion
time in data-intensive applications. A heuristic algorithm for solv-
ing NP-hardness problem called Fastest-Volume-Disposal-First
(FVDF) is proposed, which minimizes coflow completion time
(CCT) while ensuring resource conservation and starvation free-
dom. Furthermore, a randomized 2-approximation algorithm was
proposed in [7]. It studies a different model of coflow scheduling
over general graphs.

OMCoflow [19] proposes a theoretical performance assurance
algorithm which considers both routing and scheduling for multi-
coflows. Extensive simulations using a real-world data trace show
that OMCoflow performs well. Stream [24] is a decentralized and
easily implementable solution for coflow scheduling. It tries to be
readily deployed to data centers by using a decentralized protocol
without modifying hardware.

8. Conclusions

In this paper, we developed a bilateral coflow scheduling
framework that can automatically identify the optimal number
of concurrent connections and combine the advantages of both
sender-driven and receiver-driven scheduling approaches. Exper-
imental and simulation results show that our algorithms can

reduce the average CCT and tail CCT, respectively.
Fig. 11. The parameter selection for α, β and η.

J. Zheng, L. Qin, K. Liu et al. Journal of Parallel and Distributed Computing 152 (2021) 45–56

C
RediT authorship contribution statement

Jiaqi Zheng: Conceptualization, Funding acquisition, Formal
analysis, Interpretation of data, Writing - review & editing, Accu-
racy or integrity. Liulan Qin: Conceptualization, Funding acqui-
sition, Formal analysis, Interpretation of data, Writing - review
& editing, Accuracy or integrity. Kexin Liu: Conceptualization,
Funding acquisition, Formal analysis, Interpretation of data, Writ-
ing - review & editing, Accuracy or integrity. Bingchuan Tian:
Conceptualization, Funding acquisition, Formal analysis, Interpre-
tation of data, Writing - review & editing, Accuracy or integrity.
Chen Tian: Conceptualization, Funding acquisition, Formal anal-
ysis, Interpretation of data, Writing - review & editing, Accuracy
or integrity. Bo Li: Conceptualization, Funding acquisition, Formal
analysis, Interpretation of data, Writing - review & editing, Accu-
racy or integrity. Guihai Chen: Conceptualization, Funding acqui-
sition, Formal analysis, Interpretation of data, Writing - review &
editing, Accuracy or integrity.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys, A. Vahdat,
Sincronia: Near-optimal network design for coflows, in: SIGCOMM, 2018,
pp. 16–29.

[2] Akka., http://akka.io.
[3] M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S.

Sengupta, M. Sridharan, Data center tcp (dctcp), in: SIGCOMM, 2011, pp.
63–74.

[4] B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin
classifiers, in: COLT, 1992, pp. 144–152.

[5] C.-C. Chang, C.-J. Lin, Libsvm: a library for support vector machines, ACM
Trans. Intell. Syst. Technol. 2 (3) (2011) 1–27.

[6] I. Cho, K. Jang, D. Han, Credit-scheduled delay-bounded congestion control
for datacenters, in: SIGCOMM, 2017, pp. 239–252.

[7] M. Chowdhury, S. Khuller, M. Purohit, S. Yang, J. You, Near optimal coflow
scheduling in networks, in: SPAA, 2019, pp. 123–134.

[8] M. Chowdhury, I. Stoica, Coflow: a networking abstraction for cluster
applications, in: HotNets, 2012, pp. 31–36.

[9] M. Chowdhury, I. Stoica, Efficient coflow scheduling without prior
knowledge, in: SIGCOMM, 2015, pp. 393–406.

[10] M. Chowdhury, M. Zaharia, J. Ma, M.I. Jordan, I. Stoica, Managing data
transfers in computer clusters with orchestra, in: SIGCOMM, 2011, pp.
98–109.

[11] M. Chowdhury, Y. Zhong, I. Stoica, Efficient coflow scheduling with varys,
in: SIGCOMM, 2014, pp. 443–454.

[12] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Commun. ACM 51 (1) (2008) 107–113.

[13] F.R. Dogar, T. Karagiannis, H. Ballani, A. Rowstron, Decentralized task-aware
scheduling for data center networks, in: SIGCOMM, 2014, pp. 431–442.

[14] K.-B. Duan, S.S. Keerthi, Which is the best multiclass svm method? An
empirical study, in: International Workshop on Multiple Classifier Systems,
2005, pp. 278–285.

[15] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz,
P. Patel, S. Sengupta, Vl2: a scalable and flexible data center network, in:
SIGCOMM, 2009, pp. 51–62.

[16] C.-W. Hsu, C.-J. Lin, A comparison of methods for multiclass support vector
machines, IEEE Trans. Neural Netw. 13 (2) (2002) 415–425.

[17] G. Judd, Attaining the promise and avoiding the pitfalls of tcp in the
datacenter, in: NSDI, 2015, pp. 145–157.

[18] S. Khuller, M. Purohit, Brief announcement: Improved approximation
algorithms for scheduling co-flows, in: SPAA, 2016, pp. 239–240.

[19] Y. Li, S.H.-C. Jiang, H. Tan, C. Zhang, G. Chen, J. Zhou, F. Lau, Efficient online
coflow routing and scheduling, in: MobiHoc, 2016, pp. 161–170.

[20] K. Ousterhout, P. Wendell, M. Zaharia, I. Stoica, Sparrow: distributed, low
latency scheduling, in: SOSP, 2013, pp. 69–84.

[21] Z. Qiu, C. Stein, Y. Zhong, Minimizing the total weighted completion time
of coflows in datacenter networks, in: SPAA, 2015, pp. 294–303.

[22] M. Shafiee, J. Ghaderi, Brief announcement: A new improved bound for
coflow scheduling, in: SPAA, 2017, pp. 91–93.
55
[23] A. Shinnar, D. Cunningham, V. Saraswat, B. Herta, M3r: increased per-
formance for in-memory hadoop jobs, VLDB Endow. 5 (12) (2012)
1736–1747.

[24] H. Susanto, H. Jin, K. Chen, Stream: Decentralized opportunistic
inter-coflow scheduling for datacenter networks, in: ICNP, 2016, pp. 1–10.

[25] B. Tian, C. Tian, H. Dai, B. Wang, Scheduling coflows of multi-stage jobs
to minimize the total weighted job completion time, in: INFOCOM, 2018,
pp. 1–9.

[26] L. Wang, W. Wang, B. Li, Utopia: Near-optimal coflow scheduling with
isolation guarantee, in: INFOCOM, 2018, pp. 891–899.

[27] Z. Wang, H. Zhang, X. Shi, X. Yin, Y. Li, H. Geng, Q. Wu, J. Liu, Efficient
scheduling of weighted coflows in data centers, IEEE Trans. Parallel Distrib.
Syst. 30 (9) (2019) 2003–2017.

[28] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J.
Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing, in: NSDI, 2012, pp. 15–28.

[29] Q. Zhou, K. Wang, P. Li, D. Zeng, S. Guo, B. Ye, M. Guo, Fast coflow
scheduling via traffic compression and stage pipelining in datacenter
networks, IEEE Trans. Comput. 68 (12) (2019) 1755–1771.

Jiaqi Zheng is currently a Research Assistant Professor
from Department of Computer Science and Technology,
Nanjing University, China. His research area is com-
puter networking, particularly data center networks,
SDN/NFV, machine learning system and online opti-
mization. He was a Research Assistant at the City
University of Hong Kong in 2015 and collaborated with
Huawei Noah’s Ark Lab. He visited CIS center at Temple
University in 2016. He received the Best Paper Award
from IEEE ICNP 2015, Doctorial Dissertation Award
from ACM SIGCOMM China 2018 and the First Prize

of Jiangsu Science and Technology Award in 2018. He is a member of ACM and
IEEE.

Liulan Qin received the B.S. degree from the Depart-
ment of Computer Science and Engineering at the
Nanjing University of Science and Technology, China, in
2018. She is a 2nd-year M.S. student in the Department
of Computer Science and Technology at Nanjing Uni-
versity, China. Her research interests include datacenter
networks.

Kexin Liu received the B.S. degree from the De-
partment of Software Engineering at Sun Yat-sen
University, China, in 2017. She is working toward
the Ph.D. degree in the Department of Computer Sci-
ence and Technology at Nanjing University, China. Her
research interests include datacenter networks and
network architecture.

Bingchuan Tian received the B.S. degree from the
Department of Computer Science and Technology at
Nanjing University of Aeronautics and Astronautics,
China, in 2016. Now he is a 4th-year Ph.D. student
in Department of Computer Science and Technology
in Nanjing University, China. His research interests
include intent-based networking, congestion control,
and network scheduling.

Chen Tian is an associate professor at State Key Labora-
tory for Novel Software Technology, Nanjing University,
China. He was previously an associate professor at
School of Electronics Information and Communications,
Huazhong University of Science and Technology, China.
Dr. Tian received the B.S. (2000), M.S. (2003) and
Ph.D. (2008) degrees from Department of Electronics
and Information Engineering at Huazhong University
of Science and Technology, China. From 2012 to 2013,
he was a postdoctoral researcher with the Department
of Computer Science, Yale University. His research

http://refhub.elsevier.com/S0743-7315(21)00012-5/sb1
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb1
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb1
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb1
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb1
http://akka.io
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb3
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb3
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb3
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb3
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb3
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb4
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb4
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb4
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb5
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb5
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb5
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb6
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb6
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb6
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb7
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb7
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb7
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb8
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb8
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb8
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb9
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb9
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb9
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb10
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb10
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb10
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb10
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb10
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb11
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb11
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb11
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb12
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb12
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb12
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb13
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb13
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb13
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb14
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb14
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb14
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb14
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb14
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb15
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb15
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb15
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb15
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb15
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb16
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb16
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb16
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb17
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb17
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb17
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb18
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb18
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb18
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb19
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb19
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb19
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb20
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb20
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb20
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb21
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb21
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb21
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb22
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb22
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb22
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb23
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb23
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb23
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb23
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb23
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb24
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb24
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb24
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb25
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb25
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb25
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb25
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb25
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb26
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb26
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb26
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb27
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb27
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb27
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb27
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb27
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb28
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb28
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb28
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb28
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb28
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb29
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb29
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb29
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb29
http://refhub.elsevier.com/S0743-7315(21)00012-5/sb29

J. Zheng, L. Qin, K. Liu et al. Journal of Parallel and Distributed Computing 152 (2021) 45–56

i
d

nterests include data center networks, network function virtualization,
istributed systems, Internet streaming and urban computing.

Bo Li received the B.S. degree from the Department of
Computer Science and Engineering at the Nanjing Uni-
versity of Science and Technology, China, in 2016. He
is a 2nd year M.S. student in Nanjing University, China.
His research interests include distributed networks and
systems.
56
Guihai Chen is a distinguished professor of Nanjing
University. He earned B.S. degree in computer soft-
ware from Nanjing University in 1984, M.E. degree
in computer applications from Southeast University
in 1987, and Ph.D. degree in Computer Science from
the University of Hong Kong in 1997. He had been
invited as a visiting professor by Kyushu Institute
of Technology in Japan, University of Queensland in
Australia and Wayne State University in USA. He has a
wide range of research interests with focus on parallel
computing, wireless networks, data centers, peer-to-

peer computing, high-performance computer architecture and data engineering.
He has published more than 350 peer-reviewed papers, and more than 200 of
them are in well-archived international journals such as IEEE TPDS, IEEE TC,
IEEE TKDE, ACM/IEEE TON and ACM TOSN, and also in well-known conference
proceedings such as HPCA, MOBIHOC, INFOCOM, ICNP, ICDCS, CoNext and AAAI.
He has won 9 paper awards including ICNP 2015 best paper award and DASFAA
2017 best paper award.

	Django: Bilateral coflow scheduling with predictive concurrent connections
	Introduction
	Background and motivation
	Background
	Sender-driven and receiver-driven scheduling approaches can be sub-optimal
	CCT can be prolonged due to too many or too few concurrent connections

	Django overview
	A scheduling framework
	Prediction
	Local scheduler
	Micro scheduler
	Global scheduler

	Implementation
	Framework design
	Testbed setup

	Experimental evaluation
	Methodology
	Queue buffer estimation
	Testbed results
	Simulation results

	Related work
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References

