2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS) | 978-1-6654-1494-4/21/$31.00 ©2021 IEEE | DOI: 10.1109/IWQ0S52092.2021.9521295

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

CLEAN: Minimize Switch Queue Length via
Transparent ECN-proxy in Campus Networks

Xiaojie Huang*, Jiaqing Dong*, Wenzheng Yang*, Chen Tian*
Jun Zhou', Yi Kaif, Mingjie Caif, Nai Xia*, Wanchun Dou*, Guihai Chen*
*State Key Laboratory for Novel Software Technology, Nanjing University, China
fHuawei, China

Abstract—Campus networks are widely deployed for organi-
zations like universities and large companies. Applications and
network-based services require campus networks to guarantee
short queue and provide low latency and large bandwidth.
However, the widely adopted packet-loss-based congestion control
mechanism in client hosts builds up long queues in the switch
buffer, which is prone to packet loss in burst scenarios, resulting
in great network delay. Therefore, a scheme for efficiently control-
ling queue length of shallow buffer switches in campus networks
is urgently needed. Explicit Congestion Notification(ECN) as an
explicit feedback mechanism is widely adopted in data center
networks to build lossless networks. In this paper, we propose
CLEAN, an efficient queue length control scheme based on
transparent ECN-proxy for campus networks. CLEAN is able
to exert fine-grained control over arbitrary client TCP stacks
by enforcing per-flow congestion control in the access point(AP).
It allows the campus network switches to maintain a low queue
length, resulting in high throughput, low latency and zero packet
loss. Evaluation results demonstrate that CLEAN reduces the
maximum queue length of the switch by 86% and reduces the
99th percentile latency by 85%. CLEAN also achieves zero packet
loss in burst scenarios.

I. INTRODUCTION

The campus network has been widely deployed and shows
great value in the market. Enterprises and organizations deploy
campus network to enhance the internet connectivity, improve
the efficiency of enterprise collaboration, and accelerate inno-
vation. Applications and network-based services for enterpris-
es and organizations require the campus network to provide
low latency and large bandwidth.

Most of today’s widely deployed congestion control algo-
rithms in end host devices, such as NewReno [1], CUBIC
[2], etc., are based on packet loss, which is likely to make
the switches pile up long queues. Long, greedy TCP flows
will cause the length of the bottleneck queue to grow until
packet drop happens. In this case, packet loss is easy to
happen when bursts occur, which introduces high latency
and reduces throughput, affecting the application performance.
More importantly, most end host devices in campus networks
are generally personal user devices such as mobile phones and
notebooks. It is not practical to deploy customized protocol
stacks nor do any modifications to the original protocol stacks
on these end host devices.

We have two observations here. One is that most commodity
switches in campus networks are ECN-capable. The other is

978-0-7381-3207-5/21/$31.00 ©2021 IEEE

978-1-6654-1494-4/21/$31.00 ©2021 IEEE

that it is relatively easy to do some modifications to the access
point devices in a campus network.

The basic idea inspired by the observations to solve the
proposed problem is that we modify the AP device and build
an ECN proxy at the AP for flows. The ECN proxy is
transparent to the end host and is able to let the intermediate
switches regard the flow as ECN-enabled and use ECN flags
to notify congestion signal instead of simply dropping packets.
We reduce the receive window field in the returned ACK
to make the sender to slowdown when congestion occurs.
Through this mechanism, we can slowdown the traffic in
congestion without packet loss.

The challenge is how to calculate the appropriate window
size during the lifecycle of a flow. As mentioned above, when
congestion happens, we should modify the receive window
field in the returned ACK packets. Simply halve the window
size or set it to a very small value does slowdown the sender
but will also hurt the bandwidth utilization and throughput at
the same time.

In this paper, we propose CLEAN, a queue length control
scheme based on transparent ECN-proxy for shallow-buffered
switches in campus networks. CLEAN takes over the client-
side congestion control at the last hop(usually the access point,
AP) of the campus network. In CLEAN, the ECN function
of the campus network switches are enabled. It makes the
switchs regard all flows are ECN-enabled through marking
the ECN field of packets as ECT at the entry point of the
campus network. We name this mechanism as transparent
ECN-proxy. In addition, CLEAN takes the advantage of the
traditional TCP window principles, where the actual sending
window should be the minimum of the congestion window and
the receive window. It forces the end hosts to obey congestion
control rules through modifying the receive window field of
the returned ACK packets. CLEAN maintains a status table for
each flow at the AP, meanwhile, it updates and enforces receive
window of each flow according to the network status. With this
mechanism, CLEAN is able to let the campus network switches
maintain a short queue, which avoids congestion, eliminates
packet loss due to buffer overflow, and greatly reduces end-to-
end delay. It is worth noting that CLEAN is implemented under
the premise that the end hosts do not necessarily support ECN
and modification to the end hosts’ network protocol stack is
not required. CLEAN only requires the network switches to be
ECN-enabled which is already satisfied by most commodity

Authorized licensed use limited to: Nanjing University. Downloaded on September 10,2021 at 23:46:31 UTC from IEEE Xplore. Restrictions apply.

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

switches, and do some modifications to the AP devices, which
is practical since all these devices are campus-owned.

CLEAN comes with a carefully designed congestion control
algorithm, which is able to keep the switches always be in a
stable short queue state and guarantees low latency and high
throughput.

We use NS3 simulation to evaluate the performance of
CLEAN. Evaluation results show that CLEAN can always main-
tain a short queue for the switches while ensuring throughput.
In frequent burst scenarios, the maximum queue length of the
switch can be reduced by 86% compared against the original.
The short queue length brings an improvement in latency. For
the 99th percentile, CLEAN reduces the latency by 85%.

II. BACKGROUND AND CHALLENGES

This section first discusses the packet loss encountered in
the production environment of the campus network. Expe-
rience tells that packet loss scenarios are widespread, so a
solution to the campus network packet loss problem is urgently
needed. Some challenges are discussed afterwards.

A. Packet Loss in Campus Networks

A typical campus network topology is illustrated in Fig. 1.
The network includes the core layer, the convergence layer,
and the access layer. AP devices are connected to the access
switches. Promoted by new connection technologies such
as 5G and Wi-Fi 6, wireless access has become more and
more important in campus networks and campus networks are
gradually evolving to an all-wireless network architecture. The
swarming effect of mobile users decides sudden high-density
access may occur anywhere, indicating that bursts may happen
anywhere in the wireless campus.

In such a campus network architecture, the AP as the last
hop is generally the bottleneck. And due to the shrinkage
of bandwidth between layers, core switches and convergence
switches may also become bottlenecks. Becoming a bottleneck
means that the switch/AP will become a congestion point,
which will cause the accumulation of packets in the buffer, and
packet loss will occur when the buffer overflows. Applications
and network-based services for enterprises and organizations
such as real-time communication, real-time video, real-time
collaboration, and real-time project management, require the
campus network to provide low latency and large bandwidth.
Packet loss will hinder the performance of these applications.
Additionally, when the large flow and the short flow coexist,
the establishment of the long queue in the switch harms the
short flow’s demand for low latency, even when no packets
are lost.

From the topological structure diagram alone, the access
switch does not seem to be the bottleneck and should not
experience packet loss. But our production experience tells
that even the non-bottleneck access switches suffer packet
loss. This is caused by the slow start mechanism of traditional
TCP. The windows size will increase exponentially(doubles in
every round trip time) in the slow start phase. For downstream
traffic(from the cloud to end hosts), if the rate of the last hop

Core
Layer

Convergence
Layer

Access
Layer

AP

End
Host

AP exceeds half of the bandwidth capability of the up-layer
access switch, the downstream packet sending rate driven by
the slow start mechanism will exceed the capability of the
downstream port of the access switch after one RTT.

Therefore, even if the access switch is not the bottleneck
in the topology diagram, packet loss still happens. We further
simulated this phenomenon in NS3, and the results verified our
experience, as shown in the Fig. 3(the TCP congestion control
protocol is configured as NewReno). At the beginning(Time
= 0), we start a TCP flow, and add some burst traffic after-
wards(Time = 1 — 3). It can be observed from the figure that
the packet is lost twice, which are caused by the slow start
mechanism of TCP traffic.

B. ECN-based solution and challenges

As an extension of the IP protocol and the TCP protocol,
ECN-enabled switches will set a mark in the IP header a packet
instead of simply drop it to notify the sender when congestion
happens. ECN has been widely used to replace packet-loss
based congestion control mechanisms in data center networks,
such as DCTCP [3] and DCQCN [4].

In this work, CLEAN also takes advantage of ECN mech-
anism to solve the proposed problem. However, ECN mech-
anism cannot be directly applied to campus networks. ECN
requires the joint coordination of intermediate network e-
quipments and end hosts. However, different from the data
center networks, the end host devices in a campus network
are generary personal devices like mobile phones and note-
books belonging to individuals, rather than servers centrally
controlled by the manager of a data center network.

In order to solve the problem, CLEAN introduces a trans-
parent ECN-proxy mechanism and uses the receive window to
control the sending window of the source (section III). With
this specific design, there is still a challenge in order to keep
the switch in a short queue state.

CLEAN modifies the receive window field of returned ACKs
at the AP to enforce calculated window size. The followed
question is, what kind of congestion control algorithm should
CLEAN apply to calculate the appropriate receive window
size? We can reduce the window very low when we perceive
ECN-marked ACKSs, which will obviously empty the queue

Authorized licensed use limited to: Nanjing University. Downloaded on September 10,2021 at 23:46:31 UTC from IEEE Xplore. Restrictions apply.

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

quickly, ensuring zero packet loss. However this will greatly
harm the throughput. On the other hand, when the network is
not congested, how to increase the window is also worthy of
consideration.

III. DESIGN

This section provides the design of CLEAN.

As mentioned earlier, we had three core requirements for
CLEAN: (i) No modification to end host devices, because the
manager of the campus network is only able to control the
intermediate equipments of the network, namely switches or
APs. (i) Able to maintain short queue for the switch/AP thus
ensuring low latency and zero packet loss even in frequent
burst scenarios. (iii) High bandwidth utilization.

A. CLEAN overview

To meet the design requirements, CLEAN comes with an
ECN-proxy based flow control mechanism, which is transpar-
ent to the end hosts and requires no modifications to the end
host devices. Instead, CLEAN requires the cooperation between
APs and the network switches.

Specifically, CLEAN requires the switches in the campus
network to be ECN-enabled and then takes over the congestion
control at the AP. In order to take over the congestion control,
CLEAN does some modifications to the core switch and the
AP device. The first one is that CLEAN forcely marks the
ECN field of packets as ECT(01 or 10) during the negotiation
phase of connection establishment between the host and the
server so that the intermediate switches in the campus will
regard the client and server as ECN-enabled and enable ECN
mechanism for this connection. The second one is that CLEAN
maintains a status table recording the window size and packet
sequences for each flow at the AP, and updates the window size
according to customized congestion control algorithm. CLEAN
takes the advantage of the traditional TCP window principle,
where the actual sending window should be the minimum
of the congestion window and the receive window. It forces
the end hosts and servers to obey its window size through
modifying the receive window field of the ACK packets.

The intermediate switches will regard all connections as
ECN-enabled and will mark the ECN field as CE(11) to
indicate that the network is congested when the queue length
in the switch exceeds a certain threshold.

With these modifications, CLEAN is able to take control of
congestion control and actively respond to ECN notifications
sent by intermediate switches.

The workflow is as follows: when traffic enters the campus
network, the core switch and AP modifies the ECN field in
the IP header of the packet to ECT. When the network is
congested, the AP will receive the ECN notifications(packets
marked with CE), and then notify the source to slow down
through modifying the receive window field of ACKs. After
receiving the returned ACK, the source uses the smaller of
the receive window value and the congestion window value
maintained by the source as its send window size.

ECN: 00 ECN: 10

Core

@ (%F)

Access AP

Data

Convergence

Data + CE

Ack, RWIN Ack

Fig. 2. The overview of CLEAN.

It is worth noting that ECN fields are cleared before a packet
being sent back to the sender or receiver, so that the congestion
window value maintained by the source will be large and
meaningless, and its send window will be dominated by the
receive window.

B. Congestion control

1) ECN configuration for the switch: All switches in the
campus network enable ECN mechanism through the RED
active queue management approach commonly available in
modern switches. In the RED queue, there are upper and
lower thresholds, and the queuing rule performs probability
packet loss according to the length of the queue. In order
to be able to react quickly to network congestion, CLEAN
only sets one threshold and ECN field will be marked as
soon as the queue length exceeds the threshold. Moreover,
the RED queue’s judgment on the queue length is the result
of the Exponentially Weighted Moving Average (EWMA)
calculation, taking into account historical factors. CLEAN sets
the weight of the historical queue to O and set the weight
of the current queue to 1, making the queue length equal to
the current instantaneous queue, speeding up the network’s
response to congestion.

2) Congestion control at the AP: CLEAN maintains status
for each flow(window size, packet sequence, flags, etc.,) at
the AP and runs congestion control algorithm, which also has
slow start, window decrease during congestion, and window
increase during the recovery detection phase. But the conges-
tion control at the AP will be enforced through receive window
and is much simpler than the standard congestion control
protocol. It does not need to consider timeouts, dupACK, and
other complex states, because CLEAN only needs to ensure
that the source can decrease the rate (reduce the window)
when congestion occurs. Such congestion control separates the
control of the window from the packet loss, and eliminates the
drawbacks of the traditional TCP protocol.

Algorithm 1 illustrates the overall process of congestion
control logic at the AP for a single flow. At the beginning when
a flow starts, the isCE flag which refers to the congestion
signal sent by ECN-enabled switches is set to false, and
the isSlowStart flag is set to true indicating that the
flow enters slow start phase similar to the standard TCP
protocol. The isSlowStart flag will be set to false as
soon as congestion happens and isCE becomes true, the
flow then enters the decrease phase. The param ecnEchoSeq
indicates the current sequence number of received CE-marked

Authorized licensed use limited to: Nanjing University. Downloaded on September 10,2021 at 23:46:31 UTC from IEEE Xplore. Restrictions apply.

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

Algorithm 1 Congestion control at the AP
1: if isCE == true then
2: epochStartTime < Now;

3: if ecnEchoSeq>ecnCW RSeq then

4: Wnaz < windowSize;

5 ecnCW RSeq <+ ecnEchoSeq + (windowSize —
1)« MSS,;

6 windowSize «— windowSize/2;

7: Winin < windowSize;

8 isSlowStart < false;

9 end if

10: else if isSlowStart == true then

11: windowSize+ = 1;

12: else

13 K (Wiaz — Winin)/C)Y3;

14t < Now — epochStartTime;

15: windowSize + C * (t — K) + Waz:
16: end if

packet and ecnCWRSeq refers to the next minimum sequence
number that window decrease should happen, ensuring that
window size be decreased at most once in a window time,
similar to the mechanism in DCTCP [3]. If a packet is not
CE-marked, and the flow is not in slow start phase, the flow
then enters the fast recovery and active detection phase.

When the network is not congested, it implies that the
network may have the remaining bandwidth. There are two
stages here, one is fast recovery, that is, the window is restored
to the size of the original congestion point, and the other is the
active detection stage. For the behavior of how to increase the
window, CUBIC is a more mature solution. Therefore, in the
window increase part, we use the CUBIC curve to calculate
the target value that the receive window should reach. The
CUBIC curve’s expression is as follows:

W =Cx(t—K)® 4+ Wax, (1

where Wi, is the window size of the last congestion, C' is a
CUBIC parameter, ¢ is the elapsed time from the last window
reduction, and K is the time required to increase W to Wiyax.
When the network does not encounter congestion, it first
quickly restores to the window size of the last congestion,
and then maintains it for a long time nearby. When there is
no congestion for a long time, it implies that the network has
a large amount of remaining bandwidth unused, so it quickly
detects the upper limit of the bandwidth that can be used.

C. Optimization of window decrease algorithm

From the description of the congestion control algorithm, we
can see that the AP roughly reduces the receive window to half
of the original when congested, which may cause throughput
loss. Therefore, we optimize the window decrease part of the
algorithm. Inspired by DCTCP, we calculate the corresponding
multiplicative decrease factor o according to the degree of

network congestion, use this factor to reduce the window,
instead of fixedly reducing it to half, as shown in (2).

W=Wx(l-a/2).)

DCTCP counts the proportion of CE-marked packets at
the receiver. In order not to destroy the Delayed ACK [5]
mechanism, DCTCP needs to use a two state state-machine
at the receiver. Different from DCTCP, CLEAN directly esti-
mates the degree of network congestion at the AP. The AP
observes whether the incoming data packet has CE marking
and performs statistics. It has no effect on the Delayed ACK
mechanism. The congestion level F' is updated once in a
window, and the multiplicative subtraction factor is calculated
using the EWMA method, as shown in (3). According to the
DCTCP recommendation, g is set to 1/16 in CLEAN.

a=(1l-g)xa+gxF. 3)

We replaced Line 6 of Algorithm 1 with (2). This change
is small but very effective. This optimization allows the link
bandwidth to be fully utilized. In our simulation tests, although
the algorithm can guarantee zero packet loss before and after
optimization, the throughput of a single flow is only 820Mbps
before optimization (the bottleneck is 850Mbps), and after
optimization the bandwidth can be fully utilized.

1V. EVALUATION
A. Setup

We build a campus network topology according to Fig. 1
in NS3. A large server is set to simulate the cloud outside
the campus and sends traffic into the campus network. The
link bandwidth between the server and the campus network
core switch is 100Gbps. The link bandwidth between the
core switch and the aggregation switch is 40Gbps, and the
link bandwidth between the aggregation switch and the access
switch is 10Gbps. There is an AP connected to the access
switch with an 1Gbps link. We configure the wireless protocol
standard as 802.11ax_5G and configure 2x2 MIMO, which can
make the maximum rate of the AP reach 850Mbps. Both the
core switch and the aggregation switch have a shared buffer
of 12MB. The buffer size of the access switch is set to 4MB,
while the AP has a larger buffer of 12MB. The topology is
setup according to our real-world campus network experience
and is supposed to simulate the real campus network architec-
ture to the greatest extent.

As CUBIC is widely deployed on Windows and Linux
machines, we configure the TCP congestion control protocol as
TCP-CUBIC in NS3 in order to show the packet loss situation
encountered by the campus network under the traditional WAN
TCP protocol. We also repeat the experiments with TCP-
NewReno for comparison.

The base RTT is set to 10ms, which is the mainstream
scenario for WAN traffic in campus networks. The ECN
function of the switch is enabled and the threshold is set 150
packets according to the DCTCP recommendation [3].

Authorized licensed use limited to: Nanjing University. Downloaded on September 10,2021 at 23:46:31 UTC from IEEE Xplore. Restrictions apply.

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

mn

Jtl-‘J !]]

< 1500 i gl; i NewReno

g AR i ---- CUBIC

= Bt e M

<1000 [RV —— Clean

=3 l\; . ::::!. L

c b 1ogringd [

9] Y Pogring [

2 500 [aiy L

] i R |

=1 1 Y a : 1

S o

© 0 1 2 3 a 5
Time (s)

Fig. 3. The queue length of the access switch at the non-bottleneck.

B. Performance

1) Queue length and throughput: We first start a TCP flow,
and then add 20 burst flows to test the buffer pressure of the
switch in the burst scenario. As shown in the Fig. 3, when
CLEAN is not applied, due to the greedy feature of TCP, the
flow quickly occupies the buffer of the switch, and a queue is
established in the switch, which is prone to packet loss. After
applying CLEAN, we can see that the length of the queue is
always maintained near the ECN threshold we set. This not
only can significantly reduce the RTT of the traffic, but also
leaves a lot of buffer space to deal with bursts.

It is worth noting that even if the congestion control protocol
is both based on packet loss, the queue length curve of CUBIC
is different from that of NewReno. When the TCP flow starts,
NewReno will lose packets due to slow start, but CUBIC
will not. This is because Hystart [6] is enabled in the newer
CUBIC version, and slow start is exited when continuous ack
is received quickly. Nevertheless, CUBIC still cannot cope
with packet loss in burst scenarios. It can be observed from
the figure that after burst traffic enters, the switch buffer is
quickly filled up and packet loss occurs.

As shown in the Fig. 4, in CLEAN, since both the switch
and the AP maintain a short queue length, the queuing time
is very small, and the RTT is close to the propagation time
plus the transmission time. As NewReno or CUBIC are both
congestion control protocols based on packet loss and packets
will occupy all available buffers. This causes their queuing
time to be several times or even ten times that of the base
RTT, which harms their real RTT.

According to [7], the algorithm based on packet loss has
such a conclusion: if the number of buffers exceeds the BDP of
the connection, then the periodic packet loss caused by buffer
overflows does not result in a reduction in TCP throughput.
Therefore, as shown in the Fig. 5, the sender throughput of
NewReno and CUBIC is slightly larger than the bottleneck
bandwidth, but due to packet loss, their Goodput will be
smaller than the bottleneck bandwidth. In contrast, CLEAN
is basically consistent with the bottleneck bandwidth in terms
of both the sender throughput and goodput, indicating a high
bandwidth utilization.

In addition to the 20 burst flows scenario, we also tested
the queue length of the switch in the 10, 40, and 80 burst
flows scenario. As shown in the Fig. 6, after applying CLEAN,
the switch can maintain the queue length near the threshold
in any scenario. Fig. 6 (b) also shows the maximum queue
length generated at the burst point in the switch. The results

NewReno 870 NewReno
120{ mm cusiC = CUBIC
= Clean % 860 = Clean
100 2450
@ =
£ 80 5840
E 60 5830
o
40 £820
E
20 810
mean 95th-pct 99th-pct SendThput Goodput
Fig. 4. RTT. Fig. 5. The throughput of the sender
and Goodput.
1.0 0}
3
% 800
0.8 g
< 600
0.6 B
g g
0.4 —— burst of 10 flows ° 400
burst of 20 flows 3
0.2 — burst of 40 flows 3200
—— burst of 80 flows x
0.0 = 0

0 100 200 300 400 10 20 40 80
Queue length (packets) The number of burst flows

(a) CDF of queue length
Fig. 6. The queue length in the 10, 20, 40, and 80 burst flows scenario.

(b) max queue length

demonstrates that with CLEAN, the established queue can be
emptied quickly.

2) Convergence: To test whether CLEAN can quickly con-
verge to a fair share, we start a single flow at the beginning,
and then add a flow every 5s. The results are shown in the
Fig. 7. It can be observed from the figure that each joined flow
can converge to their fair share in a short period of time, which
shows that CLEAN performs well in terms of convergence.

V. RELATED WORK

The congestion control protocol of the WAN is developing
very rapidly, from the earlier Reno [8] to NewReno [1], High-
speed TCP [9], BIC [10] and CUBIC [2]. These protocols
work hard to improve TCP performance on paths with high
BDP. However, as congestion control protocols based on
packet loss, they do not care about the length of the queue,
so that they bring high throughput while also bringing high
delay. BBR [11] does not take the occurrence of packet loss
or delay increase as a signal of congestion. Alternatively, it
periodically detects the capacity of the network. As a result, it
has a better control over the queue length. However, we cannot
require all senders and receivers in the campus network to use
BBR. In addition, if the switch buffer is large, the bandwidth
occupied by BBR will be smaller when competing with more
aggressive protocols(e.g. CUBIC).

a — flowl —— flow5
= 750 —— flow2 —— flow 6
=500 flow 3 — flow 7
Q
)
§ 250
c
)

0 5 10 15 20 25 30 35 40

Time (s)

Fig. 7. Time series of throughput.

Authorized licensed use limited to: Nanjing University. Downloaded on September 10,2021 at 23:46:31 UTC from IEEE Xplore. Restrictions apply.

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

In order to control the queue length better, some schemes
based on explicit feedback are proposed, such as ECN [12],
VCP [13], RCP [14], etc. Schemes like VCP and RCP require
switches to perform computation which is not widely available
in most commodity switches. Therefore, ECN is widely used,
especially in the data center networks, such as DCTCP [3],
D2TCP [15], DCQCN [4] and some other strategies [16]—-[18].
They show that ECN can effectively control the queue length
to achieve low latency and high throughput simultaneously.
HPCC [19] uses the INT feature to implement high precision
congestion control. For these protocols, whether using ECN or
INT, they all need the joint support of network intermediate
equipments and end hosts, which is always a major challenge
for campus networks.

To solve this problem, we used the receive window to
control the end hosts. The earlier literature related to this
area has [20]-[22]. They modify the receive window in TCP
acknowledgments returning to the source. These methods are
relatively crude and cannot maintain the switch queue at
a stable length. If the topology has multiple bottlenecks,
each switch needs to perform similar calculations, which is
expensive. They have also been found to be vulnerable to
packet loss and poor compatibility with some TCP sending
operating systems. The recent literature related to the use
of the receive window is VCC [23], [24], which decreases
the receive window to force the guest to have fewer send
packets in the hypervisor. However, VCC is used in multi-
tenant data centers, and it is not suitable for campus network
environments. And more importantly, it does not mention how
to calculate the appropriate window size.

VI. CONCLUSION

In this paper, we propose CLEAN, a queue length control
scheme via transparent ECN-proxy for campus networks.
CLEAN takes over the congestion control for end host devices
transparently through modifying the ECN and receive window
field at the last hop of the campus network. Evaluation results
show that CLEAN can achieve zero packet loss without loss
of throughput, which greatly reduces latency. For the 99th
percentile, CLEAN reduces the latency by 85%.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their valuable comments. This research is supported by the
Key-Area Research and Development Program of Guang-
dong Province 2020B0101390001, the National Natural Sci-
ence Foundation of China under Grant Numbers 61772265,
61802172, and 62072228, the Fundamental Research Funds
for the Central Universities, the Collaborative Innovation Cen-
ter of Novel Software Technology and Industrialization, and
the Jiangsu Innovation and Entrepreneurship (Shuangchuang)
Program. Jiaqing Dong and Chen Tian are co-corresponding
authors.

REFERENCES
[1] S. Floyd, “RFC 6582, https://tools.ietf.org/html/rfc6582.

[2] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS operating systems review, vol. 42, no. 5,
pp. 64-74, 2008.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in
Proceedings of the ACM SIGCOMM 2010 conference, 2010, pp. 63-74.

[4] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale RDMA deployments,” ACM SIGCOMM Computer Communication
Review, vol. 45, no. 4, pp. 523-536, 2015.

[5] R. Braden, “RFC 1122,” https://tools.ietf.org/html/rfc1122.

[6] S. Ha and I. Rhee, “Taming the elephants: New TCP slow start,”
Computer Networks, vol. 55, no. 9, pp. 2092-2110, 2011.

[7]1 S. Varma, Internet congestion control. Morgan Kaufmann, 2015.

[8] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM
computer communication review, vol. 18, no. 4, pp. 314-329, 1988.

[9] S. Floyd, “RFC 3649: HighSpeed TCP for large congestion windows,”
https://tools.ietf.org/html/rfc3649.

[10] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(BIC) for fast long-distance networks,” in IEEE INFOCOM 2004, vol. 4.
IEEE, 2004, pp. 2514-2524.

[11] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Queue, vol. 14, no. 5, pp.
20-53, 2016.

[12] K. Ramakrishnan, S. Floyd, and D. Black, “RFC 3168: The addition of
explicit congestion notification (ECN) to IP,” https://tools.ietf.org/html/
rfc3168.

[13] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One more
bit is enough,” in Proceedings of the 2005 conference on Applications,
technologies, architectures, and protocols for computer communications,
2005, pp. 37-48.

[14] N. Dukkipati, Rate Control Protocol (RCP): Congestion control to make
flows complete quickly. Citeseer, 2008.

[15] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
TCP (D2TCP),” ACM SIGCOMM Computer Communication Review,
vol. 42, no. 4, pp. 115-126, 2012.

[16] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Igbal,
and B. Khan, “Minimizing flow completion times in data centers,” in
2013 Proceedings IEEE INFOCOM. 1EEE, 2013, pp. 2157-2165.

[17] D. Shan, W. Jiang, and F. Ren, “Absorbing micro-burst traffic by
enhancing dynamic threshold policy of data center switches,” in 2015
IEEE Conference on Computer Communications (INFOCOM). 1EEE,
2015, pp. 118-126.

[18] D. Shan and F. Ren, “Improving ECN marking scheme with micro-
burst traffic in data center networks,” in IEEE INFOCOM 2017-IEEE
Conference on Computer Communications. 1EEE, 2017, pp. 1-9.

[19] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “HPCC: High precision
congestion control,” in Proceedings of the ACM Special Interest Group
on Data Communication, 2019, pp. 44-58.

[20] L. Kalampoukas, A. Varma, and K. Ramakrishnan, “Explicit window
adaptation: A method to enhance TCP performance,” in Proceedings.
IEEE INFOCOM’98, the Conference on Computer Communications.
Seventeenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Gateway to the 21st Century (Cat. No. 98, vol. 1.
IEEE, 1998, pp. 242-251.

[21] S. Karandikar, S. Kalyanaraman, P. Bagal, and B. Packer, “TCP rate
control,” ACM SIGCOMM Computer Communication Review, vol. 30,
no. 1, pp. 45-58, 2000.

[22] H.-Y. Wei, S.-C. Tsao, and Y.-D. Lin, “Assessing and improving TCP
rate shaping over edge gateways,” IEEE Transactions on Computers,
vol. 53, no. 3, pp. 259-275, 2004.

[23] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter, and
A. Akella, “ACDC TCP: Virtual congestion control enforcement for
datacenter networks,” in Proceedings of the 2016 ACM SIGCOMM
Conference, 2016, pp. 244-257.

[24] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown,
I. Abraham, and I. Keslassy, “Virtualized congestion control,” in Pro-
ceedings of the 2016 ACM SIGCOMM Conference, 2016, pp. 230-243.

Authorized licensed use limited to: Nanjing University. Downloaded on September 10,2021 at 23:46:31 UTC from IEEE Xplore. Restrictions apply.

		2021-08-25T13:30:39-0400
	Preflight Ticket Signature

