
RDMA Load Balancing via Data Partition
Yi Wang

School of Electronic
Information and Communications

Huazhong University of Science and Technology
Wuhan, China, 430074

Email: ywang@hust.edu.cn
Phone: +86-027-87543236

Ya-nan Jiang
State Key Laboratory for Novel

Software Technology
Nanjing University

Nanjing, China, 210023
Email: mf1733026@smail.nju.edu.cn

Phone: +86-25-89681372

Qiufang Ma
State Key Laboratory for Novel

Software Technology
Nanjing University

Nanjing, China, 210023
Email: mg1633053@smail.nju.edu.cn

Phone: +86-25-89681372

Chen Tian
State Key Laboratory for Novel Software Technology

Nanjing University
Nanjing, China, 210023

Email: tianchen@nju.edu.cn
Phone: +86-25-89681372

Bo Bai
Future Network Theory Lab

Huawei
Hong Kong, China, 999077
Email: baibo8@huawei.com

Phone: +852-3547-2722

Gong Zhang
Future Network Theory Lab

Huawei
Hong Kong, China, 999077

Email: nicholas.zhang@huawei.com
Phone: +852-3547-2722

Abstract—With the development of data center networks,
traditional TCP/IP cannot support the demand in data centers.
Remote Direct Memory Access (RDMA) technology could im-
prove the performance of DCN significantly because of high
throughput and low latency. However, load balancing is a key
issue in RDMA which has not been solved distribute. This paper
will propose an algorithm to solve the load balance problem in
RDMA on application layer without hardware changing. The
main idea is to divide data to chunks and data chunks on
multiple reachable paths for transmission. However, it is no
trivial to find the optimal chunk size and the path number,
some empirical values are found by varieties of experiments
and tests. Moreover, the chunk allocation scheme also needs to
consider the traffic condition in DCNs to find more free paths to
transmit. We evaluate the algorithm in application layer with ns3
simulator. The experiment results show that with our algorithm
the completion time can decrease 81.03% at most.

Index Terms—Load Balance, RDMA, Data Center Networks.

I. INTRODUCTION

With the rapid growth of online services and cloud comput-
ing, large-scale data centers (DCs) are being built around the
world. High speed, scalable data center networks (DCNs) are
needed to connect the server in one DC. However, traditional
TCP/IP cannot meet the requirement of DC workloads because
of high CPU overhead and latency. Remote Direct Memory
Access (RDMA) supports the operations such as read and
write directly to the computer memory without involving the
kernel. With the characteristic of zero copy, RDMA greatly
reduces the load and overhead of CPU which decreases the
latency. Thus, it attracts much attention to deploy RDMA in
data centers[1], [2], [3], [4], [5], [6], [7], [8].

The traditional design of RDMA did not consider the
load balance issue in DCN. Load balancing is important to
reduce congestion [9], [10], [11], [12], [13], [14], [15], [16].
Specifically, when two hosts transmit data by RDMA, it needs
three-way handshake to establish connection at first [17]. The

connection is built between the work queues of the host. When
only one connection exists, all packets will carry exactly the
same five-tuple between two hosts. When multiple connections
exist, however, there are no change of the five-tuples in
different connections. Therefore, no matter single connection
or multiple connections, all the data in transmission will follow
the same path. For a large amount of data transmission [18],
this phenomenon can easily lead to imbalance in the network,
which may cause congestion, and low utilization of other
reachable network resources (as Figure 1).

In this paper, we consider the load balancing issue of
RDMA. The objective is to combine RDMA with multi-
path transmission [19]. This combination can further reduce
the transmission time, and the possibility of congestion in
the network, so as to improve the utilization of network
resources [20] [10] [21] [22]. MP-RDMA [19] has imple-
mented it by changing the RDMA NICs. Our target is to
solve the problem in application layer, without IP and lower
level involved. The proposed algorithm mainly contains two
parts. First, we establish multiple connections in multiple work
queues between the hosts and change the message of the
five-tuple in different connections so that the data can be
transmitted by multi-path. Second, we divide the data to be
transmitted to chunks with proper size [23], [24], [25], which
will be allocated to proper connections.

There are some challenges we need to solve. First, the
driver of RDMA cards is encapsulated, it’s not easy to change
the five-tuple which generated by the driver. Second, how
to choose the optimal chunk size of data and the number
of paths is also non-trivial. Fine-grained partition will cause
many other workloads such as request elements and complete
elements. Coarse-grained partition may not make any sense
of load balancing in different paths [26], [27]. Meanwhile, the
number of paths also need a compromise in a similar way.
Finally, how to detect the traffic and the extent of congestion

978-1-7281-1856-7/19/$31.00 ©2019 IEEE

also needs to be considered, as the traffic in the paths may
impact the choice of data chunks [28], [29].

We realized the algorithm in ns3 simulator. We do some
test to observe the impact on transmission complete time by
increasing the data chunk size and the number of paths. Due
to the mechanism of completion elements, the driver could
detect if the request in the work queue complete or not. By
estimating the rate of processing request in different queues,
we could find the optimal parameters for data chunk. With the
simulation, we find that using multiple paths to transmit data
can decrease the transmission time by 81.03% at most. The
decrease by chunk sizes could range from 13.74% to 69.71%.

In the rest of this paper, we introduce the related works
in Section II. The process of proposing and optimizing in
detail is presented in Section III. In Section IV, we describe
the experiments and compare the performance. Section V
concludes the paper.

II. BACKGROUND

RoCEv2: RoCEv2 [30] [31] encapsulates the RDMA packet
within an Ethernet/IPv4/UDP packet. Thus, RoCEv2 is com-
patible with most existing data center networking infrastruc-
ture. The UDP header in the packet is needed for ECMP-based
multi-path routing (as shown below). The source UDP port
can be randomly chosen for each queue pair (QP) where the
destination port is always set to the specific value 4791. The
intermediate switches always use standard five-tuple hashing.
Thus, packets belonging to the same QPs will follow the
same physical path for transmission, while different QPs (even
between the same pair of two terminals) can follow different
paths.
OFED: The OpenFabrics Enterprise Distribution
(OFED) [32] / OpenFabrics Software is an open-source
software for RDMA. OFS supports highly efficient networks,
storage connectivity and parallel computing. Thus, it is widely
used in business, research and scientific environments. The
computing evolves applications that require extreme speeds,
massive scalability and utility-class reliability. OFS includes
kernel-level drivers, supports channel-oriented RDMA and
send/receive operations and kernel bypasses. OFS also
provides both kernel and user-level application programming
interface and services for parallel message passing, sockets
data exchange and so on.
ECMP: Equal-cost multi-path routing (ECMP) is a routing
strategy which finds multiple ”best paths” for packets with
the same destination. Since it is a per-hop decision in a single
router, multi-path routing can be used in conjunction with most
routing protocols. It can increase bandwidth substantially by
load-balancing on multiple paths.
MPTCP: Multipath TCP[10] can open additional subflows to
transport across multiple network paths. An additional subflow
can use the same pair of src/dst IP addresses as the first flow
with different ports, or use any IP addresses that the client or
server may have. Based on ECMP routing, the subflows can
be hashed to different paths. Each subflow also maintains a

Fig. 1. The utilization of single transmission path.

congestion window to control the packet sending and adapt to
the conditions along the path.
MP-RDMA: Multi-path RDMA [19] is based on NIC
hardware. It requires additional 66 Bytes on-chip memory
to each connection state compared to single-path RDMA. It
uses multi-path ACK-clocking mechanism and out-of-order
aware path selection mechanism to choose network paths and
distribute packets in a congestion-aware manner.

III. DESIGN

A. Problem/Statement

The transmission tasks of RDMA will establish connections
through the QPs in the terminal at first. It means that the data
will be sent in turn from the QPs, while different QPs may
be out-of-order. Ideally, the data transmission tasks between
different QPs is parallel.

If only one connection between two terminals exists, all the
data packets follow the only connection path to transmit. When
multiple connections exist, the packets in different connections
transmit through different physical paths. However, in our
test, we found that all the data packets between two specific
terminals carry the same five-tuple. It means no matter how
many connections we built, how many paths are available,
there is only one physical path been used.

There are some contents referring to the support for ECMP
in RoCEV2[31]: It is stated that the UDP source port must be
the same for a series of packets with sequential constraints.
The packets without this constraint can carry different UDP
source values.

Distributing data packets on multi-path is a way to
do load balancing. As the other four items in five-tuple
(source/destination IP, UDP destination port and the protocol)
are specific, if the UDP source port is the same, all packets

Fig. 2. The congestion caused by evenly allocation .

Fig. 3. The condition with dynamic allocation.

carry the same five-tuple. As a result, all the packets will
follow the same path during the transmission tasks. If the
packets’ number is large enough, not only the load and
congestion risk will be seriously increased, but also waste
other available network resources(as shown in Figure 1). In
order to be more balanced, we try to do some change on
source port. Then, data packets in different connections can
be transmitted independently.

B. Algorithm

We will try to change the UDP source port value as the
other four items in five-tuple are specific. Recalling the RDMA
transmission characteristics, we can bind different QPs with
different UDP source ports. Therefore, the packets sent by the
same QPs carry the same port value, while different QPs have
different port values. In this way, the number of QPs is the
maximum number of the possible physical paths.

While an application establishes multiple pairs of QPs for
transmission, how to allocate the data packets is also an
important issue. If we allocate the packets evenly to each
QP, the network load should be equal in all used paths.
However, the network resources is public, we need to take
other devices into account. It may lead to congestion at a
certain part in a transmission path. For example, one of an
application’s transmission path includes the part with heavy
traffic, the rate on this path is slow while other paths are
normal. Then, the path will cause too much delay to cumber
the total transmission(as shown in Figure 2). Hence, the static
allocation scheme on average is not reasonable.

To avoid the case above, we decided to adopt a dynamic ap-
proach. Since Infiniband generates a work completion message
when completing a work request, the OFED driver provides an
interface to detect the completion information, which allows
the upper layer to get the completion status. Then, we assigned
equal and small amount of data packets to each pair of QP
for sending at the beginning of the transmission. While we
detect a complete information, add the next send task to the
corresponding QP until all the data sent completed. In this
dynamic scheme, once a path delay increases, the number of
packets allocated to this path will be reduced accordingly.
As a result, the less under loaded paths will be more fully
utilized, which can adapt to the dynamic changes in network
resources(as shown in Figure 3).

When the data packets are assigned to different QPs, the
original order of the data will be broken. If the receiver can not
reorder the data correctly, the transmission is meaningless. For
the complex IBA network layer, the change will be costly, and
may cause a series of problems. Our target is to realize these
functions in application layer without lower layer involved.
Therefore, we put the data sequence relation into the Payload.
i.e., as a normal data content to transmit.

In this context, we add several elements as custom header to
the data chunks [?] after the split. The custom header mainly
contains three elements: data ID, total data size, current chunk
offset. Data ID is mainly used to distinguish different data
transmission task at the same time to avoid confusion when
the receiver reorders the data chunks. Total data size is used
to prompt the receiver machine of the memory size should
be allocated to process the data receiving and reordering
operations. Current chunk offset is used to determine the
location of the current chunk in the total data, which is useful
for data combination. We then send customized data chunk
to the corresponding QPs for transmission. After receiving
the disordered data, the receiver collects customized header
information, and allocates memory according to the value of
the total data size. Then, it combines the data chunks according
to the data ID and the current chunk offset.

There is one step before placing the send task of chunks
to QPs. When the completion messages of one of the QPs
is detected, the total data calls the split function, which will
return a data chunk as the next sending task. The algorithm
will be executed under the premise that the function returned
correctly. It will continue to send the task until all the data
chunks are sent completely. At the receiver terminals, all the
QPs must keep active to receive data chunks before the data
reception completed.

In algorithm design, we need to answer another question:
how to appropriately determine the number of QPs and the
size of data chunks? If the number of QPs is too small,
the available physical paths may not be fully utilized. The
algorithm cannot make full use of the network resources
between the two machines. If the number of QPs is too large,
even beyond the actual number of available physical paths,
more than one pair of QP may share the same path. It will
greatly increase the system overhead for maintaining QPs

Algorithm 1 The load balancing algorithm in client.
1: Get initial information;
2: Create QPs and register buffer, connect to server ;
3: for still have chunks not be transmitted do
4: for all the QPs in client do
5: Check the state of current QP;
6: if last sending task complete in current QP then
7: Call the function of data partition and get a chunk

to send;
8: send the new chunk;
9: end if

10: end for
11: end for
12: disconnect with server;

Algorithm 2 The load balancing algorithm in server.
1: Get initial information;
2: Create QPs and register buffer;
3: keep listenning and get request to accept;
4: for still have chunks not be accepted do
5: for all the QPs in server do
6: Check the state of current QP;
7: if last receive task complete in current QP then
8: ready for next receive task;
9: Call the function of data reordering;

10: end if
11: end for
12: end for
13: disconnect with client;

status. Similarly, if the size of the data chunk is too small,
QPs need to place request elements, process tasks, detect the
completion messages and execute other operations frequently,
which also cause more system overhead. If the chunk size is
too large, the algorithm also cannot achieve a good utilization
for the network resources as data packets cannot choose paths
freely. Therefore, in the following experiments, we will focus
on changing the value of these parameters for performance
comparison to find the optimized value.

IV. EXPERIMENTS

We test our algorithm in ns3 simulator [33] [34]. We
designed three experiments [35], respectively, the impact of
the topology is considered for choosing the parameters. We
take use of the real world network topology [36], i.e., the
most common local area network structure. The topology is
tested from the small range, then expanded as much as possible
within the limit of the server. In the first experiment, we
established a topology with 20 terminal nodes (numbered 0 -
19) and 10 switch nodes (numbered 20 - 29). The topology is
shown in Figure 4. Each switch in the second layer connected
with four terminal nodes, and connected with all switches in
the first layer. In this topology, there are several equivalent
yet different paths between any two terminals to meet our
requirement. The transmission rate we set is 40Gbps, with the

delay 0.001ms, the transmission state is ideal, the error rate
we set is 0.

We test the impact of the number of QPs. The number of
QPs determines the maximun number of paths that packets
can be transmitted through by. If it is too large, it will cause
the redundancy situation and increase the overhead of the
computer system. Thus, we test it from 1 to 16, while 1 means
using single path to transmit. The sender is terminal No. 0,
which sends 10MB messages to terminal No. 19 with 200
background streams added randomly.

The simulation results are shown in Figure 7. All the curves
significantly decrease when the QPs number increases from
1 to 2. When the number of QPs is only one, single path
transmission happens. The size of data chunk has little effect
to the completion time, all in 20639592ns. When the number
of QPs is 2, with the chunk size ranging from 1K to 32K,
the completion time is similar, which is from 12530000 ns
to 12650000 ns. However, when the chunk size is 64K, the
completion time is 15009224ns, with 128K to 17816130 ns.
All these results are better then the original test which does
not use multi-path for transmission.

In Fig 7, if the data chunk size is large, such as 64K and
128K, with the number of QPs increasing larger than 2 the
completion time is almost no oscillation. If the chunk size is
slightly smaller, for example, set to 32K, 16K, 8K and 4K,
the completion time will be significantly decreased when the
number of QPs increased from 2 to 3, but the slope decreases
with the increase of the chunk size. The completion time tends
to be stable when we continue to increase the number of QPs.
When we divide the data chunk into the limit size, such as 2K,
1K for transmission, it is interesting that the completion time
oscillates negligibly at the size of 2K and tends stable when
the number of QPs is larger than 5. For the size of 1K, the
time continuously decreases, but the slope is decreased with
the number of QPs increased.

The phenomenon above confirms that the large number of
QPs cannot reduce the completion time. There are limited
number of physical paths between any two terminals. Besides,
some paths may contain many hops, which may increase the
delay and congestion. Using the paths mentioned above is
unwise. Taking the system overhead into account, choosing
the number of QPs from 2 to 5 is more reasonable.

We then test the completion time with different chunk sizes
when the number of QPs sets to 2, 3, 4 and 5. The results
are shown in Figure 10. It can be seen that, no matter how to
change the QPs number, with the chunk sizes increased, the
completion time increased monotonically. Clearly, when the
data chunk size is large, the difference of load scale between
paths will be smaller. If congestion occurs, the transmission
delay of the path will increase. As the remaining data packets
in the chunk have no choice to transfer through other paths, it
will still be waiting in this congestion path. When the chunk
size is set to the smallest value, the choice of each packet for
paths will be more flexible. When the same congestion occurs,
because of its small data volume, although the remaining
chunk packets should be followed, it will not cause much

Fig. 4. The topology in the first test. Fig. 5. The topology in the second test. Fig. 6. The topology in the third test.

Fig. 7. The relationships between the QPs number
and time in topology1.

Fig. 8. The relationships between the QPs number
and time in topology2.

Fig. 9. The relationships between the QPs number
and time in topology3.

Fig. 10. The relationships between the data block
size and time in topology1.

Fig. 11. The relationships between the data block
size and time in topology2.

Fig. 12. The relationships between the data block
size and time in topology3.

delay. Meanwhile, other data chunks will select the others to
avoid the congestion path.

Our objective is to divide the large data to transmit by multi-
path to improve the utilization of network resources and reduce
the transmission delay. The simulations also show that the
best results are achieved by splitting the data into 1K units.
Indeed, 1K data packet can be transported flexibly, so that
the idle network resources can be fully utilized. However, to
support a fine-grained division, it will cause high overhead
for the data split and reorganization in application layer. In
addition, recalling the transmission mechanism of RDMA,
sending packet needs to post a request element in the special
QPs at first. Then, the QPs process the task, generate the
complete information, and then call the completion notice to

inform the upper applications. If the data is divided into 64K,
10M data needs to be carried out these operations 160 times.
For the chunk to 1K, it needs 10240 times, which increases
the cost of computer system sharply.

In Figure 10, when the number of QPs is 2, the chunk
size in the range from 1K to 32K has little impact for the
completion time. When the number of QPs is from 3 to 5,
the chunk size changes from 2K to 32K, the completion time
increases slowly. The common feature of the four curves is
that a significant increase of completion time happens when
the chunk size larger than 32K. Therefore, 32K is threshold.

In the following, we design the second experiment to
test whether the topology will make a difference. As shown
in Figure 5, the topology contains 20 terminal machines,

numbered from 0 to 19, and 5 switches, numbered from 20 to
24.

In the first experiment, each terminal is connected to only
one switch. The switch node is connected to several upper
routing nodes. In this structure, if the terminals’ transmission
tasks do not coincide, there is no resource preemption. How-
ever, in the second topology, each router is connected with the
terminal and also directly connected with other routers. This
topology may not reduce the length of the transmission paths,
but it will cause congestion and resource preemption under
the same background.

We still send 10MB data from terminal No. 0 to terminal
No. 19. The transmission rate, delay, error rate and 200
background streams are the similar as the first experiment. The
effect of the number of QPs and chunk size on the completion
time is shown in Figure 8 and Figure 11, respectively.

The trend of the curves in the two figures under the new
topology is the same as them in the first experiment. With the
absence of multi-path, the total transmission time of 10MB
data is 17772320 ns, which is lower about 3000000 ns than the
initial time of the first experiment. In Figure 8, when the chunk
size is 128K, the curve is stable when the number of QPs is
larger than 2 in the first topology. In the second experiment,
the value is larger than 3 which achieves the best results into
a steady state, but the oscillation is more obvious than the first
one. Its range is about 180000 ns, which is nearly 10 times
of the first. Similarly, the oscillation of 64K curve is larger
than the first 150000 ns. When the chunk size is 16K or 32K,
there is a small decrease when the number of QPs increases
from 2 to 3 in the first experiment. In the second experiment,
however, there is almost no decrease which trends to a steady
state ahead.

Although the second experiment shows the similar results as
the first, two experiments are carried out in a small topology,
which is not much different between the two environments.
Thus, the parameters we previously obtained can only be
used for similar circumstances. In the second experiment, we
made slightly changes on the topology structure, the transition
points of the curves showed some differences. We have to test
the impact of the number of QPs and the data chunk size
when the topology is further expanded with more complicated
structures.

We design the third experiment to expand the scale of the
topology [36] to determine the range of parameters. As shown
in Figure 6, this topology contains 128 terminal machines,
numbered from 0 to 127, 12 routers, numbered from 128 to
139. Each of the second level routers connects to 16 terminals
and all the first level routers. This topology is identical to
the structure of the first topology with much larger scale. The
communication still happens between nodes No. 0 and No. 19.
200 background flows settings remain unchanged. However, in
such a large topology, 200 background flows may have little
impact on the transmission time of the testing data, which
should not cause the curves oscillating.

The results of the third experiment are shown in Figure 9
and Figure 12. Although we narrow the range of the number

of QPs, the trend of the parametric curves are similar to those
of the first half in the first experiment, including the variation
of the curves. There is only a little increase in the specific
transmission time with about 200000 ns. Thus, the scale of the
topology does not affect the range of parameters in a certain
extent.

V. RELATED WORK

Recent years, a lot of researches about RDMA performance
improving have been done[37], [38], [39], [40], including
multi-path transport and packet loss handling. MP-RDMA [19]
is based on NIC to deploy traffic to multiple paths. It uses
multi-path ACK-clocking mechanism to distribute packets
according to congestions, and uses bitmap to track the out-
of-order packets. MP-RDMA also actively selects fast paths
with similar delay and prune slow paths to improve the overall
performance. This work has similar idea with us, the difference
is that MP-RDMA mainly focus on improving NIC hardware,
and our work only changes applications.

IRN [2] also makes some changes to RoCE NICs. It uses
selective retransmission mechanism and BDP-FC mechanism
which bounds the number of in flight packets to handle the
problem of packet loss. RaaS [1] improves the scalability
of RDMA and CPU/memory utilization, whose prototype
RDMAvisor can achieve high throughput for thousand of
connections with low CPU and memory overhead.

VI. CONCLUSION

This paper gave an algorithm to solve the load balancing
issue in RDMA from application layer. The main idea is to
bind different QPs with different UDP source ports so that
the packets sent by different QPs carry different five-tuple.
Then, we divide the total data into chunks with proper size
which is allocated to different QPs according to the congestion
conditions of the corresponding paths. In addition to the multi-
path routing algorithm, the data chunks can be transmitted by
multi-path to improve the utilization of network resources and
speeding up the data transmission rate. Through the simulation
experiments, we show that the algorithm can decrease the
transmission time by 81.03%. Therefore, the combination
of multi-path routing algorithm and RDMA solve the load
balancing issue effectively.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their valuable comments. This research is supported by the
National Key R&D Program of China 2018YFB1003505, the
National Natural Science Foundation of China under Grant
Numbers 61602194, 61772265, and 61802172, the Collabo-
rative Innovation Center of Novel Software Technology and
Industrialization, and the Jiangsu Innovation and Entrepreneur-
ship (Shuangchuang) Program.

REFERENCES

[1] Z. Wang, X. Wang, Z. Qian, B. Ye, and S. Lu, “Rdmavisor: Toward
deploying scalable and simple RDMA as a service in datacenters,”
CoRR, vol. abs/1802.01870, 2018.

[2] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy, S. Rat-
nasamy, and S. Shenker, “Revisiting network support for RDMA,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM 2018, Budapest, Hungary, August
20-25, 2018, 2018, pp. 313–326.

[3] J. Yang, J. Izraelevitz, and S. Swanson, “Orion: A distributed file system
for non-volatile main memory and rdma-capable networks,” in 17th
USENIX Conference on File and Storage Technologies, FAST., 2019,
pp. 221–234.

[4] D. Kim, T. Yu, H. H. Liu, Y. Zhu, J. Padhye, S. Raindel, C. Guo,
V. Sekar, and S. Seshan, “Freeflow: Software-based virtual RDMA
networking for containerized clouds,” in 16th USENIX Symposium on
Networked Systems Design and Implementation, NSDI, Boston., 2019,
pp. 113–126.

[5] H. Li, T. Chen, and W. Xu, “Improving spark performance with
zero-copy buffer management and RDMA,” in IEEE Conference on
Computer Communications Workshops, INFOCOM Workshops 2016,
San Francisco, CA, USA, April 10-14, 2016, pp. 33–38.

[6] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA efficiently
for key-value services,” in ACM SIGCOMM 2014 Conference, SIG-
COMM’14, Chicago, IL, USA, August 17-22, 2014, pp. 295–306.

[7] Q. Cai, W. Guo, H. Zhang, D. Agrawal, G. Chen, B. C. Ooi, K. Tan,
Y. M. Teo, and S. Wang, “Efficient distributed memory management
with RDMA and caching,” PVLDB, vol. 11, no. 11, pp. 1604–1617,
2018.

[8] D. Y. Yoon, M. Chowdhury, and B. Mozafari, “Distributed lock manage-
ment with RDMA: decentralization without starvation,” in Proceedings
of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, pp. 1571–1586.

[9] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” in
ACM Conference on Special Interest Group on Data Communication,
2015, pp. 465–478.

[10] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath tcp,” in ACM SIGCOMM 2011 Conference, 2011, pp. 266–
277.

[11] S. Ghorbani, Z. Yang, P. Godfrey, Y. Ganjali, and A. Firoozshahian,
“Drill: Micro load balancing for low-latency data center networks,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. ACM, 2017, pp. 225–238.

[12] D. Jiang, P. Zhang, Z. Lv, and H. Song, “Energy-efficient multi-
constraint routing algorithm with load balancing for smart city appli-
cations,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1437–1447,
2016.

[13] Y. Gao, Y. Yang, T. Chen, J. Zheng, B. Mao, and G. Chen, “DCQCN+:
taming large-scale incast congestion in RDMA over ethernet networks,”
in 2018 IEEE 26th International Conference on Network Protocols,
ICNP 2018, Cambridge, UK, September 25-27, 2018, 2018, pp. 110–
120.

[14] Y. Pan, C. Tian, J. Zheng, G. Zhang, H. Susanto, B. Bai, and G. Chen,
“Support ECN in multi-queue datacenter networks via per-port marking
with selective blindness,” in 38th IEEE International Conference on
Distributed Computing Systems, ICDCS 2018, Vienna, Austria, July 2-
6, 2018, 2018, pp. 33–42.

[15] J. Zheng, B. Li, C. Tian, K. Foerster, S. Schmid, G. Chen, and J. Wux,
“Scheduling congestion-free updates of multiple flows with chronicle
in timed sdns,” in 38th IEEE International Conference on Distributed
Computing Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018, 2018,
pp. 12–21.

[16] D. Jiang, P. Zhang, Z. Lv, and H. Song, “Energy-efficient multi-
constraint routing algorithm with load balancing for smart city appli-
cations,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1437–1447,
2016.

[17] I. T. Association, “Infiniband architecture specification volume 1 release
1,” http://www.infinibandta.org/content/, 2015.

[18] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang, H. Guan, and
M. Zhang, “Guaranteeing deadlines for inter-datacenter transfers,” in
Proceedings of the Tenth European Conference on Computer Systems,

EuroSys 2015, Bordeaux, France, April 21-24, 2015, 2015, pp. 20:1–
20:14.

[19] Y. Lu, G. Chen, B. Li, K. Tan, Y. Xiong, P. Cheng, J. Zhang, E. Chen,
and T. Moscibroda, “Multi-path transport for RDMA in datacenters,”
in 15th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2018, Renton, WA, USA, April 9-11, 2018, 2018, pp.
357–371.

[20] C. Guo, H. Wu, G. Soni, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“Rdma over commodity ethernet at scale,” in Conference on ACM
SIGCOMM 2016 Conference, 2016, pp. 202–215.

[21] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, im-
plementation and evaluation of congestion control for multipath tcp,” in
Usenix Conference on Networked Systems Design and Implementation,
2011, pp. 99–112.

[22] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing and
implementing a deployable multipath tcp,” in Usenix Conference on
Networked Systems Design and Implementation, 2012, pp. 29–29.

[23] C. Tian, J. Yan, A. X. Liu, Y. Tang, Y. Zhong, and Z. Li, “Macroflow:
A fine-grained networking abstraction for job completion time oriented
scheduling in datacenters,” in 24th IEEE International Conference on
Network Protocols, ICNP 2016, Singapore, November 8-11, 2016, 2016,
pp. 1–2.

[24] B. Tian, C. Tian, J. Sun, J. Yan, Y. Tang, W. Wang, H. Dai, N. Xia,
G. Chen, and W. Dou, “Using the macroflow abstraction to minimize
machine slot-time spent on networking in hadoop,” in Proceedings of the
2nd Asia-Pacific Workshop on Networking, APNet 2018, Beijing, China,
August 02-03, 2018, 2018, pp. 36–42.

[25] B. Tian, C. Tian, H. Dai, and B. Wang, “Scheduling cofiows of multi-
stage jobs to minimize the total weighted job completion time,” in
2018 IEEE Conference on Computer Communications, INFOCOM 2018,
Honolulu, HI, USA, April 16-19, 2018, 2018, pp. 864–872.

[26] C. Tian, A. Munir, A. X. Liu, Y. Liu, Y. Li, J. Sun, F. Zhang,
and G. Zhang, “Multi-tenant multi-objective bandwidth allocation in
datacenters using stacked congestion control,” in 2017 IEEE Conference
on Computer Communications, INFOCOM 2017, Atlanta, GA, USA,
May 1-4, 2017, 2017, pp. 1–9.

[27] S. Hu, W. Bai, K. Chen, C. Tian, Y. Zhang, and H. Wu, “Providing
bandwidth guarantees, work conservation and low latency simultane-
ously in the cloud,” in 35th Annual IEEE International Conference on
Computer Communications, INFOCOM 2016, San Francisco, CA, USA,
April 10-14, 2016, 2016, pp. 1–9.

[28] W. Bai, K. Chen, H. Wang, L. Chen, D. Han, and C. Tian, “Information-
agnostic flow scheduling for commodity data centers,” in 12th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
15, Oakland, CA, USA, May 4-6, 2015, 2015, pp. 455–468.

[29] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “PIAS: prac-
tical information-agnostic flow scheduling for commodity data centers,”
IEEE/ACM Trans. Netw., vol. 25, no. 4, pp. 1954–1967, 2017.

[30] I. T. Association, “Annex a 16: Roce,”
http://www.infinibandta.org/content/, 2010.

[31] ——, “Annex a 17: Rocev2,” http://www.infinibandta.org/content/, 2014.
[32] Mellanox, “Mellanox ofed for linux user manual rev 4.0

software version 4.0,” http://www.mellanox.com/related-
docs/prod software/Mellanox OFED Linux Release Notes 4 0-
2 0 0 1.pdf, 2017.

[33] Bobzhuyb, “ns3-rdma,” https://github.com/bobzhuyb/ns3-rdma/, 2016.
[34] Ns-3, “ns-3 tutorial release ns-3.26,” https://www.nsnam.org/releases/,

2016.
[35] S. Ma, J. Kim, and S. Moon, “Exploring low-latency interconnect for

scaling out software routers,” in IEEE International Workshop on High-
Performance Interconnection Networks in the Exascale and Big-Data
Era, 2016, pp. 9–15.

[36] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, and P. Germano, “Jupiter rising: A
decade of clos topologies and centralized control in google’s datacenter
network,” Communications of the Acm, vol. 45, no. 4, pp. 183–197,
2015.

[37] H. Qiu, X. Wang, T. Jin, Z. Qian, B. Ye, B. Tang, W. Li, and S. Lu,
“Toward effective and fair RDMA resource sharing,” in Proceedings of
the 2nd Asia-Pacific Workshop on Networking, APNet 2018, Beijing,
China, August 02-03, 2018, pp. 8–14.

[38] J. Xue, M. U. Chaudhry, B. Vamanan, T. N. Vijaykumar, and M. Thot-
tethodi, “Fast congestion control in rdma-based datacenter networks,” in

Proceedings of the ACM SIGCOMM 2018 Conference on Posters and
Demos, Budapest, Hungary, August 20-25, 2018, pp. 24–26.

[39] M. Miao, F. Ren, X. Luo, J. Xie, Q. Meng, and W. Cheng, “Softrdma:
Rekindling high performance software RDMA over commodity ether-
net,” in Proceedings of the First Asia-Pacific Workshop on Networking,
APNet 2017, Hong Kong, China, August 3-4, 2017, pp. 43–49.

[40] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale RDMA deployments,” in Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, SIGCOMM 2015,
London, United Kingdom, August 17-21, 2015, pp. 523–536.

	Select a link below
	Return to Previous View
	Return to Main Menu

