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ABSTRACT

Today’s cellular core relies on a few expensive and dedicated
hardware racks to connect the radio access network and the
egress point to the Internet, which are geographically placed
at fixed locations and use the specific routing policies. This
inelastic architecture fundamentally leads to increased capital
and operating expenses, poor application performance and
slow evolution. The emerging paradigm of Network Function
Virtualization (NFV) and Software Defined Networking (S-
DN) bring new opportunities for cellular networks, which
makes it possible to flexibly deploy service chains on com-
modity servers and fine-grained control the routing policies
in a centralized way.

We present a two-stage optimization framework Plutus.
The network-level optimization aims to minimize the service
chain deployment cost, while the server-level optimization
requires to determine which Virtualized Network Function
(VNF) should be deployed onto which CPU core to bal-
ance the CPU processing capability. We formulate these
two problems as two optimization programs and prove their
hardness. Based on parallel multi-block ADMM, we pro-
pose an (O(1), O(1)) bicriteria approximation algorithm and
a 2-approximation algorithm. Large-scale simulations and
DPDK-based OpenNetVM platform show that Plutus can
reduce the capital cost by 84% and increase the throughput
by 36% on average.
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Figure 1: Today’s cellular network architecture.

1 INTRODUCTION

Motivation: Cellular core is a critical piece of the infras-
tructure and provides fundamental cellular-specific functions
such as user authentication, mobility management and ses-
sion management, etc. It also requires to support various
middlebox services to implement per-user accounting and
charging rules of voice calls [16]. However, today’s cellular
infrastructure are experiencing explosive growth in mobile
connected devices. A Report from Cisco suggested that there
would be 3 billion IoT devices and around 11.6 billion mobile
connected devices by 2020 [2]. In the meantime, the growth
rate of signal traffic is more than 50% faster than that of
data traffic [3], which together creates huge stresses on the
cellular core.

On one hand, in order to response the rapid growth of cel-
lular traffic, the providers have to purchase and deploy more
expensive and dedicated hardware racks, which inevitably
leads to unfavorable capital and operating expenses. On the
other hand, current architecture heavily relies on these dedi-
cated middleboxes [30] to connect the radio access network
and the egress point to the Internet, which are geographically
placed at fixed locations and use the specific routing configu-
rations. They cannot perfectly react to the changing traffic
volume and dynamic policies. The renewal cycles of service
innovation have to be prolonged and hindered by vendor
support. Furthermore, with more and more hardware racks
are deployed, the cellular network protocols become complex
and intractable, leading to high management overhead.

Existing works attempt to address these issues above from
different angles. CleanG [18] and LTE-Xtend [21] design a
simplified control protocol in SDN-based cellular architecture
to support emerging mobile devices and services. Usually
a set of cellular-specific functions can be virtualized as a
service chain, which consists of a sequence of VNFs. The
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work [4, 10, 25, 26] consider service chain embedding prob-
lem, i.e., determining which VNF can be deployed onto which
commodity server such that the packets can be sequentially
processed by these VNFs and comply with the service chain
constraints. However, the routing selection and VNF deploy-
ment are optimized separately, which leads to suboptimal
deployment cost in nature. In addition, the traffic has to
route from an upstream VNF located on one server to the
downstream VNF located in another server to perform a
specific function defined by a service chain, which takes up
expensive bandwidth resource due to the traffic transmission
between two servers. To save the network bandwidth con-
sumption, NFVnice [15] and NFP [31] integrate the whole
service chain into a server with multiple physical CPU cores,
where one VNF can be fine-grained deployed onto one physi-
cal CPU core and different VNFs can share the same one [33].
However, the optimization framework of such service chain
deployment with multiple CPU cores has not been explored
in the existing literature.

In this paper we initiate the study of orchestrating the
service chain deployment with multiple CPU cores, aiming
to minimize the provisioning cost, which has the potential
to overcome the drawbacks above. The novelty of our work
lies in a comprehensive exploration and design based on the
multi-core CPU framework, which to our knowledge has not
been done before. The cellular traffic in our framework can
be dynamically managed by a logically centralized controller
in a fine-grained manner. By virtualization techniques, the
operator can accelerate the innovation by shortening the
renewal cycles of service chain deployment, reducing the
capital cost and improving the scalability. In the first stage,
we focus on a joint optimization of traffic routing and the
service chain deployment. Furthermore, for each VNF in a
service chain, we seek to determine which VNF should be
deployed onto which CPU core in the second stage, in order to
balance the processing capacity and improve the throughput.
Our contributions: Firstly, we propose a two-stage opti-
mization framework Plutus for Minimum Provisioning Cost
Problem (MPCP) and Multi-Core Deployment Problem (M-
CDP). The optimization program in the first stage aims to
minimize the total provisioning cost of service chains, where
the required CPU resource and cost for each service chain are
given, such that each link’s load cannot beyond its capacity
and each server’s resource cannot be overbooked. The service
chain consists of a set of VNFs. The program in the second
stage needs to determine which VNF should be placed onto
which CPU core to balance the CPU processing capacity.

Our second contribution is a set of algorithms to solve
MPCP and MCDP. We prove that MPCP and MCDP are
both NP-hard, and thus focus on designing approximation
algorithms. Based on the multi-block ADMM, we first propose
an (O(1), O(1)) bicriteria approximation algorithm and prove
that it yields a constant approximation ratio of δ, while
overbooking the CPU resource capacity at each server by
at most a factor of 2, where δ is the number of pre-defined
paths between source and destination. We further propose a
local search algorithm with constant approximation ratio 2,
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Figure 2: Legacy hardware devices can be virtualized
into multiple software instances (virtualized network
functions).

which improves upon the results of randomized rounding by
greedily moving each VNF at each CPU core.

Our third contribution is a comprehensive performance
evaluation of our algorithms. Large-scale simulations using
synthetic cellular network topologies show that our algorithms
can reduce the total provisioning cost by 84%. Meanwhile,
our algorithms run faster compared to state of the art and
can provide the near optimal solution. We also develop a
prototype on the DPDK-based OpenNetVM platform [34].
Experimental results show that our solution can increase the
throughput by 36% on average.

2 RELATED WORK

SDN-based cellular core: SoftCell [13] and SoftMoW [19]
both present a SDN-based cellular core architecture, where
the signal and data traffic are explicitly managed by a logical-
ly centralized controller. The main difference between them
is that the former aims to minimize the number of forward-
ing rules in the core switches, while the latter focuses on
improving the performance for latency-sensitive applications.
Another line of this work advocate to improve the design of
control plane protocols. For example, CleanG [18] develops a
novel protocol customized for emerging IoT services. LTE-
Xtend [21] extends the existing protocols to support M2M
communication. ProCel [20] increases the EPC capacity by
optimizing the interaction between eNBs and EPC.
EPC network function virtualization: The work in [7,
14, 24, 29] virtualize the cellular-specific functions and guar-
antee that they can provide backward compatible function.
SCALE [6] re-organizes the MME functionality into a front-
end load balancer and back-end virtualized processing clus-
ter to improve scalability. KLEIN [25] routes the traffic to
the available EPC instances located in geographically dis-
tributed data centers and manages virtualized EPC resources.
PEPC [26] decomposes the traditional EPC functions into
different components and reduces frequent communication
by eliminating the duplicated device states.
VNF deployment and scheduling: VNF-P [17] propose
a hybrid VNF deployment model to allocate physical re-
sources, i.e., network services can be provided by a mixture
of traditional dedicated hardware and VNFs. As for the fully
virtualized environment, Ghaznavi et al. [12] present a model
to minimize the operational cost and provide elastic services.
Furthermore, Cohen et al. [10] develop an approximation
algorithm to minimize the distance cost between the clients
and VNFs such that the capacity constraint of single resource
should be satisfied. To reduce the CPU overhead, E2 [22]
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Figure 3: The network-level optimization in the first
stage of Plutus.
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Figure 4: The server-level optimization in the second
stage of Plutus.

integrates network functions into a shared address space and
executes VNFs in a run to completion manner by one thread.
NFP [31] accelerates the packet processing by orchestrating
VNFs in a parallel manner. NFVnice [15] proposes a network
functions scheduling framework on the shared CPU cores to
achieve rate-cost fairness.

3 AN OPTIMIZATION FRAMEWORK

3.1 Cellular Core Background and
Motivation

Today’s cellular network architecture [1] is briefly shown in
Fig. 1. The dotted lines and solid lines represent signaling
traffic and data traffic, respectively. It mainly consists of
the Radio Access Network (RAN) and the Evolved Packet
Core (EPC). The RAN is a radio interface that connects User
Equipment (UE) and eNodeBs (i.e., base stations). Once the
traffic from UE arrives at eNodeBs, it will be forwarded to the
EPC, where the EPC consists of a set of hardware racks such
as Mobility Management Entity (MME), Serving Gateway
(SGW), PDN Gateway (PGW), Home Subscriber Database
(HSS) and Policy Charging Rules Function (PCRF). The
MME handles all the signaling traffic from the UEs and the
eNodeBs, and is responsible for user authentication, mobility
management and session management. The SGW and PGW
process all the data traffic. The SGW forwards the data traffic
from the eNodeBs to the PGW, and PGW queries PCRF for
setting the charging rules. The PGW then forwards the data
traffic to a specific egress switch to the Internet.

This inelastic architecture suffers from poor scalability [27],
high management complexity [5] and capital costs [23]. To
address these issues, the legacy hardware devices can be vir-
tualized into multiple software instances as shown in Fig. 2.
Based on this, we propose a two-stage optimization frame-
work. The network-level optimization in the first stage is
based on SDN architecture shown in Fig. 3, where a logically
centralized controller has a global view and is responsible for
directing the mobile traffic passing through a service chain in
the data plane. Given the flow demand and the pre-defined

service policies, the controller requires to install the optimal
routing and determine the service chain deployment with the
objective of minimizing the total cost, such that each link’s
load in the network cannot beyond its capacity and each serv-
er’s CPU resource cannot be overbooked. The server-level
optimization in the second stage needs to determine which
VNF should be placed onto which CPU core to balance the
CPU processing capacity and improve the throughput.

3.2 Provisioning Model and Problem
Formulation

Table 1: Key notations in this paper.

F The set of flows f
V The set of switches v
E The set of links e
L The set of servers l.
G The acyclic directed network graph G =

(V ∪ L,E)
SC The set of service chains i.
NF The set of network functions j.
Kl The set of CPU cores at the server l.
ri,l The required CPU resource for the service chain i

at the server l
Rl The total CPU resource at server l
ci,l The provisioning cost for the service chain i at

the server l
be The bandwidth capacity of link e
Pf The set of possible paths for flow f from ingress

switch v+
f to egress switch v−

f

df The demand of the flow f
αf,i The indicator variable that equals 1 if flow f

should pass through service chain i and 0 oth-
erwise

βi,j The indicator variable that equals 1 if network
function j belongs to the service chain i and 0
otherwise

σj The consumed CPU cycles per packet for network
function j

xi,l The indicator variable that equals 1 if service
chain i locates at the server l and 0 otherwise

yf,p The fractional flow demand for flow f on path p

Before formulating the problem, we first present our net-
work model. A network is a directed graph G = (V ∪ L,E),
where V is the set of switches, L is the set of servers and E
the set of links with capacities be. Each flow f is associated
with a demand df , splitted at the ingress switch v+f among

the possible path set Pf and routed to the egress switch v−f .
Before going out to the egress switch, each flow f should pass
through a specific service chain i deployed at least a server. In
the first stage of Plutus, the flow demand df and the service
policy αf,i (which flow should pass through which service
chain) is known, and which service chain should be placed
onto which server needs to be determined. In the second
stage of Plutus, we need to determine which network func-
tion is required to be placed onto which CPU core so as to
balance the processing capability of multiple CPU cores. For
convenience, we summarize important notations in Table 1.

Based on the above model and definition, we first formu-
late the Minimum Provisioning Cost Problem (MPCP) as a
program to solve the network-level optimization in the first
stage of Plutus. The formulation is shown in (1) and that in
the second stage is shown in (2). We will discuss them soon.
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minimize
∑
l∈L

∑
i∈SC

ci,l · xi,l (1)

subject to (1a), (1b), (1c), (1d), (1e), (1f).

The objective of formulation (1) aims to minimize the sum
of provisioning cost ci,l in the whole network. Basically, we
seek to find an optimal routing and service chain deployment
schemes so as to minimize the total provisioning cost, such
that each link’s load cannot beyond its capacity and the CPU
resource at each server cannot be overbooked.

∑
i∈SC

xi,l · ri,l ≤ Rl, ∀l ∈ L, (1a)

For each server l ∈ L, constraint (1a) indicates that the
sum of provisioning resource for each service chain must be
less than or equal to the total resource Rl. The zero-one
integer variable xi,l equals one when the service chain i is
placed at the server l, and equals zero otherwise.

∑
f∈F

df

∑
p∈Pf :e∈p

yf,p ≤ be, ∀e ∈ E, (1b)

The LHS of constraint (1b) characterizes the load of total
flows at link e, which must be less than or equal to its capacity.
This optimization variable yf,p determines that the fractional
flow demand for flow f on path p.∑

i∈SC

∑
l∈p

αf,i · xi,l ≥ yf,p, ∀f ∈ F, ∀p ∈ Pf , (1c)

Constraint (1c) ensures that if the flow is routed on the
path p, the service chain i corresponding to the flow f should
be placed onto at least one of the servers on this path.

∑
p∈Pf

yf,p = 1, ∀f ∈ F, (1d)

Constraint (1d) is the flow demand conservation constraint.
The sum of all fractional flow demand among all the possible
paths should equal to df .

xi,l ∈ {0, 1}, ∀i ∈ SC, ∀l ∈ L, (1e)

yf,p ≥ 0, ∀f ∈ F, ∀p ∈ Pf , (1f)

The zero-one integer variable xi,l indicates if service chain
i can be placed onto the server l or not.

In the second stage of Plutus, we focus on server-level
optimization. A service chain consists of a set of VNFs. The
packets are sequentially processed from upstream VNF to
downstream VNF. The maximum throughput of one service
chain depends on that of the bottleneck VNF. Which service
chain is deployed onto which server has been fixed in the
first stage, we need to determine which VNF should be
deployed onto which CPU core in the second stage. Given
the solution xi,l and the computation cost (the product of
packet arrival rate and consumed CPU cycles per packet) of
different VNFs, the objective is to balance the processing
capability of multiple CPU cores and improve service chain
throughput. Once the server-level deployment is complete,
the OS scheduler will assign CPU time for each running VNF
proportional to its computation cost. Now we formulate the

Multi-Core Deployment Problem (MCDP) as an optimization
program shown in (2).

minimize max
k∈Kl,j∈NFl

wj · qj,k (2)

subject to wj = yf,p · αf,i · βi,j · σj , ∀j ∈ NFl, (2a)∑
k∈Kl

qj,k = 1, ∀j ∈ NFl, (2b)

qj,k ∈ {0, 1}, ∀j ∈ NFl, ∀k ∈ Kl. (2c)

The objective of formulation (2) aims to minimize the
maximum CPU load on a physical core. The CPU load wj is
defined by the product of yf,p and σj .

wj = yf,p · σj

where yf,p is the flow rate (packet arrival rate) and σj is the
consumed CPU cycles per packet. The constant parameters
αf,i and βi,j in constraint (2a) describes the correlation
among the flow f , service chain i and network function j. The
zero-one integer variable qj,k indicates that which network
function j should be placed onto which CPU core k.

3.3 Hardness Analysis

We establish the hardness of MPCP and MCDP below.

Theorem 3.1. MPCP is NP-hard.

Proof. Consider a special case of MPCP as illustrated in
Fig. 5(b), where white nodes represent source or destination,
and gray nodes represent the servers. All the flows from source
to destination share one common path (gray nodes) and each
server on this path has the identical resource capacity R. Each
flow f is associated with one service chain i, which is required
to be deployed onto at least one server l. If service chain i is
deployed onto the server l, it will incur provisioning cost ci,l.
Our objective aims to minimize the total provisioning cost
such that the CPU resource capacity at each server cannot
be overbooked.

We construct a reduction with polynomial time from the
Generalized Assignment Problem (GAP) [32] to the special
case of MPCP. As shown in Fig. 5(a), the GAP aims to
assign n jobs to m machines, where each job can only be
assigned to exactly one machine. If the job j is assigned to
the machine q, the processing time units and the incurred
cost in machine q is pq,j and cq,j respectively. A processing
time bound T for each machine is given to limit the total
processing time. The objective of GAP is to find a feasible
assignment strategy such that the total cost is minimized.
The job j, machine i and processing time bound T in GAP
correspond to the service chain i, server l and CPU resource
capacity R, respectively. Therefore, any feasible solution of
GAP corresponds to the special case of MPCP in Fig. 5(b),
and vice versa. �

Theorem 3.2. MCDP is NP-hard, even for a server only
consisting of two CPU cores.

Proof. Given a special case of MCDP with only two
CPU cores, we construct a polynomial reduction from the
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Figure 5: Reduction from GAP to MPCP.

set partition problem [9] to it. Consider a partition instance
A consisting of n items, each with a value ai, aj ∈ R, j ∈
{1, 2, . . . , n}. The objective is to partition A into two subsets
A1 and A2 (A1 ∪ A2 = A and A1 ∩ A2 = ∅ ) such that |A1 −
A2| is minimized, where A1 and A2 denote the sums of the
elements in each of the two subsets A1 and A2. Accordingly,
for each item in set A we introduce one network function
j, where wj = aj . There are n items in total and thus we
introduce n network functions in MCDP.

The partition results indicate that which network function
should be placed onto which CPU cores. Therefore, any
partition with minimum difference between set A1 and A2

corresponds to MCDP with only two CPU cores, and vice
versa. The network functions placed onto the first CPU core
forms one set of the partition, and that placed onto the
second CPU core forms the other. �

4 ALGORITHMS

In this section, we design network-level and server-level opti-
mization algorithms in Plutus, respectively.

4.1 Network-level optimization algorithm

Algorithm 1: A Proximal Jacobian ADMM Algorithm

Input : Network graph G = (V ∪ L,E); the set of flow f ; the
set of service chain i.

Output : A fractional solution {x̃i,l} and {ỹf,p} to the relaxed
LP of (1)

1 Transform the program (1) to the program (3).

2 Initialize the variables α, β, γ, x̂, y and multipliers θ, ϕ, σ to
zero.

3 for t = 1, 2, · · · do
4 Update α, β, γ, x̂, y from programs (5), (6), (7), (8), (9) in

parallel.
5 Update θ, ϕ, σ from equations (10), (11), (12).

The mixed integer program (1) aims to minimize the total
provisioning cost, which can be relaxed to a linear program
by replacing the constraint (1e) with xi,l ≥ 0. Since constrain-
t (1c) and (1d) hold, xi,l are in fact real numbers between
0 to 1. The optimal fractional solutions {x̃i,l} and {ỹf,p} of
the relaxed LP of (1) can be obtained in polynomial time
using standard solvers. However, solving this program is time-
consuming especially in large-scale production networks with
thousands of flows. Thus we set out to find a scalable algorith-
m to solve this program instead. Inspired by the framework of
multiple-block ADMM [11], we develop a proximal Jacobian
ADMM algorithm that can converge to an optimal solution
at the rate of o( 1

t
) in Algorithm 1, where t is the number of

iteration times. As parts of the constraints in program (1) are

inequalities and the variables xi,l are coupled together, we
require to transform program (1) to program (3) in order to
apply 5-block ADMM (line 1). The detailed transformation
is illustrated in Appendix A. Furthermore, we initialize the
original variables y, the introduced auxiliary variables α, β,
γ, x̂, and multipliers θ, ϕ, σ to zero (line 2) and solve each
subprogram in parallel (lines 3-5).

Based on the fractional solution in Algorithm 1, we design a
(O(1), O(1)) bicriteria approximation algorithm that rounds
the fractional solution to a feasible integer solution. The
complete algorithm is shown in Algorithm 2. We now explain
the high-level working of this algorithm. We first obtain the
optimal fractional solution {x̃i,l} and {ỹf,p} to the relaxed
LP of (1) (line 1). For the solution {ỹf,p}, it is already a
feasible solution, while for the solution {x̃i,l}. For the solution
{x̃i,l}, it indicates that the service chain i can be fractionally
placed onto all servers l on its path p (l ∈ p), and accordingly
the required CPU resource is proportional to the fractional
solution. We require to round it to an integer solution by
constructing a complete bipartite graph (S,U,E′) (lines 7-31).
Initially, the set S and U are both empty set (line 2). We first
add each solution ỹf,p into the set S (lines 3-6). And then, for
each server, we assign kl slots to accommodate the fractional
solution {x̃i,l} one by one according to its required resource

ri,l (line 8). Next we add uj
l into set U , whose cardinality is

the product of the number of servers l and the number of
assigned slots kl (line 11). Note that x̃i,l could be split into

two adjacent slots, and we use notation uj
i,l to represent the

corresponding parts. The value of uj
i,l is calculated from a

loop procedure (lines 13-21). If uj
i,l is greater than zero, we

add an edge (ỹf,p, u
j
l ) with weight ci,l into E′ and finish the

construction procedure of complete bipartite graph (S,U,E′)
(line 22-26). Based on this graph, we compute a complete
matching M with the minimum total weight (line 27). If
there exists an edge in the matching M , we set x̂i,l is equal
to one that indicates the service chain i can be placed onto
server l; otherwise, we set it to zero (lines 29-31).

Now we analyze the performance of the algorithm by in-
troducing the related definition.

Definition 4.1. Let OPT1 be the optimal solution to (1),
which gives a lower bound of total provisioning cost.

Theorem 4.2. Algorithm 2 is an (O(1), O(1)) bicriteria
approximation algorithm, which has a constant approximation
ratio of δ, while overbooking the resource capacity at each
server by at most a factor of 2, where δ is the number of
pre-defined paths between ingress and egress switch.

The proof can be found in Appendix B.

4.2 Server-level optimization algorithm

Given the routing configurations and assigned flow rate from
the network-level optimization, the server-level optimization
seek to find a network function deployment solution to bal-
ance the processing capability of multiple CPU cores. As
shown in Algorithm 3, we first obtain the optimal fractional
solution {q̃j,k} to the relaxed LP of (2) by replacing the
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Algorithm 2: A Bicriteria Approximation Algorithm

Input : Network graph G = (V ∪ L,E); the set of flow f ; the
set of service chain i.

Output : A solution {x̂i,l} to (1).

1 Obtain the optimal fractional solution {x̃i,l} and {ỹf,p} to the
relaxed LP of (1).

2 S = U = ∅
3 for each f ∈ F do
4 for each p ∈ Pf do
5 if ỹf,p > 0 then
6 S = S ∪ ỹf,p

7 for each l ∈ L do

8 kl =

⌈∑
i∈SC x̃i,l

⌉
9 Sort x̃i,l in descending order according to ri,l into set X

10 for j = 1 to kl do

11 U = U ∪ uj
l

12 Φ = 1

13 repeat
14 Get the first element x̃i,l from set X

15 Δ = max(x̃i,l, x̃i,l − Φ)

16 Φ = Φ − Δ

17 uj
i,l = Δ

18 x̃i,l = x̃i,l − Δ

19 if x̃i,l = 0 then
20 Remove x̃i,l from set X

21 until Φ = 0;

22 for each ỹf,p ∈ S do
23 Determine service chain i corresponding to flow f

24 for each uj
l ∈ U do

25 if uj
i,l > 0 then

26 Add an edge (ỹf,p, u
j
l ) with weight ci,l into E′

27 Construct a bipartite graph (S, U,E′) and compute a complete
matching M with the minimum total weight.

28 if there exists an edge in the matching M then
29 x̂i,l = 1

30 else
31 x̂i,l = 0

constraint (2c) with qj,k ≥ 0 (line 1). For each j ∈ NFf ,
we apply randomized rounding to obtain an integer solution
{q̂j,k} (lines 2–10). To ensure that only one CPU core is
chosen for a network function j ∈ NFf , the optimal fraction-
al solution can be viewed as partitioning the interval [0, 1]
to intervals of lengths {q̃j,k} (lines 4–7). A real number is
generated uniformly at random in (0, 1] and the interval in
which it lies determines the CPU core (lines 8–10).

Before analyzing the performance of Algorithm 3, we in-
troduce the following definition.

Definition 4.3. Let OPT2 be the optimal solution to (2),
which gives a lower bound of maximum CPU load.

Theorem 4.4. [32] Algorithm 3 outputs a feasible solution
with maximum CPU load bounded by O(log |Kl|) ·OPT2 with
high probability, where |Kl| is the number of CPU cores at
the server l.

The proof of Theorem 4.4 can be found in [32].
In spite of the guaranteed approximation ratio in Algorith-

m 3, it is not always efficient as it may occasionally produce
a bad solution. The local search algorithm improves upon the

Algorithm 3: A Randomized Algorithm

Input : The set of CPU cores at the server l; the consumed
CPU cycles for network function j; the indicator
variables αf,i and βi,j .

Output : A solution {q̂j,k} to (2).

1 Obtain the optimal fractional solution {q̃j,k} to the relaxed LP
of (2).

2 for each j ∈ NFl do
3 K′

l = ∅
4 for each k ∈ Kl do
5 q̂j,k = 0

6 K′
l = K′

l ∪ k

7 lj,k =
∑

k′∈K′
l
q̃j,k′

8 Generate a number r in (0,1] uniformly at random

9 Find p̂ such that r ≤ lj,k and lj,k − r is minimum

10 q̂j,k = 1

solution of randomized algorithm by greedily moving each
network function to another CPU core with less load. This
algorithm achieves a constant approximation ratio of 2.

Algorithm 4: A Local Search Algorithm

Input : The set of CPU cores at the server l; the consumed
CPU cycles for network function j; the indicator
variables αf,i and βi,j .

Output : A solution {q̂j,k} to (2).

1 Apply Algorithm 3 to obtain the initial solution {q̂j,k}.
2 repeat
3 w+ = maxk∈Kl

{∑j wj · q̂j,k}
4 w− = mink∈Kl

{∑j wj · q̂j,k}
5 g+ = |K+|, where K+ = {k|∑j wj · q̂j,k = w+}
6 g− = |K−|, where K− = {k|∑j wj · q̂j,k = w−}
7 ∀k− ∈ K−

8 for each k+ ∈ K+ do
9 for each j ∈ NFl do

10 if qj,k+ = 0 then

11 continue

12 Move network function j from k+ to k−

13 Re-calculate w+ and g+

14 if the w+ value or the g+ value decreases then
15 qj,k+ = 0

16 qj,k− = 1

17 NFl = NFl \ {j}

18 until NFl = ∅;

We are now ready to describe our local search algorithm
shown in Algorithm 4. We first run Algorithm 3 and obtain
an initial solution {q̂j,k} (line 1). Next we iteratively move
network function to another CPU core with less load to
balance the CPU processing capability until we cannot find a
better solution (lines 2-18). The notation w+ and w− indicate
the maximum and minimum CPU load corresponding to the
current solution {q̂j,k} (lines 3-4), while g+ and g− indicate
the number of CPU cores with maximum and minimum load,
respectively (lines 5-6). For each network function j, we try
to move it to CPU k− since CPU k− has the least CPU load
currently (line 12). If this movement results in the decrease
of w+ value or g+ value, we move network function j from
CPU k+ to k− (lines 15-16). Finally we remove the network
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function j from the set NFl and the algorithm enters into
the next loop (line 17). Based on the analysis above, we have
Theorem 4.5 and its proof can be found in [32].

Theorem 4.5. [32] After at most |NFl| iterations, Algo-
rithm 4 terminates and approximates MCSP with a factor of
2, where |NFl| is the number of network functions at server
l.

5 EXPERIMENTAL EVALUATION

We evaluate our two-stage optimization algorithm using both
prototype implementation and large-scale simulation.

Benchmark schemes:We compare the following schemes
with our algorithm.

• HW: The network function of each type relies on tra-
ditional hardware middleboxes.

• Greedy: Each service chain is randomly deployed onto
different servers.

• Random: For a service chain consisting of a set of
VNFs, each VNF is randomly deployed onto multiple
CPU cores.

• Plutus: Our approximation algorithm in Algorithm 2
and Algorithm 4.

• OPT: The optimal solution OPT1 and OPT2 for the
MPCP and MCDP in the integer program (1) and (2)
obtained using branch and bound.

Unless stated otherwise, we configure ρ, w and ι to be 0.1,
0.02 and 1.0 respectively in Algorithm 1 as suggested in [11].

5.1 Implementation and Testbed
Emulations

Implementation: We develop a prototype of our algorithm-
s on the DPDK-based OpenNetVM platform [34], where the
polling mechanism is used in RX and TX threads for receiv-
ing and sending packets from NIC. Now we describe how to
perform VNF deployment in the service chain in our experi-
ments. We first obtain solutions to MPCP and MCDP using
Algorithm 2 and 4 respectively. According to these solutions,
we bind each VNF to a dedicated CPU core. The CORELIST

parameter in OpenNetVM specify the index of CPU core,
and the index parameters SERVICE ID and DST indicate two
adjacent VNFs in a service chain, i.e., once the packets have
already been processed by an upstream VNF indexed by
SERVICE ID, they would be forwarded to a downstream VNF
indexed by DST.
Testbed setup: In our experimental setup, we use two severs,
each of which has dual Xeon(R) E5-2630 @ 2.40GHz CPUs
(2x8 physical cores), an Intel 82599ES 10G dual port NIC
and 128GB memory. Each server runs Ubuntu 14.04.3 with
kernel version 3.19.0. We use pktgen to generate different
UDP flows with 64 byte packet size in each run, where all
of them are required to pass through a pre-defined ordered
VNFs deployed onto different CPU cores. The VNFs we used
perform forwarding and monitor function, which form a linear
service chain.
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Figure 6: The throughput comparison.

Experiment results: We study the achieved throughput
(Mbps) with different packet arrival rate and different num-
ber of VNFs in Fig. 6. In Fig. 6(a), the number of running
VNFs is fixed at 64. The 100% arrival rate corresponds to
around 7 Gbps. We can observe that the achieved through-
put of Plutus consistently outperforms that of Random by
31.5% on average when the packet arrival rate become larger.
Specifically, Plutus can improve the throughput by 48.5%
compared with Random when the number of packet arrival
rate is 100%. Fig. 6(b) shows the throughput variations with
different number of VNFs. We vary the number of VNF from
23 to 27 at the increment of double times. Plutus can reduce
the throughput loss by 39.5% compared with Random.

5.2 Simulation

We also conduct extensive simulations to thoroughly evaluate
our algorithms at scale.
Setup. In addition to the OpenNetVM experiments in our
testbed, here we use a large-scale synthetic cellular network
topology [28]. The topology can be divided into access layer,
aggregation layer and core layer, where each layer includes
a set of switches and servers. The access layer includes the
base station clusters, each of which has 10 base stations
interconnected into a ring. The aggregation and core layer
are complete graphs with τ and τ2 servers respectively. In the
aggregation layer, the τ

2
switches are connected to τ

2
clusters

in the access layer respectively. The remaining switches in
the aggregation layer are connected to the switches in the
core layer one by one. We generate different number of flows
to measure the performance in our experiments. We run our
algorithms on a server with Intel(R) Xeon(R) CPU E5-2650
and 64 GB memory. Each data point is an average of at least
30 runs.
Experiment results: We first investigate the total provi-
sioning cost during service chain deployment generated by
HW, Greedy and Plutus. In addition, we compare our algo-
rithm against a branch and bound method that solves the
program (1) optimally, denoted as OPT1. We can see that in
Fig. 7(a), as the number of flows increases, HW and Greedy
yield significantly much provisioning cost, while that of Plu-
tus is below 2.0×106 all the time and can achieve near optimal.
Specifically, the provisioning cost for HW, Greedy, Plutus and
OPT1 is 1.25 × 107, 6.30 × 106, 1.92 × 106 and 1.90 × 106,
when the number of flows is 5000. Furthermore, Plutus can
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Figure 7: Total provisioning cost comparison.

reduce the provisioning cost by 84.6% and 69.6% respective-
ly, compared to HW and Greedy. This demonstrates that
Plutus takes full advantage of NFV and reduce provisioning
cost by flexibly deploying different VNFs.

Fig. 7(b) shows the additive optimality gap for Plutus and
Greedy compared to OPT1. For this simulation we vary the
number of flows from 1000 to 5000. Intuitively, a larger addi-
tive optimality gap indicates more provisioning cost resulting
from a worse solution. We can see that, as the number of
flows increases, Greedy yields significantly larger optimality
gap compared to Plutus, where Plutus can guarantee that
the additive optimality gap is less than 1.3 × 104 and its
provisioning cost is always less than 2.0× 106, even though
the number of flows become larger. The performance of our
algorithms in large-scale networks is illustrated in Fig. 7(c),
where the value of x-axis represents the number of switches
and that of y-axis represents the provisioning cost. We fix
the length of service chain at 10 in this setting. We can see
that Plutus can reduce the provisioning cost by 86.0% and
72.4% compared to HW and Greedy respectively. Fig. 7(d)
shows that the provisioning cost varies with the length of
service chain.
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of iterations.

Finally we look at the percentage of solvability for OPT1

and the number of solver iterations. In Fig. 8, the number of
flows varies from 1000 to 5000 at the increment of 1000 for
each run. We found that the number of solvable instances
decreases when the number of flows becomes large. Specifi-
cally, when the number of flows is 5000, around 8% instances
cannot be solved by standard solver. This demonstrates that
OPT1 cannot perfectly solve all instances, and it’s going
to get worse especially when the number of flows is large.
Fig. 8 also shows the number of solver iterations for different

schemes. We can see that the number of iterations for OPT1

increases significantly than that for Plutus, when the number
of flows become large. The convergence rate of Plutus in
general can be faster than that of OPT1.

6 CONCLUSION

We studied the problem of orchestrating service chain deploy-
ment in cellular networks. We propose a two-stage optimiza-
tion framework and a set of algorithms to solve our problems.
Evaluation results show that our algorithms can reduce the
capital cost and increase the throughput.
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A A PROXIMAL JACOBIAN ADMM
ALGORITHM

Now we reformulate the program (1) in order to apply ADMM.
We first introduce slack variables αl, βp and γp to transform
the inequality constraints (1a), (1b) and (1c) to equality
constraints (3a), (3b) and (3c) required by ADMM. Second,
all variables in the constraints of ADMM problem must be
separable for each group of variables. To comply with this
condition, we introduce auxiliary variables x̂i,l and rewrite
the constraints based on each pre-defined path. Towards this
end, we add the original constraint (1d) and reformulate the
program (1) to program (3) as follows.

minimize
∑
l∈L

∑
i∈SC

ci,l · x̂i,l (3)

subject to Rl −
∑

i∈SC

x̂i,l · ri,l − αl = 0, ∀l, (3a)

bp − df · yf,p − βp = 0, ∀f, p, (3b)∑
l∈p

x̂i,l − yf,p − rp = 0, ∀f, p, (3c)

(1d),

x̂i,l, yf,p, αi, βp, γp ≥ 0, ∀i, l, f, p. (3d)

The new program (3) is equivalent to the original program (1).
The variables x̂i,l in constraint (3c) ensure that the service
chain i should be deployed onto server l (l is one of the nodes
in path p) if and only if the flow f passes through the path
p.

Let Lρ be the augmented Lagrangian of program (3) with
dual variables θ, ϕ and σ. i.e., introducing an extra L -2
norm term into the objective:

Lρ =
∑
l∈L

θl · Δ1 +
ρ

2

∑
l∈L

Δ
2
1 +

∑
f∈F

∑
p∈p(f)

ϕf,p · Δ2

+
ρ

2

∑
f∈F

∑
p∈p(f)

Δ
2
2 +

∑
f∈F

∑
p∈p(f)

σf,p · Δ3 +
ρ

2

∑
f∈F

∑
p∈p(f)

Δ
2
3

where ρ > 0 is the penalty parameter. Note that L0 (when
ρ = 0) is the standard Lagrangian for our problem. The
reason why we introduce the penalty term is to speed up the
convergence rate [8]. In addition, to simplify the notation,
we introduce Δ1, Δ2 and Δ3.

Δ1 = Rl −
∑

i∈SC

x̂i,l · ri,l − αl

Δ2 = bp − df · yf,p − βp

Δ3 =
∑
l∈p

x̂i,l − yf,p − γp

Distributed 5-block ADMM. We initialize the vari-
ables α, β, γ, x̂, y and multipliers θ, ϕ, σ to zero. For
t = 1, 2, · · · , repeat the following steps.

1. α-update: Each server l solves the following subprob-
lem for obtaining αt+1

l :

minimize θ
t
l · αl +

ρ

2

⎛
⎝Rl −

∑
i∈SC

x̂
t
i,l · ri,l − αl

⎞
⎠2

+
w

2

(
αl − α

t
l

)2

(5)

subject to αl ≥ 0, ∀l ∈ L. (5a)
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This per-server subproblem is a small-scale quadratic pro-
gram and can be solved efficiently.

2. β-update Each generated p of the corresponding flow
f solves the following subproblem for obtaining βt+1

p :

minimize
∑
f∈F

ϕ
t
f,p · βp +

ρ

2

∑
f∈F

(
bf − df · yt

f,p − βp

)2

+
w

2

(
βp − β

t
p

)2

(6)

subject to βp ≥ 0, ∀p ∈ P (f). (6a)

This subproblem can be solved by the standard solvers for
quadratic program.

3. γ-update: Each generated p of the corresponding flow
f solves the following subproblem for obtaining γt+1

p :

minimize
∑
f∈F

σ
t
f,p · γp +

ρ

2

∑
f∈F

⎛
⎝∑

l∈p

x̂
t
i,l − y

t
f,p − γp

⎞
⎠2

+
w

2

(
γp − γ

t
p

)2

(7)

subject to γp ≥ 0, ∀p ∈ P (f). (7a)

This subproblem can be solved by the standard solvers for
quadratic program.

4. x̂-update: Each server l solves the following subprob-
lem for obtaining xt+1

i,l = (xt+1
1,l , xt+1

2,l , · · · , xt+1
|SC|,l):

minimize
∑

i∈SC

ci,l · x̂i,l + θ
t
l ·

∑
i∈SC

x̂i,l · ri,l

+
ρ

2

⎛
⎝Rl −

∑
i∈SC

x̂i,l · ri,l − α
t
l

⎞
⎠2

+
w

2

(
x̂i,l − x̂

t
i,l

)2

(8)

subject to x̂i,l ≥ 0, ∀l ∈ L. (8a)

This subproblem can be solved by the standard solvers for
quadratic program.

5. y-update: Each generated p of the corresponding flow
f solves the following subproblem for obtaining yt+1

f,p =

(yt+1
1,p , yt+1

2,p , · · · , yt+1
|F |,p):

minimize
ρ

2

∑
f∈F

(
bp − df · yf,p − β

t
p

)2

−
∑
f∈F

ϕ
t
f,p · df · yf,p

+
ρ

2

∑
f∈F

⎛
⎝∑

l∈p

x̂
t
i,l − yf,p − γ

t
p

⎞
⎠2

−
∑
f∈F

σ
t
f,p · yf,p

+
w

2

(
yf,p − y

t
f,p

)2

(9)

subject to (1d),

yf,p ≥ 0, ∀p ∈ P (f). (9a)

This subproblem can be solved by the standard solvers for
quadratic program.

6. Dual update: Each server j updates θ for the con-
straint (3a):

θ
t+1
l = θ

t
l + ι · ρ ·

⎛
⎝Rl −

∑
i∈SC

x̂
t+1
i,l · r̂t+1

i,l − α
t+1
l

⎞
⎠ (10)

Each generated p of the corresponding flow f updates ϕ
for the constraint (3b):

ϕ
t+1
f,p = ϕ

t
f,p + ι · ρ ·

(
bp − df · yt+1

f,p − β
t+1
p

)
(11)

Each generated p of the corresponding flow f updates σ
for the constraint (3c):

σ
t+1
f,p = σ

t
f,p + ι · ρ ·

⎛
⎝∑

l∈p

x̂
t+1
i,l − y

t+1
f,p − γ

t+1
p

⎞
⎠ (12)

where ι · ρ is the step size for the dual update.

B PROOF OF THEOREM 4.2

Proof. We first introduce Theorem B.1 to facilitate our
proof.

Theorem B.1. [32] For any bipartite graph B = (V,W,F ),
each extreme point of the feasible region has integer coordi-
nates. Furthermore, given edge cost cv,w, (v, w) ∈ F , and a
feasible fractional solution yv,w, (v, w) ∈ F , we can find, in
polynomial time, a feasible integer solution ŷv,w such that

∑

(v,w)∈F

cv,w · ŷv,w ≤
∑

(v,w)∈F

cv,w · yv,w

Without loss of generality, we assume there are δ paths in
path set Pf for flow f , i.e., the common node in the path set
is at most δ. From Theorem B.1, we obtain,∑

l∈L

∑
i∈SC

ci,l · x̂i,l ≤ δ ·
∑
l∈L

∑
i∈SC

ci,l · x∗
i,l = δ · OPT1 (13)

From the definition of complete matching, the provisioning
resource Φl at each server l is

Φl ≤
kl∑

j=1

r̂
j
l (14)

where r̂jl = max{ri,l|uj
l ∈ U}.

We give the upper bound of
∑kl

j=1 r̂
j
l as following.

kl∑
j=1

r̂
j
l = r̂

1
l +

kl∑
j=2

r̂
j
l ≤ r̂

1
l +

kl∑
j=2

∑
i

u
j−1
i,l · ri,l

≤ r̂
1
l +

kl∑
j=1

∑
i

u
j
i,l · ri,l

= r̂
1
l +

∑
i

kl∑
j=1

u
j
i,l · ri,l

= r̂
1
l +

∑
i

xi,l · ri,l

(15)

From constraint (1a), both (16) and (17) hold.

r̂
1
l ≤ Rl (16)∑

i

xi,l · ri,l ≤ Rl (17)

Combining (15), (16) and (17), we have the following inequa-
tion and conclude the proof.

Φl ≤
kl∑

j=1

r̂
j
l ≤ 2 · Rl (18)

�


