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a b s t r a c t 

Modern data centers are the host for multitude of large-scale distributed applications. These applications 

generate tremendous amount of network flows to complete their tasks. At this scale, efficient network 

control manages the network traffic at the level of flow aggregates (or slices ) who need to share the net- 

work with respect to operator’s proportionality policy. Existing slice scheduling mechanisms can not meet 

this goal in multi-path data center networks. Hence, in this paper, we aim to fulfil this goal and satisfy 

the congestion proportionality policy for network sharing. The policy is applied to the traffic traversing 

congested links in the network. We propose Uranus, a novel slice scheduler based on a combination of 

flow-level control mechanisms. The scheduler implements two-tier weight allocation to individual flows. 

Then, relying on a non-blocking big switch abstraction, slice weights are allocated at the inter-rack level 

by aggregating the weights of rack-to-rack flows. Finally, Uranus can dynamically divide the rack-level 

weight to its constituent flows. We also implement Weighted Virtual Congestion Control (WVCC), an 

end-host shim-layer that enforces weighted bandwidth sharing among competing flows. Trace-driven NS3 

simulations demonstrate that Uranus closely approximates the congestion-proportionality and is able to 

improve the proportional fairness by 31.49% compared to the state-of-the-art mechanisms. The results 

also prove Uranus’s capability of intra-slice scheduling optimization. Moreover, Uranus’s throughput in 

Clos fabrics outperforms the state-of-the-art mechanisms by 10%. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Data center networks (DCN) are shared by multitude of large-

scale distributed applications, such as search engine, advertis-

ing, video streaming, and e-Business. These applications generate

tremendous amount of network flows to complete their tasks. Dif-

ferent flows may have different performance objectives because

of their service requirements, even if they belong to the same

application. For instance, deadline-sensitive flows need to be fin-

ished before deadline [19,42,45,48] , while others are completion-

sensitive and should be finished as soon as possible [3,5,14,19,25–

27,33,47] . In this paper, we borrow the network slicing concept

from 5G standards [4] . A slice consists of all flows in certain type

of applications that share the same application-level performance

objective, such as deadline-sensitive or latency-sensitive. It is more
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E-mail address: h-yin@mail.tsinghua.edu.cn (H. Yin). 

t  

t  

s  

t  

https://doi.org/10.1016/j.comnet.2019.01.039 

1389-1286/© 2019 Elsevier B.V. All rights reserved. 
referable for DCN administrators to manage network traffic with

he granularity of slices instead of individual flows [41] . 

Congestion in data center networks is common since these net-

orks are usually oversubscribed, especially for links between the

ack switch level compared to the available bandwidth at the core

witch level in that there is larger bandwidth fan-in. It is reported

hat packet drops due to congestion can be observed when the

hole network utilization is around only 25% [40] . During conges-

ion, slices compete with each other for available bandwidth on

ongested links. Hence, to achieve performance isolation, admin-

strators can assign weights to different slices and a slice should

et a share of the network proportional to its weight. This weight-

ased management policy should be enforced and respected. 

Existing works fall short to meet this proportional-sharing re-

uirement in data center networks rich in multipaths. For instance,

he prior work Stacked Congestion Control (SCC) [41] schedules

raffic at slice level and aggregates flows in a slice with the same

ource-destination pair into a tunnel. Firstly, SCC is not applicable

o state-of-the-art fabrics for DCN, which usually adopts Clos-based

https://doi.org/10.1016/j.comnet.2019.01.039
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Fig. 1. CLOS-based network example: Fat-tree. 
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ultipath topologies. Unless the whole network can be treated as

 single bottleneck, it is hard for SCC to even approximate network

roportionality. Secondly, a tunnel-based approach is unfriendly to

oad balancing schemes, which results in throughput decrease and

nstability ( Section 2 ). 

In this paper, we present Uranus, a traffic scheduling framework

upporting proportional allocation of network resources among

lices based on flow-level traffic management mechanism. Specif-

cally, Uranus targets congestion-proportionality , which restricts

he network proportionality requirement to the traffic traversing

ongested links [34] . Uranus achieves congestion-proportionality

mong slices through the Proportional Sharing at Network-level (PS-

) allocation scheme proposed by FairCloud [34] . 

We summarize contributions of this paper as follows: 

1. We propose a better and realistic topology abstraction for

state-of-the-art DCN fabrics. By exploring state-of-the-art load

balancing schemes, the in/out traffic to/from each rack can be

evenly spread to rack-to-core links. Thus, the whole core switch

level can be abstracted as a non-blocking big switch. With the

big-switch abstraction, proportional scheduling among slices

can be achieved. 

2. We propose and enforce rack-level proportionality among

slices. Based on the topology abstraction, Uranus introduces a

two-tier weight allocation scheme for allocating weights among

individual flows. Uranus aggregates flows in a slice with the

same source-destination rack-pair as a (virtual) rack-flow. At

the inter-rack tier, a slice’s weight is allocated to its rack-flows,

following the PS-N scheme. As a result, Uranus can closely ap-

proximate the congestion-proportionality among slices. 

3. Uranus supports intra-slice optimization for flows of differ-

ent objectives. At the intra-rack tier, Uranus dynamically di-

vides a rack-flow’s weight to its constituent flows. This design

enables the objective-oriented scheduling inside a slice. 

4. We present and analyze WVCC, a scalable per-flow weight

enforcement mechanism. In Uranus, WVCC works as a flow-

level weight enforcement module, which is able to proportion-

ally allocate bandwidth among competing flows with great scal-

ability. Using fluid model analysis, the convergence characteris-

tics of WVCC are mathematically proved ( Section 4 ). 

We have evaluated Uranus from several aspects. Concerning the

nforcement, WVCC, we evaluate the model with Matlab emula-

ion together with NS3 simuation. The results demonstrate that

VCC is work-conserving and can enforce proportional sharing at

ow-level in congested links. We further test WVCC with Linux

ernel implementation and the results also prove WVCC’s effec-

iveness and work-conserving feature. Then we evaluate the whole

ramework with trace-driven NS-3 simulations. In terms of net-

ork proportionality, Jain’s-index [21] is adopted as the metric.

ranus closely approximates the congestion-proportionality and

mproves proportional fairness around 31.49% compared with the

CC design. In terms of intra-slice optimization, Uranus reduces the

eadline-miss ration by around 25% on average and reduces AFCT

y 20% under high load pressure. Uranus can further improve an

ndividual slice’s performance in scenarios where slices with dif-

erent objectives coexist. Finally, from the perspective of network

tilization, the throughput of Uranus outperforms SCC by 10% in

los fabrics ( Section 5 ). 

. Background and motivation 

This section first gives a background of data center network

opology, followed by a brief introduction of proportionality in data

enter networks. Then we discuss related works of network shar-

ng in data center environment. Finally, we demonstrate the draw-

acks of an existing approach via toy scenarios. 
.1. Topology of datacenter networks 

Typical data center network topology: State-of-the-art fabrics

or data centers are usually Clos network alike multipath topolo-

ies. For instance, Google’s data center network Jupiter and its an-

estors [40] together with VL2 from Microsoft [15] all adopt clos-

ased topology. In a Clos network topology, switches connect with

ach other and are able to provide non-blocking connections be-

ween a large number of input and output ports far beyond the

apability of a small-sized switch [11] . 

Fig. 1 presents a typical Clos-based network topology named

at-tree in data center. A Fat-tree fabric has three switch layers

alled spine, Agg (Aggregation) and ToR (Top of Rack) from up to

own respectively. Each ToR switch uses half of its ports to con-

ect with servers, with the other half connected to aggregation

witches. Similarly, each Agg switch uses half of its ports to con-

ect with ToR switches, and the other half to connect to spine

witches. For a K-ary Fat-tree, each Agg switch connects to k/2 ToR

 k/2 spine switches while each spine switch connects to k Agg

witches distributed in k pods. Fig. 1 gives a 4-ary Fat-tree net-

ork. 

Bandwidth oversubscription usually happens between the ToR

witch layer and upper layers because in reality, ToR switch usually

onnects to more than k/2 servers. For example, in Fig. 1 , if each

oR is connected to 6 servers and 2 Agg switches with all links

f the same capacity, then this topology has a 3:1 bandwidth fan-

n. In this paper, we use core switch layer to refer to the spine

witches of Clos topologies in general, and use rack layer to refer

o the underlying layers. 

In data centers with clos topology, congestion happens at rack

evel switch due to incast and outcast [40] . When equipped with

tate-of-the-art load balancing schemes such as flowlet [13,43] and

owcell [17] , the incoming/outcoming traffic to/from each rack in

los network will be evenly spread to rack-core links. As a result,

he whole core switch level can be abstracted as a non-blocking

ig switch as in pHost [14] . 

.2. Proportionality in data center networks 

Congestion proportionality: Strict network proportionality is 

nappropriate for data center networks. A slice will be disincen-

ivized to use an uncongested intra-rack link, if it has to yield part

f its inter-rack bandwidth to preserve strict network proportional-

ty. FairCloud discusses general proportional network sharing prob-

ems and proposes congestion-proportionality [34] . 

As a trade-off, congestion-proportionality restricts the network

roportionality requirement only to the traffic traversing congested

inks. In other words, if a link is occupied by only one slice then

he usage of this link will not be accounted in the network pro-

ortionality for that slice. This feature removes the disincentive

o use an uncongested path and encourages high utilization. How-

ver, even congestion-proportionality can incentivize a slice to ar-
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Fig. 2. SCC overview. 
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tificially inflate or deflate its real traffic demand. For example, by

reducing the traffic in a specific congested link, slice A can turn

this link from a congested link to an uncongested link. The band-

width used in this link is then not accounted for proportionality

and A is able to acquire more bandwidth in other congested links

under the same proportionality. By doing this, A could increase its

allocation while hurting the whole network utilization. 

Our key observation is as follows: the oversubscription usually

happens to links between the rack level and the core level. These

links exert higher impact than links inside a rack in terms of traffic.

By always treating all these rack-core links as congested regard-

less of their real-time load conditions, every byte crossing these

links is counted. In this scenario, the utilization incentive consid-

eration of congestion-proportionality can be removed. As a result,

congestion-proportionality fits well for these inter-rack links. Con-

sequently, this paper focuses on preserving the congestion propor-

tionality for inter-rack links. 

Proportional Sharing at Network-level(PS-N): The weight allo-

cation scheme PS-N [34] aims to approximate network wide con-

gestion proportionality irrespective of the communication patterns

among virtual machines (VM). PS-N assigns the weight to a com-

munication pair between VMs X and Y as: 

 X−Y = 

W X 

N X 

+ 

W Y 

N Y 

, (1)

where W X (resp. W Y ) is the weight of X (resp. Y ), N X (resp. N Y ) is

the number of other VMs that X (resp. Y ) is communicating with

across the network. Note that Eq. (1) assumes the weight value is

attached to a specific VM. 

PS-N can completely achieve congestion proportionality if one of

the following conditions holds: (1) congested links have the same

capacity as well as background flows, or (2) the summation of flow

weights in any congested link is proportional to its capacity. 

2.3. Related works of network sharing 

Today’s data centers are shared by many applications, while

flows of different applications may have different performance ob-

jectives because of their service requirements. A lot of works have

been proposed to regulate network sharing in data center. 

Proportional sharing: Seawall provides per-entity weight en-

forcement for each VM-to-VM tunnel [39] , while it does not sup-

port bandwidth allocation at flow-level granularity. FairCloud dis-

cusses general proportional network sharing problems in [34] . 

Bandwidth guarantee: SecondNet [16] and Oktopus [6] provide

predictable guarantees based on the hose network model. How-

ever, they lack work-conservation property and do not utilize the

shared network bandwidth efficiently. Gatekeeper [37] and EyeQ

[23] , built on hose model, can achieve work-conservation. However,

these mechanisms are designed specifically for congestion-free

core networks [15] . ElasticSwitch [35] transforms the hose model

to multiple virtual VM-to-VM connections to provide minimum

bandwidth guarantees for each connection. CloudMirror [24] pro-

poses a placement algorithm and leverages application communi-

cation patterns to provide bandwidth guarantees. Bandwidth guar-

antee is proposed to meet the peak requirements, which is either

inefficient or suboptimal in terms of flow objectives. 

Multi-tenant multi-objective sharing: pFabric [3] and Karuna

[9] evaluate the coexistence of the deadline-sensitive(DS) and

completion-sensitive(CS) flows by setting absolute priority to DS

flows over CS flows. However, performance isolation among flows

with the same objective but of different tenants is not considered.

The previous work [41] first formulated the coexistence problem

of multi-tenant-multi-objective and proposed Stacked Congestion

Control (SCC). SCC proves that coexistence of flows with different

objectives could cause severe interference due to different control
ignals and control laws. SCC adopts a tunnel-based solution and

ntroduces several problems. We will discuss details of SCC in the

ollowing section. 

.4. Problems of sharing the network via SCC 

Fig. 2 illustrates an overview of SCC. SCC defines the term divi-

ion to denote all flows of a tenant that share the same objective.

he tenant-objective term division in SCC is semantically equivalent

o our application-objective term slice , while slice is more consis-

ent with the popular 5G standard definitions. The work in [41] in-

ends to support both performance isolation among slices and ob-

ective scheduling inside each slice. The SCC mechanism centers on

he tunnel design. A tunnel is the basic unit for running weighted

ongestion control, similar to Seawall [38] . In Seawall, flows of the

ame source-destination pair are aggregated into a physical tunnel.

owever in SCC, only flows in a same slice with the same source-

estination pair are aggregated into a tunnel. SCC supports perfor-

ance isolation among slices by dividing the weight of a slice to

ts constituent tunnels. To support objective-oriented scheduling,

 tunnel’s weight is devided to its contained flows. As the sum-

ation of the weight of all tunnels in a slice is fixed, a tunnel’s

eight can be scaled up/down according to the calculation of other

unnels. Fig. 2 is a simplified example to demonstrate the relation.

ssume that two slices A and B are assigned with the same total

eight 1.0. Objective oriented scheduling mechanism may allocate

unnel A 1 with weight 0.1 and A 2 with weight 0.9, while in slice B

t gives weight 0.5 to both tunnels. 

However, SCC has several drawbacks which will hurt its perfor-

ance due to neglect of the network topology and inherent defects

f the tunnel-based design. 

Proportionality violation: Slices should share networks accord-

ng to the administrators’ proportionality policy. SCC’s weight al-

ocation scheme can provide proportional sharing of the network

nly in the condition that the network has a single bottlenecked

ink. We present two scenarios for the case in Fig. 2 . Fig. 3 (a) is

he single bottleneck scenario: the proportionality relation holds

orrectly between two slices, and between the tunnels in the same

lice. The scenario in Fig. 3 (b) has two bottleneck links, where

 1 / B 1 share the same bottleneck and A 2 / B 2 share the other. As slice

 and B compete on different bottlenecks with the same capacity,

roportionality relation does not hold anymore. Specifically, A 1 gets

/6 of L 1 and A 2 gets 9/14 of L 2 . Proportion between A 1 and A 2 be-

omes 7 : 27 rather than 1 : 9, while proportion between slice A

nd slice B changes to 17 : 25 instead of 1 : 1. 

Network utilization decrease: To combat the CPU overhead

roblem brought by physical tunnel , SCC introduces the concept of

irtual tunnel , where flows in a tunnel are not encapsulated with

n additional packet header. A tunnel in SCC uses the aggrated ECN

eedback to estimate the network congestion level and adjust its

ending rate accordingly. The key idea is to combine the conges-
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Fig. 3. Scenarios in which SCC does not work well. 
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ion signals ( i.e. , CE-marked packets) from all contained flows to

stimate the congestion level along the route, and perform tunnel-

evel congestion control. When tunnel-level congestion control is

pplied in a multipath environment, as a tunnel uses different

ows’ congestion signal, bias is introduced due to different con-

estion levels among different paths. For instance, as shown in

ig. 3 (c), there are two bottlenecks L 1 and L 2 . Two flows f 1 and

 2 are in the same virtual tunnel, while f 1 travels through L 1 and f 2 
ravels through L 2 . f 1 shares L 1 with many other background flows,

o that L 1 gets very congested and the congestion level α1 = 1 . f 2 
hares L 2 alone and α2 = 0 . In this scenario, the tunnel gets non-

ero overall α value and reduces the tunnel’s sending rate which

ffects all contained flows. Hence, the throughput of f 2 is signifi-

antly decreased. 

Scalability problem: SCC enforces flow-level bandwidth allo-

ation by assigning a software-based rate limiter for each flow,

hich will introduce high computational overhead and additional

esource consumption [36] . 

. Uranus design 

This section provides an overview of Uranus’s design. We first

iscuss the design requirements of the framework. Then we de-

cribe how Uranus fits the model and approximates network-

evel congestion-proportionality. Finally we discuss the intra-slice

cheduling mechanisms of Uranus for optimizing different flow ob-

ectives. 

.1. Design requirements 

(1) Proportional Sharing at Network-level: One of the main

goals of Uranus is to respect the weight-based network man-

agement policy in the multi-tenant data center network sce-

nario. Uranus should be designed to support proportional

sharing schemes. 

(2) Fit for state-of-the-art DCN topology: Uranus is required

to work well for the majority of current data center net-

work fabrics, which are usually Clos-alike multipath topolo-

gies. Characteristics of clos-based multipath topology should

be taken into account when designing the overall scheduling

framework. 

(3) Optimize for traffic of different objectives: Modern data

centers are the host for multitude of large-scale distributed

applications, whose traffic flows with different objectives co-

exist in the same network. Another goal of Uranus is to

make it possible to optimize scheduling traffic of different

objectives. 

(4) Scalable for DCN environment: In data center network,

tremendous flows exist concurrently. Normal software-based

rate limiter will not scale for this environment. Uranus re-

quires a scalable and light-weight per-flow control mech-
anism to meet the harsh requirement in data center net-

works. 

(5) Work-conserving: In terms of proportional sharing band-

width among flows, it is preferable for the scheduling frame-

work to be work-conserving. With work-conserving, utiliza-

tion of links will be increased. 

.2. Uranus with PS-N model 

Why PS-N: In the long term, traffic is approximately uniformly

istributed across racks in data center networks. Hence, condition

 of PS-N can be closely approximated. As a result, Uranus chooses

o follow PS-N to approximate the congestion proportionality in data

enter networks. By following PS-N scheduling mechanism, Uranus

an closely approximate congestion proportionality at network-

evel and meet requirement (1). 

Focus on racks: Uranus uses a rack to replace the VM in the

riginal PS-N design. Uranus focuses on congestion-proportional

haring across racks in data centers with Clos network, which

s the typical topology for modern data centers as discussed in

ection 2.2 . For a Clos network, by exploring state-of-the-art load

alancing schemes such as flowlet [13,43] and flowcell [17] , the

hole core switch layer can be abstracted as a non-blocking big

witch [14] . With the non-blocking big switch abstraction, Uranus

s able to focus on the incoming/outcoming traffic to/from each

ack. The non-blocking big switch abstraction fits well for modern

ata center networks, and thus Uranus satisfies requirement (2). 

At the rack level, flows from various VMs and servers are aggre-

ated and abstracted into communication patterns among various

acks. Since inter-rack communications contain more flows than

t inter-host level, they are more consistent and stable than that

mong hosts [7] . The completion of one host’s flows does not af-

ect the established rack-to-rack communication patterns, as long

s there are other hosts of the slice in the same rack. 

Uranus adopts a two-tier weight allocation. It aggregates flows

n a slice with the same source-destination rack pair as a (virtual)

ack-flow. At the inter-rack tier, a slice’s weight is allocated to its

ack-flows, following the PS-N scheme. Then at the intra-rack tier,

ranus dynamically divides a rack-flow’s weight to its current run-

ing flows. Eventually, each flow is assigned a global weight value.

his two-tier design enables objective-oriented scheduling inside a

lice, hence requirement (3) is satisfied by Uranus. 

The last two requirements (4) and (5) are satisfied by the scal-

ble per-flow weight enforcement mechanism WVCC, which we

ill discuss later in Section (4) . 

Inter-rack weight allocation following PS-N: 

Calculation of weight allocation among slices is outside the

cope of this paper. We assume weight of each slice is given as

nput either by an algorithm that enforces administrator’s policy

r by a utility maximization function as in [28,34] . 

It is possible to predict communication patterns of slices among

acks [8,32] . Hence in Uranus, we do not require the administrator
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Table 1 

Symbols used. 

d j 
i 

Severity of deadline urgency for flow f j of rack R i 
r j 

i 
Priority value for completion-sensitive flow f j of rack R i 

F k Number of flows for rack R k 
f j 
i 

Flow j in rack R i 
W 

j 
i 

Weight for flow j in rack R i 
Wr i Weight allocated to rack R i 
Tc ( t ) Remaining time needed to complete a flow at time t 

D ( t ) Remaining time before deadline 
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to know the exact traffic matrix, instead we assume that communi-

cation patterns of slices, i.e, among which racks a slice is commu-

nicating, are known by the scheduler and can be used to calculate

weight allocations. 

Weight of each slice is allocated to cross-rack traffic following

PS-N policy. PS-N assigns weight to a rack-flow between rack X and

rack Y following the equation: 

 r X−Y = 

W r X 
Nr X 

+ 

W r Y 
Nr Y 

, (2)

where Nr X (resp. Nr Y ) is the number of other racks with which this

slice’s hosts in rack X (resp. Y ) are communicating across the core

switches. 

Assume that a slice S with weight W S has communications

among n racks R 1 , R 2 , . . . , R n . Weight of each rack, Wr R should be

calculated ensuring that: 

 S = 

∑ 

i =1 , 2 , ... ,n 

W r Ri . (3)

We discuss how to distribute W S to Wr Ri in the following sec-

tion. 

3.3. Intra-slice scheduling and optimization 

In this section we propose the intra-slice scheduling algorithm.

The intra-slice scheduling problem can be divided into two sub

problems. The first one is how to divide a slice’s total weight W S 

among communicating racks. The second is how to allocate a rack’s

weight Wr Ri to its constituent flows. With the ability to allocate

bandwidth among flows proportional to their weights, the flow

scheduling problem can be reformulated as the problem of weight

allocation for flows. Flows inside a slice share the same objec-

tive. We discuss these two sub problems in scenarios of deadline-

sensitive (DS) and completion-sensitive (CS) separately. We demon-

strate later in evaluation that intra-slice scheduling can signifi-

cantly improve performance, which accredits the effectiveness of

Uranus. 

The symbols used are listed in Table 1 . 

3.3.1. Deadline-sensitive scheduling 

The main idea behind deadline-sensitive scheduling is to allo-

cate more resource to flows with earlier deadlines. We use a metric

d , which will be defined formally later, to quantify the deadline ur-

gency for a flow. Noting that each flow connects two racks, the re-

source demand of a flow actually indicates the demand of the two

racks between which the communication happens. Inspired by this

observation, we divide W S to Wr Ri with the following equation: 

 r Ri = 

∑ 

l=1 , 2 , ... ,F i 
d l 

i ∑ 

j=1 , 2 , ... ,n 

∑ 

k =1 , 2 , ... ,F j 
d k 

j 

× W S , (4)

where n is the number of racks, F j is the number of flows for rack

R j and d 
j 
i 

measures the deadline severity for flow f j in rack R i .

Eq. (4) ensures that Eq. (3) is satisfied so that the weight distri-

bution of the DS slice among its constituent cross-rack traffic does

obey the proportionality policy. 
For the second sub-problem, we proposed a straightforward

olution. In deadline-sensitive scheduling, we assume that flow

izes and deadlines are exposed to the scheduling algorithm as

n [31,42] . We divide the weight of a rack to its constituent flows

ased on the flows’ demand. Under the deadline-sensitive re-

uirement, for a flow with remaining size S ( t ) and deadline D ( t ),

he minimum bandwidth required is S(t) 
D (t) 

. Assuming that current

hroughput is B ( t ), then the scale factor for next bandwidth against

urrent throughput should be S(t) /D (t) 
B (t) 

. At the given time t , the ex-

ected completion time T c ( t ) for that flow can be calculated as S(t) 
B (t) 

.

utting the expression into the previous one, we get the scale fac-

or against current throughput with the new expression 

T (t) 
D (t) 

. Then,

e get d(t) = 

T c (t) 
D (t) 

as a good scale factor for weight demand as

t considers both previous throughput as well as deadline sever-

ty thus can be used as an indicator for describing the demand

f a deadline-sensitive flow. The principle for deadline-sensitive

ow scheduling in the paper is to reduce the deadline-miss ra-

io by allocating more weight to more likely-to-fail flows. By using

(t) as the competing factor for flows in each bandwidth realloca-

ion round, the scheduler works in a greedy manner to reduce the

umber of likely-to-fail deadline-sensitive flows. 

.3.2. Completion-sensitive scheduling 

The scheduling mechanism for CS slices is similar to that of DS

lices. The only difference is that the remaining flow size instead

f the remaining time is considered. A straightforward strategy for

S scheduling is the Shortest-Flow-First (SFF) strategy. We use a

etric r , which we will discuss later, to quantify the priority for a

ompletion-sensitive flow. Then we can divide W S to Wr Ri with the

ollowing equation: 

 r Ri = 

∑ 

l=1 , 2 , ... ,F i 
r l 

i ∑ 

j=1 , 2 , ... ,n 

∑ 

k =1 , 2 , ... ,F j 
r k 

j 

× W S , (5)

here n is the number of racks, F j is the number of flows for

ack R j , r 
j 
i 

measures the priority for flow f j in rack R i . Similarly,

q. (5) ensures that Eq. (3) is satisfied so that the weight distribu-

ion of the CS slice among its constituent flows accords with the

roportionality policy. 

When considering allocating the weight of a rack to its con-

tituent flows in completion-sensitive manner, we should always

llocate more weight to flows with smaller remaining size accord-

ng to the SFF strategy. We assume that flow sizes are known for

cheduling algorithm as in [31] . For Shortest-Flow-First strategy,

he metric r in Eq. (5) should satisfy that flows with smaller re-

aining size S have larger r value. A simple expression which sat-

sfies this requirement is r = 

1 
S . More compelicated expressions are

lso possible to approximate the SFF strategy, for instance starva-

ion can be take into consideratin. We choose the simplest one in

his paper to demonstrate the effectiveness of intra-slice schedul-

ng. Consequently, in Step 1 and Step 2 of Algorithm 2 , we replace

he urgency value d ( t ) with the remaining size priority r ( t ). 

Uranus periodically updates weight for each flow with

lgorithms 1 and 2 according to the objective type respectively. 

Note that Uranus works as a general architecture here, as

ong as requirement of Eq. (3) is satisfied, the congestion-

roportionality requirement among slices will be satisfied. Re-

earchers can developed algorithms for different objectives, or al-

orithms that also target DS/CS flows but with better performance.

. Weighted Virtual Congestion Control (WVCC) 

In this section, we provide details of WVCC, the per-flow weight

nforcement mechanism for Uranus. Firstly, we briefly discuss the

esign requirements for the weight enforcement, inherited from
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Algorithm 1: Weight allocation for DS slice. 

1 At the beginning of each decision slot, the slice 

2 Step 1: Update the flow information, { T c (t) , D (t) } 
3 Step 2: Calculate the deadline urgency d(t) = 

T c (t) 
D (t) 

4 Step 3: Calculate the total weight for rack R i with Eq. 4 

5 Step 3: For each f 
j 

i 
Let W 

j∗
i 

= d 
j 
i 
(t) × W 

j 
i 

6 In-slice weight allocation: 

7 for each flow f 
j 

i 
in each rack R i : do 

8 Calculate the scale factor: lambda ← 

∑ 

W 

∗
i 

Wr i 

9 Update the new weight: W 

jnew 

i 
= W 

j∗
i 

/λ. 

Algorithm 2: Weight allocation for CS slice. 

1 At the beginning of each decision slot, the slice 

2 Step 1: Update the flow information, { S(t) } 
3 Step 2: Calculate the remaining size priority r(t) = 

1 
S(t) 

4 Step 3: Calculate total weight for rack R i with Eq. 5 

5 Step 3: For each f 
j 

i 
Let W 

j∗
i 

= r 
j 
i 
(t) × W 

j 
i 

6 In-slice weight allocation: 

7 for each flow f 
j 

i 
in each rack R i : do 

8 Calculate the scale factor: lambda ← 

∑ 

W 

∗
i 

Wr i 

9 Update the new weight: W 

jnew 

i 
= W 

j∗
i 

/λ. 
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Fig. 4. Per-flow differentiation. 
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he requirements of Uranus. Secondly, we provide details of VCC,

hich works as a basis for our design. Then we present detailed

esign of our scalable per-flow weight enforcement mechanism. Fi-

ally, a thorough analysis and evaluation of the model is provided.

.1. Design requirements 

Weighted bandwidth allocation is critical to enforce admin-

strator policy [41] . Uranus requires a per-flow control mecha-

ism which supports proportionality enforcement. The mechanism

hould be scalable and light-weight to fit for data center network,

here tremendous flows exist concurrently. In addition, it is more

referable if the enforcement is work-conserving so that the net-

ork utilization could be increased. 

Traditional software-based rate limiters, such as hierarchical to-

en bucket(HTB) in Linux, do not scale gracefully in data center

cenarios in that they introduce high overhead due to frequent in-

errupts and contention [36] . 

.2. Differentiated QoS over VCC 

Enforcing virtualized congestion control is a new trend for data

enter networks [12,18] . Public cloud data centers are shared by

arious tenants running applications inside virtual machines (VM).

uest VMs have different TCP protocol stacks for different applica-

ion objectives. These TCP versions could rely on different conges-

ion signals ( e.g. , ECN vs. packet drop) and exert objective-specific

ontrol laws. Nevertheless, they cannot share the same underly-

ng physical data center network [41] peacefully. Virtual Congestion

ontrol [12,18] adds a translation layer which “hijacks” the con-

estion control function in the datapath by modifying congestion

ignals and RWND of TCP header, allowing guest-VM applications

ontinue to use their legacy TCP implementations without modi-

cation. Such Virtual Congestion Control mechanisms translate the

egacy TCP versions in tenant VMs into a newer congestion control

lgorithm. Furthermore, the administrator can enforce a uniform
ongestion control rule throughout the whole data center with this

echanism. 

Virtual congestion control mechanism can also enforce differen-

iated Quality-of-Service (QoS) for flows. AC/DC emulates a DCTCP-

ike [1] congestion control algorithm at host virtual switch. AC/DC

roposes a per-flow differentiation mechanism by assigning each

ow with a priority β . The back-off phase of DCTCP has been re-

ised as: 

 wnd ← r wnd ×
[

1 − α

(
1 − β

2 

)]
, (6)

here α is a value indicating congestion level along the path

alculated by measuring the fraction of CE-marked packets. With

q. (6) , flows with lower priority back-off more aggressively than

igher-priority flows. 

The per-flow differentiation algorithm based on Eq. (6) only

rovides qualitative rather than quantitative bandwidth allocation

mong flows. We use the NS3 simulation to illustrate this issue,

here four flows with β values [1, 1, 2, 3]/4.0 competing at a sin-

le link. As shown in Fig. 4 (a), after convergence the flows with

he same priority get similar throughput, while flows with higher

riority obtain higher throughput. 

However, the priority value β cannot provide proportional

andwidth allocation among these flows accurately. In fact, β in

q. 6 is a priority value which only describes the back-off strength,

ithout considering the increase phase. We further analyze the ef-

ect of β in the next subsection with fluid model. 

.3. WVCC design 

In Uranus, we develop WVCC enforcement for data center

etworks. Inherited from virtual congestion control mechanisms,

VCC does not require any modifications to legacy TCP stacks in

enant-side VMs. It is a novel per-flow differentiation mechanism

apable of proportionally allocating bandwidth among flows. 

Overview: WVCC is implemented in the datapath of the hy-

ervisor, similar to AC/DC [18] and vCC [12] . With this architec-

ure, Uranus is able to work without any TCP stack modifica-

ions in tenant-side environments. The sender and receiver mod-

les work together to enforce the per-flow weighted congestion

ontrol with uniform congestion signal(i.e, ECN) through changing

he receive window (RWND) field in incoming ACK packets. Specif-

cally, WVCC algorithm calculates the weighted congestion window

 cwnd ∗) value. RWND is modified only when cwnd ∗ is smaller than

he original RWND set by the receiver. 

Algorithm: WVCC’s algorithm builds on top of DCTCP [1] .

witches are required to mark CE bits when packets in buffer ex-

eed a threshold. Similar to DCTCP, we maintain the same vari-

ble α, which can be used to measure the extent of congestion in

he network. WVCC shares same features with TCP, such as slow

tart, congestion avoidance, and fast recovery. Upon receiving an
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Fig. 5. Evaluation results of WVCC. 
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ACK, WVCC calculates new congestion window: 1 

cwnd ∗ ← 

{
cwnd ∗ × (1 − α/ 2) , ECE bit of ACK set; 
c wnd ∗ + w/c wnd ∗, other wise . 

(7)

where w ( w < 1) is the weight for that flow. When combined with

slice scheduling in Section 3.3 , w is the per-flow weight updated

by scheduling Algorithms 1 and 2 . Algorithms 1 and 2 periodically

distribute slices’ weight to contained flows. 

4.4. Fluid model 

We develop a fluid model to analyze WVCC. The model assumes

that all the flows compete on a single bottleneck link with ca-

pacity C , considering N long-lived flows with different weights w i 

( i = 1 , . . . , N). For each flow i, W i ( t ) denotes the window size and

αi ( t ) stands for congestion level along the path. q ( t ) represents the

queue size of the bottleneck switch port. 

Firstly, we analyze dynamics of W i ( t ). In terms of the weighted

additive increase part in Eq. (7) , after each RTT, the window will

increase by w i . Consequently we have 
dW i 
dt 

= 

w i 
R (t) 

describing the in-

crease phase. Regarding the multiplicative decrease phase, the win-

dow size will be reduced by a factor of α( t )/2 when packets are

marked (i.e., p(t − R ∗) = 1 ), and this occurs once per RTT. Hence

for this part, 
dW i 
dt 

= −W i (t) αi (t) 
2 R (t) 

p(t − R ∗) . With all these equations

together, we have: 

dW i 

dt 
= 

w i 

R (t) 
− W i (t) αi (t) 

2 R (t) 
p(t − R 

∗) . (8)

Here, p(t) = 1 { q (t) >K} is a binary variable that indicates the packet

marking process at the switch. Specifically, a new packet is marked

only when the queue size exceeds the threshold K . The packet

marking indicator p ( t ) affects Eqs. (8) and (10) with a fixed ap-

proximate delay R ∗ = d + K/C. 

Then we analyze the dynamics of αi ( t ), which measures the

congestion level of the link. α is updated once for every window

of data (roughly one round-trip time) as follows: 

α ← (1 − g) α + gF , (9)

where F is the fraction of packets marked in the most recent win-

dow of data, and 0 < g < 1 is a fixed update coefficient. So every

round-trip time, α changes by g(F − α) . Consequently, we have: 

dαi 

dt 
= 

g 

R (t) 
(p(t − R 

∗) − αi (t)) . (10)

Finally, the dynamics of queue length q ( t ) is relatively simple: 

dq 

dt 
= 

∑ N 
i =1 W i (t) 

R (t) 
− C. (11)

Eq. (11) models the queue evolvement: 
∑ N 

i =1 W i (t) is the net input

rate and C is the link capacity. 

To complete the formation, another equation R (t) = d + q (t) /C

is needed, denoting the round-trip time (RTT) where d is the prop-

agation delay for all the flows and q ( t )/ C represents the queueing

delay. 

Now we have the complete fluid model: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dW i 

dt 
= 

w i 

R (t) 
− W i (t) αi (t) 

2 R (t) 
p(t − R 

∗) , 

dαi 

dt 
= 

g 

R (t) 
(p(t − R 

∗) − αi (t)) , 

dq 

dt 
= 

∑ N 
i =1 W i (t) 

R (t) 
− C, 

R (t) = d + q (t) /C. 

(12)
1 Window cut happens at most once per window of data. 

m  

u  

j  
Steady state analysis: For simplicity of analysis in steady state,

e change Eq. (8) into: 

dW i 

dt 
= 

w i 

R 

∗ − α
W i (t) 

2 R 

∗ , (13)

here R ∗ and α are constant. This simplification is reasonable in

hat at steady state, round-trip time and α are comparatively sta-

le. At steady state, the additive increasement and multiplicative

ecreasement of the window size will be roughly equal in one RTT.

o we have: 

R ∗
 

0 

dW i 

dt 
d t = w i − α

R ∗∫ 
0 

W i (t) 

2 R 

∗ d t = 0 . (14)

ssume the average window size at steady state is W 

∗
i 
, then we

ave: 

R ∗
 

0 

W i (t) dt = K ∗ W 

∗
i , (15)

here K is a constant. Combine this with Eq. (14) , we conclude

hat: 

 

∗
i ∝ w i , (16)

hich means average windows size of each flow is proportional to

ts weight at steady state in WVCC. The difference between this

odel and the original DCTCP fluid model is that the additive in-

rease coefficient w i takes the place of a unit additive increment. A

ow with weight w i is equivalent to accumulating w i parallel iden-

ical unit flows. As a result, the throughput of a weighted flow, as

ell as its change in terms of throughput, is proportional to its

eight. 

Similarly, for AC/DC we have simplified equation derived from

q. (6) : 

dW i 

dt 
= 

1 

R 

∗ − W i (t) 

2 R 

∗ α

(
1 − β

2 

)
, (17)

rom which we cannot derive a proportional relation between W 

∗
i 

nd β . 

Emulation: According to (12) , we develop the model with MAT-

AB. We translate the equations of (12) into forms of Delay Dif-

erential Equations and solve them with dde23 in MATLAB. The

ATLAB emulation code is publicly available at [46] . We setup four

ows with random initial window and each weights [1, 2, 3, 4]/5.0

espectively, competing on a single bottleneck. As Fig. 5 (a) illus-

rates, these four flows get their throughput share proportionally

n steady state. 

. Evaluation 

This section evaluates the effectiveness of Uranus and deter-

ines if Uranus outperforms the existing solution. We first eval-

ate the weight enforcement component of Uranus, WVCC, to

udge whether it can achieve flow-level proportional sharing in
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work utilization than tunnel-based scheduling mechanisms. 
ongested links. Then we evaluate the performance of Uranus

rom three aspects: network proportionality, objective-oriented op-

imization and network utilization. 

.1. Evaluation of weight enforcement: WVCC 

.1.1. NS3 simulation 

We implement WVCC in NS3 and demonstrate the flow-level

roportional bandwidth allocation capability. We test WVCC with

 dumbbell topology in a dynamic scenario, where we setup three

ows which start one after another, sending packets as fast as they

an in different hosts with weights [1, 2, 3]/4.0, competing on the

ame bottleneck link. Fig. 5 (b) shows that each time a new flow

rrives, all flows converge to a new steady state with bandwidth

hare proportional to their weights. This simulation result accords

ith the fluid model analysis and also demonstrates that WVCC

s work-conserving and can achieve proportional sharing in con-

ested links. 

.1.2. Linux Kernel implementation 

In this section, we discuss the implementation details of WVCC

s a loadable kernel module in Linux Kernel. Its performance is

valuated by reproducing similar scenario as shown previously.

VCC is a light shim-layer that sits between the TCP/IP stack (or

uest VMs) and the link-layer (or Hypervisor). The module is built

sing the popular NetFilter [29] framework which is an integral

art of Linux kernel. Netfilter uses hooks that attach to the data

ath in the Linux kernel just above the NIC driver. This system de-

ign dose not modify the TCP/IP stack of both the host and guest

Ses. Since the implementation is realized as a loadable kernel

odule, it is easy to deploy in current data centers. The mod-

le intercepts all incoming TCP packets destined to the host or its

uests right before it is pushed up to TCP/IP stack handling (i.e., at

he post-routing hook). First, the 4 identifying tuples (e.g., source

nd destination IP address and Port numbers) are hashed and the

ssociated flow is indexed into the Hash Table. The hash is cal-

ulated via Jenkins hash (JHash) [22] . Then, TCP packet headers

re examined so that the flag bits are used to choose the right

ourse of action (i.e., SYN-ACK, FIN or ACK). The module does not

mploy any packet queues to store the incoming packets. It only

tores and updates flow entry states (i.e., ECN marking counts, ar-

ival time and so on) on arrival of segments. WVCC is light-weight

odule and does not require fine-grained state collection and han-

ling. It uses 4-tuples for hashing, uses kernel built-in hash func-

ions [22] and performs minimal modifications on the TCP header.

e collect various system load statistics during the various exper-

ments with WVCC and they prove that there is no noticeable in-

rease (1–3%) in the load due to the added processing of WVCC.

or SCC, we replicate the experiments and the additional overhead

ncrease is around 10–16%. Moreover, virtualized data centers run

irtual switches on the end-hosts to manage tenants’ virtual net-

orks [44] . These operations are readily performed by the virtual

witches as they maintain a hash-based flow tables and hence in-

roduce little overhead to CPUs. 

Experimental setup: 

To put WVCC to the test, we use a small-scale testbed consist-

ng of 4 servers interconnected via 1 server running a software

witch (or OpenvSwitch [30] ). As shown in Fig. 8 , the testbed is or-

anized into 3 senders and 1 receiver. Each server is connected to

he OvS switch via 10 Gbps link which can run at speed of 1 Gbps

r 10 Gbps. The average RTT in the network is ≈ 1 ms. The servers

re loaded with Ubuntu Server 16.04 LTS with kernel version (4.4).

he WVCC end-host module is installed and loaded on demand in

he host OS whenever necessary. The OvS ports are configured us-

ng Linux Traffic Control to use RED AQM with marking threshold

atching the DCTCP settings. We install the iperf program [20] to
mulate long-lived background traffic (e.g., VM migrations, back-

ps) in the experiments. The iperf traffic runs for long periods and

n the meanwhile, the instantaneous, moving average and overall

verage throughput are reported. We use weights of (1/4, 2/4, 3/4)

hich translates to (1/6, 1/3, 1/2) of the bottleneck capacity. 

Results and discussion: 

We run WVCC in two scenarios. In the first one, all flows start

t the same time in the beginning (i.e., t = 0 ) and the experiments

ast for 100 s. In the second scenario, we evaluate the convergence

peed of WVCC. Hence, we set the experiment to let two flows

1 and 2) start at t = 0 and last for 100 s, while the third flow

tarts at t = 50 and lasts until the end of the experiment at 150 s.

ig. 6 (a)–(c) show the instantenous, moving average and overall av-

rage for the first scenario respectively. Fig. 7 (a)–(c) show the same

etrics for the second scenario. The results in both scenarios show

hat WVCC is able to achieve the goal of congestion proportionality

mong various flows according to their allocated weights. Specifi-

ally, Fig. 7 (a) shows that as soon as two flows (1 and 2) finish,

ow 3 consumes all available bandwidth quickly, which demon-

trates WVCC is work-conserving. Moreover, the fast convergence

peed of WVCC allows fast reaction to events such as flow ar-

ivals/departures as well as any weight adjustments by the oper-

tor. 

The convergence time of WVCC is similar to that of DCTCP,

hich is in the order of 20–30 ms at 1Gbps, and 80–150 ms at

0 Gbps [2] . In data centers, for nearly 70% of the ToR pairs, the

raffic remains stable for several seconds on average [8] , which is

nough for our enforcement to take effect. 

.2. Evaluation of Uranus 

In this section we evaluate the performance of Uranus from sev-

ral aspects. Specifically, the evaluation intends to answer the fol-

owing questions: 

• Can Uranus achieve better network proportionality? Network

proportionality is Uranus’s fundamental capability, with which

Uranus will be able to isolate different slices in the same net-

work and further to apply intra-slice flow scheduling. In order

to evaluate Uranus in terms of network proportionality, we test

Uranus under different proportion values and use Jain’s fairness

Index as a metric to quantify the proportional fairness. It is ob-

served that Uranus improves proportional fairness by around

21.25%–31.49%. 

• How does the intra-slice scheduling of Uranus work? Net-

work proportionality enables Uranus to correctly allocate re-

sources to different slices among congested links, while intra-

slice scheduling enables Uranus to optimize in-slice objectives.

We evaluate Uranus with scenarios where flows have different

objectives. We first evaluate Uranus in isolation scenario, where

all slices have the same objective. In isolation scenario, Uranus

reduces the deadline-miss ratio by around 25% on average and

reduces AFCT by 20% under high load pressure. Then we evalu-

ate Uranus against the scenario where slices with different ob-

jectives coexist, in which both inter-sclice resource allocation

and intra-slice optimization are both evaluated. With flows of

different objectives coexist, Uranus also shows the ability to im-

prove performance. 

• Can Uranus achieve better network utilization? Section 2.4

reveals that tunnel-based weight enforcement method intro-

duces decreased network utilization due to biased congestion

signal. We evaluate Uranus from the perspective of network

utilization against tunnel-based network sharing solution. We

measure the aggregated bandwidth occupation, which illus-

trates that Uranus gets an additional 10% improvement in net-
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Fig. 6. Performance metrics of WVCC in the first experimental scenario. 

Fig. 7. Performance metrics of WVCC in the second experimental scenario. 

Fig. 8. A simple dumbbell topology testbed for WVCC evaluation. 
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Experiment setup: We use a three-layer Fat-Tree topology for

NS3 simulations. The same topology is used in the simulations un-

less specified otherwise. The experiment adopts a 4-ary Fat-Tree

similar with Fig. 1 , with 4 core switches, 8 aggregator switches, 8

ToR switches, each ToR switch connected to 8 nodes. The capac-

ity of edge links from server to ToR switch, from ToR switch to

Agg switch is 1 Gbps, and core links is 10 Gbps. Switches in the

network are ECN enabled with ECN marking threshold set to 65

packets. The maximum end-to-end RTT is 300 usec. The network

is equipped with flowcell load balancing module for this simu-

lation. We re-implement SCC and its tunnel-based scheduling al-

gorithms described in [41] in NS3 with the same topology. SCC

adopts virtual-tunnel in the evaluation experiments. 

In our evaluation, we consider deadline-sensitive and

completion-sensitive flows. Deadline-sensitive traffic uses D 

2 TCP

[42] and completion-sensitive traffic uses L 2 DCT [27] as legacy
ransmission protocols with defalut parameters from respective

apers at the hosts. We replicate WebSearch [1] , Data-mining

15] and MapReduce [10] workloads by generating traffic with

orresponding flow-size distribution. Regarding deadline flows, the

eadlines are exponentially distributed using guidelines from [27] . 

.2.1. Comparison of network proportionality 

In this section, we evaluate the performance of Uranus from the

erspective of network proportionality. For comparison, we setup

wo slices in the network. Data center applications tend to adapt

andomness to improve their performance [15] . For instance, dis-

ributed file system spreads data chunks randomly across servers

or better load distribution and redundancy. Randomness used in

ata-center applications results in poor summarizability and un-

redictability of traffic patterns [15] . So the traffics we setup in

ach slice are uniformly distributed across racks. 

Before we generate traffic for these two slices, we generate

ackground traffic randomly among racks, consuming around 10%

andwidth resource. Background traffic together with slice traffic

ake the whole network a little overloaded. Specifically, at each

ost sending packets, the client works as a bulk-sender , i.e, send-

ng packets as fast as possible. We vary the weight among these

wo slices from 1 : 4 to 1 : 1, with proportion values of [0.25, 0.50,

.75, 1.00] respectively. We compare the network proportionality

chieved by Uranus and SCC for each proportion value. This work

pplies Jain’s fairness index [21] as a metric to quantify network

roportionality. 

For clearness, we present the normalized throughput curve of

ranus and SCC under weight 1 : 2 in Fig. 9 (a) and (b) respec-

ively. As Uranus follows weight allocation algorithm of PS-N, it

losely approximates congestion-proportionality. Fig. 9 (a) shows

hat Uranus achieves network-wide proportionality almost ideally.

n terms of SCC, as it allocates weight among tunnel pairs with-

ut considering network proportionality, it gradually loses net-

ork proportionality as flow scheduling happens. Fig. 9 (c) com-
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Fig. 9. Comparison of network proportionality. 

Fig. 10. Flow scheduling in isolation scenario. 
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Fig. 11. Interference of coexistence. 
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ares Jain’s fairness index between Uranus and SCC under differ-

nt proportion values. It is observed that Uranus always achieves

uch better network proportionality than SCC. The improvement

s around 21.25%–31.49%. 

.2.2. Effectiveness of intra-slice scheduling 

In this section, we evaluate the effectiveness of Uranus’s intra-

lice scheduling algorithms for flows with deadline-sensitive and

ompletion-sensitive objectives. We use the fraction of missed

eadlines, and average FCT (AFCT) as the performance metrics for

valuating the DS and CS flows respectively. 

Isolation scenario: 

We first evaluate the effectiveness of Uranus’s intra-slice

cheduling algorithms under the condition where no coexistence

f flows with different objectives happens. Specifically, during each

xperiment, only one slice with a specific objective exists in the

etwork. We compare Uranus against legacy transmission proto-

ols, i.e. D 

2 TCP for DS flows while L 2 DCT for CS flows, with default

arameters set according to respective papers. 

In the experiment, we use WebSearch workload and tune the

etwork load from low to high ( 0 . 1 − 0 . 9 ). The senders generate

raffic according to a Poisson process, with workload CDF as input

nd λ calculated according to λ = 

l inkrate ∗l inkl oad 
mean f lowsize 

so that the aver-

ge bandwidth requirement of the generated traffic accords with

etwork load. For each network load, we generate traffic with the

ame parameters in the network for scenarios with and without

ranus scheduling. 

For deadline-sensitive traffics , deadlines are exponentially dis-

ributed using guidelines from [27] and assigned to each flow.

eadline-miss ratio is collected at the receiver side. The exper-

ment for each network load is replicated 3 times and average

eadline-miss ratio is calculated. Fig. 10 (a) shows that Uranus re-

uces the deadline-miss ratio by around 25% on average under dif-

erent load pressure. 

For completion-sensitive traffics, The completion-time of each

ow is collected at the receiver side. Similarly, the experiment

or each network load is replicated 3 times and average flow

ompletion-time is calculated. Uranus reduces AFCT by 20% at high
oad pressure as shown in Fig. 10 (b). When the network is less

ongested, i.e., under lower load pressure, Uranus is only slightly

etter than L 2 DCT. 

Coexistence scenario: 

Then we examine whether intra-slice scheduling of Uranus

orks when flows of different objectives coexist in the network.

n this experiment, we setup two slices, one is deadline-sensitive

hile the other is compeletion-sensitive. We also use WebSearch

orkload as the traffic pattern as in previous section and traffic

s generated according to Poisson process. The parameters for the

oisson process are calculated according to given network capacity

nd network load. Specifically, the two slices share the same Pois-

on parameters so that the overall bandwidth requirement of the

wo slices are the same and they are expected to share the net-

ork equally. For deadline-sensitive flows, a deadline is assigned to

ach flow and deadlines are exponentially distributed using guide-

ines from [27] . 

We first consider the interference caused by coexistence of traf-

cs with different objectives under medium network load. We start

he deadline-sensitive slice first and collect the deadline-miss ra-

io as benchmark. Then we start the completion-sensitive slice

nd collect the deadline-miss ratio of deadline-sensitive slice un-

er scenarios with and without Uranus. The results are illustrated

n Fig. 11 (a). Similarly, We start the completion-sensitive slice first

nd collect the average flow-comption time as benchmark. Then

e start the deadline-sensitive slice and collect the average flow-

ompletion time of completion-sensitive slice under scenarios with

nd without Uranus. The results are illustrated in Fig. 11 (b). 

As illustrated in Fig. 11 (a) and (b), coexistence of flows with dif-

erent objectives does harm the overall performance. The deadline-

iss ratio of DS traffic increases over 4X while AFCT of CS flows

ncreases 5X on average. With Uranus, the deadline-missing ratio

f DS is reduced by 30% and AFCT of CS flows reduces about 10%

nder medium load pressure. 

Then we replicate the experiment with different network load.

t is observed that intra-slice scheduling algorithm of Uranus func-

ions well under different load pressure in coexistence scenarios.

s shown in Fig. 12 (a), Uranus reduces the deadline-miss ratio by
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Fig. 12. Flow scheduling in coexistence scenario. 

Fig. 13. Comparison of network utilization. 
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about 18% on average. However, in terms of AFCT, though Uranus

works under different network load, the effectiveness becomes less

significant when the load gets high. We leave the improvement of

scheduling algorithms as a future work. As the workloads change

to Data-mining and MapReduce, we get similar results. We omit

the results due to space limitation. 

Traffics with different objectives are safe to coexist under con-

ditions in which bottleneck bandwidth can be isolated according

to objectives of the traffic. Uranus is equipped with the ability to

enforce flow-level proportional bandwidth sharing, which can be

used to apply performance isolation and thus reduce interference

among traffics with different objectives. The results in this section

demonstrate that Uranus can reduce the impact caused by interfer-

ence and improve performce in situations where flows with differ-

ent objective coexist. 

5.2.3. Comparison of network utilization 

In this experiment, we illustrate the benefits brought by the

flow-level scheduling mechanism from the perspective of net-

work utilization. We replicate WebSearch [1] , Data-mining [15] and

MapReduce [10] workloads. We set WebSearch traffics as deadline-

sensitive and the other two as completion-sensitive. Aggregated

throughput is used as the metric to quantify the network utiliza-

tion. 

We first consider the scenario in which only WebSearch traf-

fics exist in the network. Traffics are generated with different load

pressure. Under each network load, we run SCC and Uranus as

the scheduler separately and collect aggregated throughput respec-

tively. From Fig. 13 (a) we can see that Uranus gets higher ag-

gregated throughput than SCC under any load pressure. We fur-

ther test all three traffic patterns under medium load pressure to

compare the network utilization of Uranus against that of SCC. As

shown in Fig. 13 (b), the result further demonstrates that Uranus

can achieve better network utilization than SCC irrespective of the

traffic patterns. During this experiment, it is observed that packet-

drop rate of SCC is higher than that of Uranus. Biased congestion

signal of tunnel causes delayed response to congestions, which re-

sults in higher packet-drop rate and thus reduces the network uti-

lization. In contrast, as Uranus applies flow-level weighted con-

gestion control, it is capable of achieving finer-grained congestion

signal processing and responding. In conclusion, Uranus improves

overall network utilization by around 10%. 
. Conclusion 

In this paper, we develop Uranus, a slice scheduling frame-

ork that can approximate congestion-proportionality in data cen-

er networks. With existing load balancing techniques, we can treat

he core switch level of state-of-the-art Clos-based data center net-

ork as a non-blocking big switch. We use the Proportional Shar-

ng at Network-level scheme in the rack level bandwidth weight

llocation. We also develop Weighted Virtual Congestion Control

WVCC) mechanism to transparently enforce weight among flows.

xtensive simulations show that Uranus closely approximates the

ongestion-proportionality and improves weighted fairness. Com-

ared with state-of-the-art tunnel-based solution, Uranus also im-

roves network utilization. 
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