2514

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 11,

NOVEMBER 2018

Minimize the Make-span of Batched Requests
for FPGA Pooling in Cloud Computing

Yangming Zhao™, Chen Tian

, Zhuangdi Zhu, Jie Cheng, Chunming Qiao, Fellow, IEEE, and Alex X. Liu

Abstract—Using FPGA as accelerators is gaining popularity in Cloud computing. Usually, FPGA accelerators in a datacenter are managed
as a single resource pool. By issuing a request to this pool, a tenant can transparently access FPGA resources. FPGA requests usually
arrive in batches. The objective of scheduling is to minimize the make-span of a given batch of requests, which is the completion time of the
entire batch of jobs. As a result, either the responsiveness is improved, or the system throughput is maximized. The key technical challenge
is the existence of multiple resource bottlenecks. An FPGA job can be bottlenecked by either computation (i.e., computation-intensive) or
network (i.e., network-intensive), and sometimes by both. To the best of our knowledge, this is the first work that minimizes the make-span of
batched requests for an FPGA accelerator pool in Cloud computing that considers multiple resource bottlenecks. In this paper, we design
several scheduling algorithms to address the challenge. We implement our scheduling algorithms in an IBM Cloud system. We conduct
extensive evaluations on both a small scale testbed and a large-scale simulator. Compared with the Shortest-Job-First scheduling, our
algorithms can reduce the make-span by 36.25 percent, and improve the system throughput by 36.05 percent.

Index Terms—Cloud computing, FPGA accelerators, job scheduling

1 INTRODUCTION

OTIVATION. FPGA accelerators have become crucial
for Cloud computing. In current Cloud datacenters,
CPU resources are no longer adequate for many applica-
tions, especially for large-scale machine learning tasks.
Leading providers/researchers start to integrate various
FPGA/GPU accelerators in their platforms [1], [2], [3], [4],
[5], [6], [7], [8]. Compared with CPU, these accelerators can
significantly boost the performance of many computation-
intensive tasks, such as matrix computation, encryption,
and signal processing [9], [10], [11], [12]. For many applica-
tion scenarios, FPGA is more promising than GPU due to its
low cost (i.e., hundreds instead of thousands of dollars per
piece), low power footprint (i.e., tens instead of hundreds of
Watts per piece) and high power efficiency (i.e., 2-3x more
Gflops than GPU per Watt) [2].
FPGA accelerators in a datacenter are usually managed
as a single resource pool [8]. In such a datacenter, the

o Y. Zhao is with State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210008, China, and also with the Department
of Computer Science and Engineering, State University of New York at
Buffalo, Buffalo, NY 14260. E-mail: zhaoyangming.uestc@gmail.com.

o C.Tianiswith State Key Laboratory for Novel Software Technology, Nanjing
University, Nanjing 210008, China. E-mail: tianchen@nju.edu.cn.

o Z.Zhu and A.X. Liu are with the Department of Computer Science and
Engineering, Michigan State University, East Lansing, MI 48824.

E-mail: zhuzhuan@msu.edu, alexliu@cse.msu.edu.

o |. Cheng is with Huawei Technologies Co., Ltd., Shenzhen 518129, China.
E-mail: jiecheng2009@gmail.com.

o C. Qiao is with Department of Computer Science and Engineering, the
State University of New York at Buffalo, Buffalo, NY 14260.

E-mail: giao@computer.org.

Manuscript received 1 Dec. 2017; revised 6 Mar. 2018; accepted 11 Apr. 2018.
Date of publication 24 Apr. 2018; date of current version 10 Oct. 2018.
(Corresponding author: Chen Tian.)

Recommended for acceptance by B. He.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2018.2829860

operator installs FPGA devices in a portion of the
server farm due to cost and deployment constraints.
Following the Software-as-a-Service (SaaS) model, tenant
programs interact with the Cloud by calling the API func-
tions provided by an FPGA service layer. By issuing a
request to this layer, a tenant can transparently access
FPGA resources. A centralized scheduler maintains status
information of each FPGA node. It assigns job requests to
accelerators in the resource pool in an online fashion.
Tenants are agnostic to the control and status of FPGA
accelerators [13].

An application operation usually triggers a large number
of computation requests simultaneously for (FPGA) acceler-
ators. For example, the processing of Online Data Intensive
applications (OLDI) and real-time analytics involve a multi-
tier split-aggregate workflow, and a single process call trig-
gers a large number of computation tasks [14]. Some stream-
ing data processing systems are even batch-based in nature.
For example, Spark Streaming aggregates a batch of
requests and submits them together for processing [15]. In
this paper, we study how to schedule FPGA accelerators
when job requests come in batches.

The objective of FPGA accelerator scheduling is to mini-
mize the make-span of a given batch of FPGA requests.
Make-span is the time to complete all job requests in a single
batch. A new batch of requests is considered as completed
only after the completion of the last task of this batch. For
continuous systems (e.g., Spark with FPGA [16]), minimiz-
ing the make-span leads to maximized system throughput.
For periodical batch scheduling mode (e.g., Spark Stream-
ing), minimizing the make-span leads to minimized missing
ratio of application deadlines.

Challenges. The key technical challenge is to address mul-
tiple resource bottlenecks. An FPGA job can still be bottle-
necked by computation. For example, 12 MB of photos

1045-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4194-3024
https://orcid.org/0000-0003-4194-3024
https://orcid.org/0000-0003-4194-3024
https://orcid.org/0000-0003-4194-3024
https://orcid.org/0000-0003-4194-3024
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0002-6916-1326
https://orcid.org/0000-0002-6916-1326
https://orcid.org/0000-0002-6916-1326
https://orcid.org/0000-0002-6916-1326
https://orcid.org/0000-0002-6916-1326
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

ZHAO ET AL.: MINIMIZE THE MAKE-SPAN OF BATCHED REQUESTS FOR FPGA POOLING IN CLOUD COMPUTING

(2 KB each) need about 1 second to be processed by an
FPGA accelerator of deep neural network (DNN) [17]. If
equipped with a 10/40 Gbps fast network, the communica-
tion cost of this job can be negligible. We call such FPGA
requests computation-intensive. On the other hand, some jobs
can be processed by FPGA at line rate. The I/O bottleneck is
usually the network, since PCIE bandwidth is much higher.
We call such FPGA requests network-intensive. A typical
network-intensive example is AES encryption [18]. Some-
times, both network and computation can be bottlenecks.
Stick to the DNN example, if the network provides only
1 Gbps per host (as in some legacy datacenters), the network
transfer time cannot be ignored any more.

To the best of our knowledge, this is the first work that
minimizes the make-span of batched requests for an FPGA
accelerator pool in Cloud computing and considers different
kinds of resource bottlenecks. The work closest to ours is
done by Julio et al. [13]. However, their work performs
admission control for an FPGA resource pool, whereas we
provide services to all requests and minimize the make-span.

Contributions. In this paper, we design several scheduling
algorithms to address the challenge. First, we formulate the
scheduling of computation-intensive FPGA requests as a
parallel machine scheduling problem, which is a well-
known NP-hard problem. A polynomial time approxima-
tion algorithm is given, with a proven approximation ratio
of 2. Second, we formulate the scheduling of network-
intensive FPGA requests as a mixed integer programming
problem, which is also NP-hard. The network-intensive
case is similar to multiprocessor scheduling [19]. To the best
of our knowledge, however, this work is the first one which
considers the existence of network bottlenecks at both the
sender and the receiver sides and yields a 2-approximation
algorithm. At last, we extend the algorithms to support
cases that both data transmission phase and the computa-
tion phase are bottlenecked.

We implement our algorithms in an IBM Cloud system.
This system achieves full FPGA virtualization and pooling
on an OpenStack-based cloud. We conducted extensive eval-
uations on both a small scale testbed and a large-scale simu-
lator. Compared with the Shortest Job First (SJF) scheduling,
our algorithms reduce the make-span by 36.25 percent, while
improve the system throughput by 36.05 percent.

2 SYSTEM OVERVIEW

Our targeted Cloud system is a FIFO system. In this system,
Responder hosts carry heterogeneous FPGA accelerators,
and Requester hosts issue FPGA requests. A host can play
the roles of both a responder and a requester. All physical
machines are connected by a communication network. We
assume this communication network has a non-blocking
topology such as Fattree [20] and VL2 [21], and network bot-
tleneck only exists at the NIC of physical machines. As a
result, we can control the data transmission rate at the NIC
port of each physical machine for job scheduling purpose.
Each FPGA request contains three pieces of information:
the job type, the input data size and the requester’s location.
Though we are considering a Cloud system with heteroge-
neous accelerators, a linear regression method can be used
to predict the required processing time of each request on a

2515

particular FPGA hardware [13]. It should be noted that in
an FPGA accelerator system, a job may contain many indi-
vidual tasks, since it is not necessary to send a small task to
the FPGA accelerator. For example, a DNN request contains
hundreds of photos. Though we cannot accurately predict
the processing time of one photo, the processing time of
hundreds of photos is stable. In addition, we will demon-
strate that our scheduling schemes are robust to the predic-
tion error through simulations.

When a batch of requests arrive, a centralized scheduler
aggregates all job information, and assigns job requests to
accelerators in the resources pool following the algorithms
proposed later. In our current system, we only consider jobs
that have small outputs, such as word counting, DNN and
numerical average. Accordingly, we do not consider the
traffic sent back to the requesters. How to schedule the traf-
fic replying to the requesters will be left for our future work.

3 SCHEDULING ALGORITHMS

For clarity of presentation, in this part, we first use simplified
settings: 1) for each case there is only one type of jobs to be
scheduled; 2) there is only one accelerator carried by each
responder host; 3) requester hosts and responder hosts are not
overlapped; 4) the logic reconfiguration time of each FPGA
accelerator can be ignored; 5) only one batch of requests are
processed in the system and a batch of requests should be
started simultaneously. As such, we propose scheduling algo-
rithms for computation-intensive and network-intensive jobs
in Section 3.1 and 3.2, respectively. Section 3.3 proposes an
algorithm considering both computation and transmission. In
Section 3.4, we discuss how to apply the scheduling algo-
rithms to an online system where requests arrive sequentially.
At last, we remove these simplified assumptions and extend
our scheduling algorithms to cover the most general cases in
Section 3.5.

3.1 Computation-Intensive Case

For computation-intensive jobs, the communication cost is
negligible and hence we do not focus on by which requester
host each job is issued. In this case, we assume there are M/
responder hosts and .J jobs generated by all requester hosts.
For each job i to be accelerated, the computation time on
responder host j can be estimated as ¢;;. Due to heterogene-
ity among FPGA hardware, there could be e;;, # e;;, when
J1 # jo. Based on above assumptions, minimize the make-
span for computation-intensive jobs can be modeled as the
following Computation Intensive Model (CIM):

minimize T (1)
Subject to:
Z ey < T, Vj (1a)
J
zij € {0,1}, Vi, j. (1)

The objective is to minimize the make-span of all the
jobs, denoted by T'. Constraint (1a) says that any responder
host j should complete all the jobs assigned to it before the

2516

make-span 7. Constraints (1b) and (1c) indicate that any job
i must and can only be placed on one responder host. In
fact, this is a parallel machine scheduling problem, which is
a well-known NP-hard problem [22] and is intractable in
large scale systems due to the binary variable constraint
(1c). Therefore, we need an efficient approximation algo-
rithm to solve it.

A common method to solve this binary variable problem
is relaxation and rounding. By treating x;; as real variables
on [0,1] and solving the resulting Linear Programming (LP)
model, we can derive a feasible scheduling scheme based
on the solution of the relaxed CIM model. For example, we
can assign job i to responder host j if j = arg; max{wz;;}.
However, such simple relaxation and rounding method
may not derive a good solution and the result can be
extremely bad in large scale systems, since a job can be split
arbitrarily and assigned to any responder host. Especially,
when the optimal make-span is 7% in the relaxed CIM
model, the solution can still assign a fraction of a job i to
responder host j, evenif e;; > T".

Based on above discussions, we find that we can at least
prevent assigning a job i to a responder host j such that
ejj > T, where T'is the make-span, when we derive a relax-
ation of the CIM. Suppose E;(T') is the set of jobs that can be
completed on responder host j in time T, and H;(7T) is the
set of responder hosts that can complete job ¢ in time 7', we
propose the following relaxation model named CIM-LP:

minimize T (1L)
Subject to:
Z ez < T, Vj (laL)
i€E;(T)
> oay=1, Vi (1bL)
JEH;(T)
Tij >0, Vije H,(T) (ICL)

Compared with relaxing constraint (1c) directly, CIM-LP
prevents a job i from being assigned to a responder host
that cannot complete it in 7" even if only job i is assigned to
this responder host. Accordingly, the objective value of
CIM-LP should be closer to that of CIM than the objective
derived by directly relaxing constraint (1c). In addition, the
solution {z;;} of CIM-LP provides a better indication to
round a job scheduling scheme as it never assigns job i to a
responder host j that cannot complete job ¢ before the
make-span even if job i is the only job assigned to responder
host j. This is an important characteristic to prove the
approximation ratio of our algorithm.

When T is the objective to minimize (i.e., 1" is a variable),
CIM-LP is not a convex optimization problem, and hence it
is difficult to solve directly. However, by fixing 7', all the
constraints become linear and there are efficient algorithms
to check the problem feasibility. Accordingly, we can use
the binary search to find the minimum 7" that can make
CIM-LP feasible, which is the objective value of CIM-LP.
This algorithm is shown in Algorithm 1. In this algorithm,
€ is the required accuracy, ty.x and t,;, are the upper
and lower bound of make-span, respectively, which are

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 11,

NOVEMBER 2018

obtained by Lines 1-2. This algorithm can get the minimum
make-span in [log =7 jterations. It should be noted
that Algorithm 1 returns ¢,,,x which must be a feasible solu-

tion, rather than ¢,,;, though it is very close to #yax.

Algorithm 1. Minimize Make-Span for Splittable Jobs

Input: The running time of each job on different machines {e;; }
Output: Minimal job make-span
: Initialize ¢,,.x to be the job make-span based on a random
job assignment
¢ tmin < max;min;{e;}
while ¢, — tmin > € do
t— (tmax + tmin)/2
if CIM-LP is feasible when T' = t then
tmax <— T

else

—_

tmin — 1
end if
: end while

: return .«

DO RN RN

b

To achieve the make-span derived by solving CIM-LP, a
job may be split onto multiple responder hosts. Accord-
ingly, we need to round the solution derived by solving
CIM-LP to allocate every job to a unique responder host. To
this end, we first propose the following lemma that can
guide our algorithm design.

Lemma 1. Suppose there are J jobs and M responder hosts in the
system, then at most (J+M) variables will be non-zero in the
optimal solution of CIM-LP.

Proof. Assume v is the number of variables in CIM-LP
when T is fixed, which is also the number of constraints
in (1cL). When T is the minimum value that makes CIM-
LP feasible, the feasible region is a single point deter-
mined by v linearly independent constraints, such that
each of these constraints is satisfied with the equality.

Consider that there are v + M + .J constraints in CIM-
LP, but only M constrains in (1aL), J constraints in (15L).
Accordingly, there are at least v — J — M constraints in
(IcL) that hold the equality. Hereby, at most J + M con-
straints in (1cL) do not hold equality. It means that at
most J + M variables take non-zero value in the optimal
solution. O

From Lemma 1, we have the following corollary.

Corollary 1. We construct a bigraph BG = {U, V, E'} according
to the solution of CIM-LP, x. U = {uy,us, ..., un} is the set
of nodes denoting responder hosts, called responder nodes, while
V ={vi,vs,...,v;} is the set of nodes denoting jobs, called job
nodes. There is an edge between v; and wu;, if and only if
x;; > 0. In this case, any connected component, P, in BG can
be modified to a pseudo tree (a tree or a tree plus one edge) with-
out increasing make-span.

Without ambiguity, we say job (responder host) v instead
of the job (responder host) associating with node v hereafter
for brevity.

Proof. Say if there are a connected component P in BG,
such that P is not a pseudo tree, then we solve CIM-LP
by only using the jobs and responder hosts associated

ZHAO ET AL.: MINIMIZE THE MAKE-SPAN OF BATCHED REQUESTS FOR FPGA POOLING IN CLOUD COMPUTING

with P, say the solution is «’. It is obvious that the make-
span of the jobs in P under the job scheduling associated
with 2’ should be smaller than or equal to that derived by
using all the jobs and responder hosts. According to
Lemma 1, the non-zero variable number in the solution is
at most the number of nodes in P. Repeat this procedure,
we can ensure that the number of edges in every con-
nected component P in BM is at most the number of
nodes in P. Therefore, any connected component P in
BG can be modified to be a pseudo tree (a tree or a tree
plus one edge) without increasing make-span.]

Algorithm 2. Job Assignment

Input: The solution of CIM-LP {z;;}
Output: Job assignment
1: Construct a bigraph BG according to {x;;} as in Corollary 1,
modify every connected component to be a pseudo tree,
and update CIM-LP solution based on this modification
2: Remove all the job nodes with only one node degree and
place these jobs to the connecting responder host

3: for all connected components P € BG do
4: if [IN(P)| = |L(P)| then
5: Find the unique cycle in P with depth first search
6: Arbitrarily orient the cycle in one direction and assign
each job to the responder host succeeding it on the
cycle
7 Remove this cycle from P, and what remains overall is
a forest of trees, each of which contains at most one job
leaf node
8: for all the remaining trees do
9: Rooting at the unique job leaf node (if there is), or
arbitrary job node
10: Assign each job to its child responder host that
services most fraction of this job
11: end for
12: else
13: Treat arbitrary job as the root to form a tree and assign
each job to its child responder host that services most
fraction of this job
14: endif
15: end for

Based on Corollary 1, Algorithm 2 places each job to a
unique responder host. The key idea of this algorithm is to
ensure that each responder host serves at most one job that is split
to multiple responder hosts according to the solution of CIM-LP.

In this algorithm, Line 2 deals with the jobs that have
only one responder host to place. After that, every remain-
ing job is split to at least two responder hosts. For each con-
nected component P € BG, if |[N(P)| = |L(P)|, where N(P)
is the set of nodes in P and L(P) is the set of edges in P,
there must be a cycle in P. In this case, we first find out this
cycle by Depth-First Search (DFS), and determine the job
assignment on this cycle (Line 6). This is to ensure every
responder host on the cycle only serves one split job.

By removing this cycle from P, there must be a forest of
trees left, each of which contains at most one job leaf node.
(Job leaf nodes might be created upon the deletion of the
cycles, but there will be at most one such leaf per resulting
tree.) If there is a job leaf node on the resulting tree, we can
root the tree at this job leaf node, and assign the job to its
child responder host that serves most fraction of this job.

2517

Otherwise, we root the tree at arbitrary job node and assign
each job to one of its child responsder hosts (Lines 8-11). In
this way, each responder host can get at most one job split to mul-
tiple responder hosts according to the solution of CIM-LP. When
P is a tree, the job assignment method for the resulting tree
without job leaf node can be adopted. We treat arbitrary job
node as the root to form a tree and assign each job to its
child responder host that serves most fraction of this job.
With above job assignment, any responder host gets at most
one job that is split to multiple responder hosts according to
the solution of CIM-LP.

The performance of Algorithm 2 is guaranteed by the fol-
lowing theorem:

Theorem 1. The make-span derived by Algorithm 2 is at most two
times of the solution of CIM-LP. Since CIM-LP yields a lower
bound of CIM, the approximation ratio of Algorithm 2 is 2.

Proof. Suppose T is the objective value of CIM-LP, if all the
jobs are splittable, the solution of CIM-LP {z;;} ensures
that all the jobs can be completed in time 7. In Line 2, we
deal with all the jobs that are not split according to the
solution of CIM-LP, and the make-span formed by these
jobs must be smaller than or equal to 7. From Lines 3-15,
we ensure that every responder host accommodates at
most one more job. Since each job will only be assigned to
one responder host that can finish it in time 7', the make-
span is at most 27". 0

3.2 Network-Intensive Case

Some jobs (e.g., word counting) are bottlenecked by the net-
work transfer. In this case, we should determine not only
the allocation of each job, but also the job data transmission
rate to minimize the make-span. This problem can be for-
mulated as following Network-Intensive Model (NIM):

minimize T 2
Subject to:
> fit) < B, Vit (2a)
SN R <B Yt (2b)
Joig(i)=u
T
Z/ fij(t)dt = s;, Vi (2¢)
j 0
fi(t) <ayBY, Vi gt (2d)
Y ow=1, ¥i, (2¢)
7
zi; €{0,1}, Vi, j. (2f)

In this model, the first constraint is used to limit the
ingress rate of each responder host, where Bé-” is the ingress
rate of responder host j, and f;;(t) is the flow rate of job i to
responder host j at time ¢. (2b) is used to limit the egress
rate of each requester host u, where ¢(i) is the requester host

2518

that issues job i and B is the egress rate limitation of
requester host u. With s; denoting the volume of job 4, (2¢)
means that all the data of job ¢ should be sent out before the
make-span. Constraints (2d)—(2f) are used to indicate that
every job should be assigned to one and only one responder
host.

NIM is NP-hard even if there is only one requester
host [23]. It is difficult to solve because: 1) the objective,
which is also a variable, is the upper bound of the integra-
tion in constraint (2c); and 2) {z;;} are binary variables. To
address the first issue, we propose the following theorem:

Theorem 2. Suppose f;; and x}; are the solutions, and f* is the
objective value of the followmg optimization problem named
Network-Intensive Model with Rate Control (NIM-RC):

maximize f 3)
Subject to:
Z fZJ < Bm VJ (33)
> Z [< BM, Vu (3b)
Jigli)=
D o fu=sif, Vi (3¢)
J
fij < J:l]B;l”; VZ,j (3d)
Z iy =1, Vi, (3e)
J
T € {0, 1}, VZ,] (3f)
then, T = f— is the optimal objective value of NIM. f;;(t) =

I forte (O,f*)
0 forte(: 7 00)
achieve the optimal objective value.

, and x;; =z}, are the solutions to

Proof. Suppose T, is the optimal objective of (2), and

£(t) is the corresponding solution, then by setting

fgopt opt (t)dt

fis =
Y Tapf,

we have,
Z/ fopt dt = Z fijTapt-
Since
3 / (1)t = / PIVAOT
Topt)
< / Bl'dt = Ty, B}
0

we know Y, fij < BJ". In the same way, we can verify
that f;; also satisfies constraint (3b) and (3d).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 11,

NOVEMBER 2018

For constraint (3c), we can see that

Z/ fo‘pt dt = Z fijTopt = S
J

Let f = T - wWe get
Zﬁ] =sif.
opf
fTopL fu[)t(f)
Above discussion shows that f;; = 0+ and f =7~
opt r)p

is a feasible solution of NIM-RC. Accordingly,

1

* > .
f _Topt

In addition, we can easily verify that the variable set-
tings claimed in Theorem 2 is a feasible solution of NIM.
Therefore, we have

1
Topt, S F .
Accordingly, we have T, = 4 O

Theorem 2 provides a way to eliminate the variable in
the integration upper bound of constraint (2c). Below, we
discuss how to solve the binary variables in the NIM-RC.
First, we combine all the responder hosts as a big one, the
optimization problem can be formulated as the following
Network-Intensive Model with One Responder (NIM-OR):

maximize f (@)
Subject to:
Y <Y B (4a)
i J
> H<BM, Vu (4b)
i:g(i)=u
f’i = Sifa VZ, (4C)

where f; is the transmission rate of job i. NIM-OR is a linear
programming problem that is easy to solve. After solving
NIM-OR, we derive the maximum transmission rate of each
job. When we place all these jobs to different responder
hosts, we should scale down the transmission rate. If the
scale-down ratio is 7, i.e., we can transmit any job with rate
L, to minimize the make-span, we should minimize the
scale-down ratio, i.e.,

minimize 7 (%)
Subject to:
Z fiwig <rBY, Vi (5a)
> my=1, Vi (5b)
i
z;; € {0,1}, Vi, j. (5¢)

ZHAO ET AL.: MINIMIZE THE MAKE-SPAN OF BATCHED REQUESTS FOR FPGA POOLING IN CLOUD COMPUTING

%, the model (5) is modified to be CIM,

which can be solved bgl Algorithm 2 with approximation ratio
2. Based on the above discussions, we design Algorithm 3 to
schedule the network-intensive jobs in the system. We first
determine the flow transmission rate to minimize the make-
span by treating all the responder hosts as one big responder
host (Line 1). And then assign the jobs to different responder
hosts by pursuing the minimum scale-down ratio (Line 2). In
Lines 3-8, we scale down the job transmission rate and assign
them to responder hosts. However, we do not scale down
all the job transmission rates with the same ratio. Instead,
we scale down the transmission rate of jobs to different
responder hosts by different ratios to fully utilize the
responder hosts” ingress bandwidth. Though it cannot fur-
ther reduce the make-span, it speeds up the completion of
some jobs without impacting the others. It should be noted
that the scale-down ratio is smaller than 1 means we should
scale up the transmission rate of some jobs to particular
responder hosts to fully utilize the ingress bandwidth. In this
case, the egress bandwidth on the requester side should be
the bottleneck, and hence we maintain the data transmission
rate. Accordingly, we only scale down the transmission rate
of flows that should be sent to the responder hosts whose
bandwidth is the bottleneck of the network (Lines 5 -7).
Following theorem shows the performance of Algorithm 3.

By defining e;; =

Algorithm 3. Minimize Network-Intensive Job
Make-Span

Input: The size of each job s;, egress rate of each requester host
{B’"}, ingress rate of each responder host {B;"}
Output: Job transmission rate { f;;}
1: Formulate and solve NIM-OR (the solution is { f;})
2: Formulate model (5) and solve it with Algorithm 2, say the
solution is x;;
: for all responder host j do

2t

.fi,j — fi,«rij/ Ty B

: end for

3
4
5
6: fU — =
7
8
9: return {f;;}

Theorem 3. The approximation ratio of Algorithm 3 is 2.

Proof. There are two cascaded bottlenecks in the network-
intensive case: the egress bandwidth on the requester
host side and the ingress bandwidth on the responder
host side. Say f and r are the optimal objective value of
NIM-OR and (5), respectively, the the optimal make-span
should be %max{l, r}. When r > 1, the bottleneck is on
the responder hosts side, while the bottleneck is the
egress bandwidth of requester hosts if < 1. As the opti-
mal value of f can be obtained by NIM-OR which is a lin-
ear programming model, and Algorithm 1 and 2 can
solve (5) with approximation ratio 2, the make-span
derived by Algorithm 3 is at most %max{l, 2r}. Accord-
ingly, the make-span derived by Algorithm 3 is at most 2
times of the optimal make-span.]

It is worth noting that Algorithm 3 may leave some resid-
ual bandwidth, especially when the transmission rate of

2519

some jobs is scaled down. Though we cannot further reduce
the make-span by fully utilizing such residual bandwidth, it
can be used to speed up of some the jobs, which may in turn
improve another metric: average job completion time. To
this end, we assign the residual bandwidth to the jobs fol-
lowing the shortest job first principle.

3.3 Consider Both Transmission and Computation
So far, we only consider the case that either computation or
the network transmission is the bottleneck of a job. How-
ever, there are some jobs of which neither the transmission
nor the computation can be ignored. In this case, the prob-
lem is much more complicated. A key observation is that:
we can overlap a job’s data transmission with the other jobs’
computation phase. Accordingly, we develop a heuristic
that first determines the placement of each job and then tries
to overlap the transmission and the computation phase of
different jobs to minimize the make-span.

To determine the job assignment, we leverage the
Algorithm 2 to optimize the make-span, without consider-
ing the transmission phase. After that, we leverage Shortest
Job First scheme to determine job execution order on each
responder host. Then, we minimize the time gap between
the computation of any two consecutive jobs by controlling
the job transmission rate.

Let by, denote the time to start the computation phase
of kth job on responder host i, i), denote the kth job on respo-
nder host ¢ and N(i) denote the number of jobs that are
assigned to responder host ¢, the problem to minimize the
make-span can be formulated as the following Network-
Computation Joint Model (NCJM) if neither the job computa-
tion nor the data transmission can be ignored:

minimize T (6)

S ha) < B Vi (6a)

%
SN) <BM, Y (6b)

i keglip)=u

bik

f’iki (t)dt = Sik’ Vi, k (6C)
0

bir + e < by iy Vi k (6d)
bing) + Cingyi <T, Vi (6e)

The first three constraints are the same as that of the first
three constraints of NIM. Constraint (6d) says the computa-
tion phase of (k+ 1)th job cannot start before the comple-
tion of the kth job’s computation phase; the last constraint
means the make-span is larger than the completion time of
the last job on any responder host. The ingredient making
this problem difficult to solve is that the integration upper
bound of constraint (6¢) is a variable but it cannot be solved
with the same technology in Algorithm 3; we design a heu-
ristic Algorithm 4 to solve NCJM.

In Algorithm 4, we first determine the scheduling (both
placement and order) of job computation in Lines 1 and 2

2520

with Algorithm 2 and SJF scheme. After that, we minimize
the gap between two consecutive jobs on each responder
host by optimizing the job transmission. Starting at Line 3,
d;,; is the earliest time for the kth job on responder host i to
start its computation phase. Therefore, we send the data for
the job that can start computation earliest first and try to
catch up with the earliest starting time (Line 5). To this end,
we first check if there is enough bandwidth to send the
entire job i, to the responder host before d;;. If so, we com-
plete the job transmission exactly before d;,;, in order to
minimize the bandwidth consumption (Line 7). Otherwise,
we complete the transmission as soon as possible (Lines 9
and 10). This is to minimize the gap between the computa-
tion of two consecutive jobs on a responder host. The mini-
mum time that is required to complete the job transmission
can be derived by well-known water filling algorithm [24].
Since the computation phases of some jobs are delayed, we
update the earliest starting time of the computation phases
of later jobs (Line 4). At last, we update the available ingress
and egress bandwidth of each host, since it has been
assigned to transmit more jobs.

Algorithm 4. Minimize Make-Span Considering Both
Transmission and Computation

Input: The size of each job s;, egress rate of each requester host
{B;"}, ingress rate of each responder host { B/}, the
computation time of each job on different responder
host {ei]‘}

Output: Job assignment {z;;} and job transmission scheduling
{f;()}

1: Using Algorithm 2 to determine the job assignment by only
considering the computation, and get {x;;}

2: Schedule all the jobs on each host based on SJF to determine
the execution order

3: Initialize d;,; — Zp <k Ciir Rin(t) « Bi", Re“(t) « B, and
S as all the jobs in the system

4: while S # ® do
5 {i,k} o arg min; d;,;,

s fi mind R (0. B (1)
6: if s > s; then

7o fya(t) = min{ Ry (1), R (8)} x 2k for
te [0, di;,,i]/ and fik,i(t) =0fort > diki
else
9: With water filling algorithm [24], find the T, such that
A g alg
Jo min{ R (), R(1)} = s,
10: fia(t) = Hjlirkl{R;E‘fk_)(t), Re“(t)} for t € [0,T7], and
f’k/(t) =0fort > T
11: dipi — + (T — dz'ki) for p > k
12: endif
13: RI*(t) « R"(t) — f;,i(t),
R%tk)(f) - Rgf‘fk)(t) = fia(t)
14: S—S5— Tk
15: end while
16: return {z;;} and { f;;(¢)}

*

ipt

3.4 Online Scheduling of Batched Requests

In previous subsections, we assume a batch of requests
come into an empty system. However, in practical systems,
there are many batches of requests arrive sequentially. In
this section, we present how to schedule a batch of requests
when there are some uncompleted jobs in the system.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 11,

NOVEMBER 2018

For computation-intensive jobs, the make-span of jobs
coming later will be impacted by the previous batches as
not all the jobs can be started at the time “0”. To solve this
problem, we first estimate the completion time of previous
jobs on each responder host based on previous scheduling.
Assume c¢; is the completion time of the last job on
responder host j, the (1a) in CIM should be changed to be

Cj + Z €ijTij < T7 \V/] (la’)
i

Correspondingly, in CIM-LP, the E;(T) should be defined
as the set of jobs ¢ that can be completed on host j in time
¢j + €;j, while H;(T') is the set of hosts j that can complete
job i in time ¢; + e;;. Then Algorithm 2 still works to derive
a 2-approximation solution.

When a batch of network-intensive jobs come and there are
some uncompleted jobs in the system, they can try to utilize the
bandwidth left by the previous batches of jobs to improve its
make-span. For simplicity, in our system, we try two schemes:
1) waiting for the completion of previous jobs and calculating
the scheduling with Algorithm 3; 2) calculate the scheduling
with Algorithm 3 with the remaining bandwidth when the
new batch of jobs arrive. The scheduler enforces one of above
two schemes with the smaller make-span into the system.

At last, the Algorithm 4 can be directly applied to the
case that there are already some jobs in the system.

3.5 Discussions

Multiple Accelerators per Responder Host. Usually, an FPGA
chip can be divided into multiple regions and partial recon-
figured to support multiple accelerators simultaneously. In
this case, a responder host may carry multiple accelerators.
Though our algorithm discussion is based on the assumption
that one host carries one accelerator, it can be extended to
the case that each host carries multiple accelerators. For the
computation-intensive case, we treat each accelerator as a
responder host, and then Algorithm 2 still works. Algorithm 3
is applicable to the network-intensive case without any modi-
fication. For Algorithm 4, we should calculate the earliest
starting time of each job on the accelerator level, while sched-
uling the bandwidth on the host level.

Mixture of Job Types. When there are mixed types of jobs
in the system, we first divide the jobs into multiple waves
according to their types. We schedule computation-intensive
jobs first and schedule network-intensive jobs last.

Mixture of Job Sources. Some jobs may be generated by
responder hosts. For a computation-intensive job, it should
be scheduled with Algorithm 2 directly, since its data trans-
mission phase can be ignored. If it is a network-intensive
job, it should be locally executed since it has a very light
computation workload. When neither computation nor data
transmission phase can be ignored, we execute these jobs
locally for reducing the communication overhead.

Logic Reconfiguration. According to [25], the accelerator
reconfiguration overhead is in the micro-second level, and
we believe this is a small overhead. Even if this cannot be
ignored, we can add the logic reconfiguration time into the
job execution time before we run our scheduling algorithms.

Fairness Among Jobs. Algorithm 3 may greatly degrade the
completion time of some small jobs. Fig. 1 shows such an

ZHAO ET AL.: MINIMIZE THE MAKE-SPAN OF BATCHED REQUESTS FOR FPGA POOLING IN CLOUD COMPUTING

10 Mbps
10 Mb
1 Mb Fy
R, 1 Mbps
P
Ry 9 Mbps
9 Mb

Fig. 1. Performance degradation for the small size job.

example. There are three jobs on two requester hosts, R, and
R;. One of them (R;), whose egress rate is 11 Mbps, has two
jobs with size 10 Mb and 1 Mb. And the other requester host
(R») issues only one job with size 9 Mb, but its egress rate is
9 Mbps. There are two responder hosts (F} and F), whose
ingress rate are both 10 Mbps. The optimal solution to mini-
mize make-span is shown in Fig. 1, with which all the jobs
are completed in 1 second. However, it is a too large latency
for the job with only 1 Mb size to last for 1 second, since it
requires only 0.1 second to finish if SJF scheme is adopted.

To solve this problem, we can divide all the jobs into
multiple groups according to their size and schedule the
group containing those smallest jobs first.

4 TESTBED AND IMPLEMENTATION

We implement the accelerator pooling system on IBM'’s
OpenPower Cloud system testbed with 7 hosts. Two of them
are implemented as responder hosts, each of which carries
one FPGA accelerator. Four of them work as requester hosts
to generate jobs, and the remaining one is used as the sched-
uler. All of these hosts are connected by a switch, and the
NIC rate on each host is 1 Gbps.

Our scheduling algorithms are implemented on the
scheduler with CPLEX 12.3 as the linear programming
solver. The scheduler should maintain some prepared
job information, such as the job type (network-intensive,
computation-intensive, or both), and the relationship bet-
ween the estimated computation time and job size. When-
ever a batch of jobs arrive, the requester hosts send the job
information to the scheduler; the scheduler adopts suitable
algorithms to calculate the scheduling, and sends results
back to each requester host.

As we need to control the traffic rate of each job, rate lim-
iting process should be triggered on every requester host
for each job. We use two methods. If the scheduler has root
privileges, a user-space process is used to control the tc tool
in Linux; otherwise, this control is realized by controlling
the rate to write the data to the socket buffer.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our schedul-
ing algorithms through both small scale testbed experi-
ments and large scale simulations. With experiments on the
testbed, we verify the effectiveness of our algorithms in real
systems. With simulations, we study how different work-
load patterns impact the performance, by varying the num-
ber of responder/requester hosts and the number of jobs in
a batch. In addition, we study: (1) the relationship between

2521

Make—span (s)
Make—span (s)

NIM-based ~ SIF LJF
Scheduling algorithm

(a) Word counting requests.

CIM-based SJF LJF
Scheduling algorithm

(b) DNN requests.

Fig. 2. Experiment results on testbed.

minimizing make-span and maximizing system through-
put; (2) the tradeoff between make-span and Average Job
Completion Time (AJCT); (3) how mixture of job types
impacts our scheduling performance; and (4) how job exe-
cution time estimation error impacts our scheduling perfor-
mance, respectively. At last, we present the running time of
the algorithms proposed in this paper to demonstrate their
scalability in real systems.

We choose SJF and Largest Job First (LJF) schemes as the
baselines for comparison. With SJF, whenever a responder
host is available for the next job, we choose the job that can
be completed quickest on it, and schedule as many resour-
ces as possible to this job; a job can be transmitted as soon
as there is remaining bandwidth, even though it cannot start
execution before the transmission is completed.

Largest Job First is a good scheme to minimize make-
span in the identical machine scenario. However, it cannot
be directly applied to our case where the accelerators are
heterogeneous. For example, there are two jobs and two
accelerators. Job 1 can be completed in 1 second on accelera-
tor A, while it needs 5 seconds to be completed on accelera-
tor B. For Job 2, we need 3 seconds to complete it regardless
of which accelerator is selected. In this case, it is difficult to
define which job is the larger one. To solve this problem, we
first calculate the average completion time of each job if it is
assigned to different accelerators. When there is an idle
accelerator, we assign the job with largest average comple-
tion time to it.

We define a performance improvement of scheme A over
scheme B as:

|Performance of B — Performance of A|

T t =
mprovemen Performance of B

(7)

5.1 Testbed Experiment

In our experiment, we first generate one word counting job
for each requester host with size 300 MB, 300 MB, 300 MB
and 900 MB respectively; they should be sent to the
responder hosts for fast processing. To emulate the heterge-
neous environment, we scale down the ingress bandwidth
of one responder to be 500 Mbps. As word counting is a -
typical network-intensive job, the scheduler leverages
Algorithm 3 to control the job transmission rate and alloca-
tion. The make-spans derived by different schemes are
shown in Fig. 2a. From this figure, we can see that even in
such a small scale experiment, the make-span improvement
achieved by our scheduling scheme is 19.56 percent com-
pared with SJF scheme, which is 33.72 percent compared
with the LJF scheme.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 11,

NOVEMBER 2018

w

—+— CIM-based
—e—SIF
LIF

10

Make—span (s)

——Alg.3
—e—SIF

LIF
—— Lower bound

—+— NIM-based
—e—SJF

LIF
—— Lower bound

~

<z

=

<

g, ,

I —e— Lower bound

<

s e
0

Make—span (s)
() N

E%

10 20 30 40 50 60 70 10 20 30
Number of responder hosts

w

Number of responder hosts

40 50 60 70 10 20 30 40 50 60 70
Number of responder hosts

—— CIM-based
——SJF

LIF
—— Lower bound

Make-span (s)
o
Make—span (s)
S &

o

—e— NIM-based 215 ——Alg.3
——SIF =1 —e—SIF
LIF g 10 LIF
—e— Lower bound T —e— Lower bound
5T‘\‘_; 2 5&
I >4 s 1
0] = 0 — 71
100 150 200 250 300 350 50 100 150 200 250 300 350

W
(=}

100 150 200 250
Number of requester hosts

(a) Computation-intensive case.

300 350 S0

Number of requester hosts
(b) Network-intensive case.

Number of requester hosts
(c) Both computation and network

Fig. 3. Algorithm performance changes with number of responder/requester hosts

DNN jobs are used to represent computation-intensive
cases on our testbed. We generate one request for each
requester host, deal with 6,000/6,000/6,000/18,000 photos
respectively. Each photo has 32 x 32 pixel with RGB chan-
nels, and each pixel is quantified with 16 bits. The scheduler
calls Algorithm 2 to schedule the jobs. The comparison with
SJF and LJF schemes is shown in 2b. We can see that there is
25.80 percent make-span improvement compared with SJF
by adopting our scheduling algorithm. In this experiment,
the LJF scheme achieves the same performance as our
scheduling scheme. This is because currently we only have
one type of accelerator for DNN jobs, which makes our
testbed to be homogeneous for DNN jobs, where LJF
scheme can achieve a good performance. Actually, by enu-
merating all the possible scheduling schemes, we found
that both our algorithms and LJF achieve the optimial solu-
tion. However, we will see in the large scale simulation
with the heterogeneous environment, LJF performs worst
among all these scheduling schemes.

5.2 The Impact of Workload Pattern

From this point, we use a simulator for evaluation; the accu-
racy of the simulator has been verified by our testbed. To
study how workload patterns impact the algorithms’ per-
formance, we change the number of responder hosts and
the number of requester hosts, respectively. When changing

Computation—intensive

A
(=]

T T T T T |

—+#— CIM-based
—e— SJF
LJF

Make—span (s)
)
S

e 1 L L L L L L

2 3 4 5 6 7 8 9 10
Number of jobs 4

Network—intensive

(=)

—_

—+— NIM-based
—e—SJF

LIF

Make—span (s)
)
S

0‘1
1 2 3 4 7 8 9 10
Number of jobs <10
- Both computation and network intensive
250 : : : . : . ; |
=1 ——Alg.3
& || —e—si
ql) LJF
R
s 0t 1 | I | I 1 I 1
1 2 3 4 5 6 7 8 9 10
Number of jobs X 10

Fig. 4. Impact of workload.

the number of responder hosts, we fix the number of
requester hosts to be 200; or, we fix the number of responder
hosts to be 30 when we change the number of requester
hosts. In these simulations, we inject 1000 jobs into the sys-
tem. The job size is generated following the exponential dis-
tribution with the parameter 0.005, i.e., the average job size
is 200 Mb. We assume each responder host carries 5 acceler-
ators. Correspondingly, We set the average ingress band-
width of responder hosts to be 5,000 Mbps, while the
average egress bandwidth of request hosts as 1,000 Mbps.
The execution time of each job is set to be approximately
proportional to its size with the ratio of 0.001. In this way,
the data transmission and computation of each job spend
almost the same time. To emulate the heterogeneous envi-
ronment, we add -20~20 percent deviation to the execution
time of each job when it executes on different accelerators.
Correspondingly, we also add -20~20 percent deviation to
the bandwidth of each responder host and request host. For
the computation-intensive case, we directly set the ingress/
egress bandwidth to be infinite; we set computation time to
be 0 for the network-intensive case. To highlight the perfor-
mance of our scheduling system, we also test the make-
span lower bounds. For computation-intensive cases, the
lower bound is the objective value of (1L); while for the net-
work-intensive cases, the lower bound is the objective value
of (4). When neither computation nor data transmission can
be ignored, we set the lower bound to be the larger one of
the above two bound values.

Fig. 4 demonstrates the simulation results. From these
results, we can make the following observations. First, for
the computation-intensive case (Fig. 3a), LJF performs worst
among all the comparison schemes. This is because the LJF
scheme may assign a large job to the responder that is slow-
est for this job. It greatly degrades the performance of the
scheduling scheme. The same problem may exist in the SLF
scheme, however, it happens with much lower probability
since an idle accelerator always gets the job it can complete
the most quickly. The gap between CIM and SJF first
increases, and then shrinks with the number of responder
hosts. The largest make-span improvement is achieved
when there are 40 responder hosts (i.e., 200 accelerators),
and the make-span improvement value is 27.81 percent com-
pared with SJF. When there are only a small number of accel-
erators in the system, each accelerator has to accommodate a
large number of jobs. In this case, the scheduling algorithms’
room for make-span improvement is small. When there are a
large number of accelerators in the system, each accelerator

ZHAO ET AL.: MINIMIZE THE MAKE-SPAN OF BATCHED REQUESTS FOR FPGA POOLING IN CLOUD COMPUTING

Computation—intensive

®
=1
S

—— CIM-based
—e— SJF
LJF

’ | ‘ _

Job arriving rate (Batches/second)
Network—intensive

[| —*— NIM-based T X

—e—SJF //

L L 1 1 1
0.25 0.5 1 2 3 4
Job arriving rate (Batches/second)
Both computation and network intensive

M ——Alg3 !
|| —e—sIF b
LIF

200 ! 1 1 1
0.25 0.5 1 2 3 4

Job arriving rate (Batches/second)

=N
=]
S

I
=)
S

Througput
(Jobs/second)
4

)
=]
IS=]
wn
IS
v

=N
=]
S

Througput
(Jobs/second)
IS
=)

(=

)
=1
S

o
=]
S

N
=)
S

Througput
(Jobs/second)
W
=]
(=]
T
i

Fig. 5. Job throughput.

executes only a few jobs. The make-span is very small and
there is also only a small room for optimization. When we
change the number of request hosts, make-span does not
change, regardless of which scheduling scheme is adopted.
The reason is that make-span is only determined by the job
allocation. If the number of accelerators (or, job allocation)
does not change, the make-span maintains constant. The per-
formance gap between our scheduling algorithms and the
make-span lower bound is relatively stable, as the perfor-
mance gap only comes from the only split job rounded to
each accelerator. In addition, the performance of our algo-
rithm is very close to the make-span lower bound though the
theoretic approximation ratio is 2.

Fig. 3b shows the results of the network-intensive case.
We can see that initially the make-span improves with the
increase of responder hosts or request hosts regardless of
which scheduling scheme is adopted; it cannot be signifi-
cantly reduced any more when there are more than 20
responder hosts (when the number of request host is 200) or
150 request hosts (when the number of responder hosts is 30).
This is because that when there are enough requester/
responder hosts, the bandwidth bottleneck will be on the
responder/requester host side. The increase of only one type
of hosts cannot deliver more jobs when this type of host is not
the network bottleneck. When there are only a few requester
hosts or there are lots of responder hosts, the performance of
NIM-based scheduling achieves the make-span lower bound,
since the ingress bandwidth of responder hosts is not the net-
work bottleneck. An interesting observation is that make-
span improvement of NIM-based scheme will increase with
the number of requester hosts. When the the bottleneck is
at the egress ports of requester hosts, we should only optimize
the bandwidth sharing among the jobs on each requester host;
but when the ingress bandwidth of responder hosts is the bot-
tleneck, we should optimize the bandwidth sharing among
all the jobs from all the requester hosts. Accordingly, NIM-
based scheme derives larger benefit when there are more
requester hosts and the ingress ports of the responder hosts
are the network bottleneck, since it optimizes the make-span
from a global view. Again, L]JF performs the worst. It is not
surprising that LJF cannot perform as well as NIM-based

2523

scheduling, since LJF is a myopic scheme, while NIM-based
scheme optimizes the make-span in a global view. Compared
with SJF, LJF may assign a large job issued by a requester with
large outgoing bandwidth to a responder host with smaller
ingress bandwidth, while SJF has much lower probability to
do this. Accordingly, LJF yields a larger make-span.

When taking both data transmission and computation
into account, the simulation results are shown in Fig. 3c.
Obviously, the make-span in this case should be smaller
than the sum of the make-span in the computation-intensive
case and that in the network-intensive case, as the transmis-
sion phase of later jobs can be overlapped with the compu-
tation phase of previous jobs. When we change the number
of responder hosts, most of the gain comes from the band-
width scheduling if there are very few responder hosts;
the gain comes from the job allocation if there are more
responder hosts. When we change the number of request
hosts, the make-span improvement trend is the same as that
of the network-intensive case. This is because that more
requester hosts cannot bring benefit to the job computation
phase, and the gain only comes from the bandwidth man-
agement. However, when both computation and data trans-
mission cannot be ignored, our algorithm focuses on how to
maximize the overlap of the computation phase of each job
with the transmission phase of the later jobs. It brings more
room for the optimization, and hence our algorithm can
outperform SJF more than that in network-intensive case.
When there are 350 requester hosts, the performance impro-
vement of our algorithm is 36.25 percent compared with
SJF, while it is 46.81 percent compared with LJF. Further-
more, we can see that our scheduling performance is close
to the lower bound which is obtained by ignoring the com-
putation phase or data transmission phase. This shows that
our algorithm derives a near optimal make-span.

5.3 Impact of Workload

In this section, we investiage how the performance of our
scheduling schemes change with the workload. To this end,
we assume there are 2000 requester hosts and 300 responder
hosts (i.e., 1500 accelerators). Then, we generate different
number of jobs in a single batch and measure the make-
span derived by different scheduling schemes. The simula-
tion results are shown in Fig. 4 From this figure, we can see
that the make-span is increasing almost linearly with the
number of jobs injected into the system. This is because that
when the system is fully utilized, the queueing delay is pro-
portional to the workload regardless of what scheduling
scheme is adopted.

5.4 Job Throughput

Minimizing the make-span of each batch of jobs can also
increase the system throughput. In this section, we investi-
gate how much throughput can be improved by our algo-
rithms. To this end, we assume there are 200 requester hosts
and 30 responder hosts (i.e., 150 accelerators) in the system.
We generate batches of different type of jobs and inject
them into the system following different arriving rate, and
test the system throughput. The simulation results are
shown in Fig. 5. From this figure, we can make following
observations.

2524

35

—e—multi-wave

3 ——SIJF
25 \\\

_\o

0 20 40 60 80 100
Percentage of computation intensive jobs (%)

Make-span (s)

Fig. 6. Performance with job type mixture.

First, with the algorithms we proposed to minimize the
make-span of each batch of jobs, the system can deal
with 22.88-35.64 percent, 20.17-36.05 percent and 16.47-
27.57 percent more different type of jobs in each unit of
time, respectively, compared with scheduling by SJF. Com-
pared with LJF, algorithms proposed in this paper can com-
plete 32.88-40.08 percent, 36.23-45.47 percent and 27.06—
36.38 percent more different type of jobs, respectively. With
the algorithms we proposed to minimize the make-span of
each batch of jobs, the accelerator and network resources
can be utilized more properly. Hereby, the throughput is
increased.

Second, the system throughput improvement derived by
our scheduling scheme is generally larger than the improve-
ment of reducing the make-span of single batch of jobs. This
is because that when the job batches come online, our sched-
uling scheme does not only minimize the make-span of sin-
gle batch of jobs, but also optimize how to use the
remaining resources left by previous batches of jobs. It
brings more optimization opportunity to improve the sys-
tem throughput. This observation also demonstrates that
minimzing make-span of single batch of jobs is a good way
to improve the system throughput.

Third, the system throughput is increasing with the job
arriving rate. The larger the job arriving rate is, the more
jobs are in the system and hence the resources can be used
more efficiently. Therefore, more jobs can be dealt with,
which increases the system throughput.

Last but not least, when the job arriving rate reaches a
threshold, e.g., 4 batches of computation-intensive jobs per
second in our simulation, the system throughput will not
increase with the job arriving rate. This is because the sys-
tem is fully utilized and the throughput cannot be increased
by injecting more jobs into the system any more.

5.5 Mixture of Job Types
To evaluate the performance of different solutions, we inject
1000 jobs of different mixture patterns into the system and
adopt different solutions to schedule the jobs. Fig. 6 shows
the simulation results.

We divide all jobs into multiple groups according to their
types. We schedule them with different algorithms (labeled

35
—~
©
= 3
3]
=25 —+— Make-span-NIM
< —e— Make-span-SIF
§ 24 —— AJCT-NIM
% 1ls —8— AJCT-SIF
o
g 1
=
0.5

—

2 3 4 5 6
Number of groups

Fig. 7. Tradeoff between AJCT and make-span.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 11,

NOVEMBER 2018

2

—— w.0. estmiation error
—— w. estimation error

Make—span (s)
&

1

0 0.05 0.1 0.15 0.2 0.25 0.3
Maximum error ratio (G)

Fig. 8. Impact of execution time estimation error.

as “multi-wave”), as it enforces customized schemes for
specific type of jobs. The performance gap between SJF and
multi-wave scheme improvements when there are more
computation-intensive jobs in the system. This is because
that SJF scheme mixes computation and network-intensive
jobs and does not try to overlap the computation and the
transmission phase of different types of jobs; less transmis-
sion results in smaller performance gap.

5.6 Tradeoff between AJCT and Make-Span

Pursuing minimum make-span may incur larger AJCT, espe-
cially for network-intensive jobs. However, we can divide all
the jobs into multiple groups according to their size, and
schedule the jobs with smaller size first. Fig. 7 shows the
effect of this scheme. We can see that when more groups
the jobs are divided into, there will be smaller AJCT with the
cost of slightly larger make-span. When we divide all the
jobs into 6 groups, we get almost the same AJCT with the SJF
scheme but still have 7.2 percent make-span improvement.

5.7 Impact of Job Execution Time Estimation Error
To study how the estimation error of job execution time
impacts the performance of our algorithms, we randomly
add some error to the estimated execution time in the
input of computation-intensive scenarios, since computa-
tion-intensive jobs are most sensitive to the job execution
time. For each job, we assume the estimation error is propor-
tional to its input data size, and the ratio is evenly distributed
in the range of [—o,o]. When there are 200 requester hosts,
40 responder hosts, and 1000 jobs, the simulation results are
shown in Fig. 8. From this figure, we can see that even when
the maximum estimation error is up to 30 percent of the real
execution time, our algorithm can still derive a reasonable
make-span close to the optimal no-error scenarios. After dig-
ging into the results, we found that this is because that esti-
mation error of different jobs assigned to the same host can
compensate each other’s error impact.

5.8 Algorithm Running Time

As an online system, an important issue is the algorithm
running time. By fixing the number of responder hosts and
changing the number of requester hosts, we measure the
algorithm running time, which is shown in Fig. 9. All the
points in this figure are collected on a desktop carrying Intel
i7-2600 CPU with 8 GB memory. The algorithm for compu-
tation-intensive jobs and the algorithm for both computa-
tion and network intensive jobs have nearly the same
computation complexity, which is almost independent from
the number of request hosts. This is because the computa-
tion bottleneck is to solve the same LP model, and this LP
model is not related to the number of request hosts. The
algorithm for the network-intensive jobs has higher

ZHAO ET AL.: MINIMIZE THE MAKE-SPAN OF BATCHED REQUESTS FOR FPGA POOLING IN CLOUD COMPUTING

Computation—intensive

> 80 T T T T T
Z A =304 A " " A
o
E_||—e—40
w 008 —a— 50 -8 o S o & 4
k=
1=}
=
& 40 | | 1 | 1
50 100 150 200 250 300 350
Number of requester hosts
Network—intensive
2 600 T T T T T
% ——30 A
£ 400r| —e—40
El
-£ 200
=
=
£ 0 1 1 | | |
50 100 150 200 250 300 350
Number of requester hosts
Both computation and network intensive
2 100 T T T T T
2 ——30
g 80| —e—40[4 A o R A —h
2 qopla—50 . —o |
1=
=
=
& 40 1 1 1 1 1
50 100 150 200 250 300 350

Number of requester hosts

Fig. 9. Algorithm running time.

computation complexity as it should solve two LP models
and one of them is scaling with the number of requester
hosts. However, the running time of all the algorithms is in
the micro-second level even when there are a batch of 1000
jobs in a system with hundreds of accelerators and requester
hosts. This means that our scheduling scheme incurs very
little overhead to the system. Even if there are millions of
jobs and hundreds of responder/requester hosts in the sys-
tem and we need long time to calculate the scheduling
scheme, we can divide the entire system into multiple sub-
systems to reduce the computation overhead.

6 RELATED WORK

There are several works that propose to virtualize FPGA
processing in Cloud [25], [26], [27], [28], [29]. None of them
manage FPGA accelerators as a single universal resource
pool. pvFPGA [26] builds a para-virtualized environment
using Xen VMM, it treats FPGA chips as monolithic resour-
ces. [27] and [25] exploit the partial-reconfigurable ability in
FPGA virtualization, where an FPGA chip is divided into
multiple regions and each can act as an independent virtual
chip. [27] focuses on how fast a VM can set up and tear down
a virtual accelerator in the hosting machine, while [25] works
on abstracting FPGA as a consumable resource while avoid-
ing hardware dependencies of specific FPGA techniques.
Both Microsoft and Baidu use FPGA accelerators to
improve the performance of their online services [1], [2], [5],
[6]. Mostly they are purpose-build clusters for dedicated
applications. Instead, our targeted systems follow the SaaS
model: tenant programs can interact with the Cloud by call-
ing API functions provided by an FPGA service layer, even
without a physical FPGA accelerator installed on their hosts.
There are also some works on job scheduling with accelera-
tors. [30] presents a job scheduler for GPU. However, it is a
driver-level work rather than a job level work. Therefore, [30]
and our work are compensating for each other. [30] can be
used to provide a better accelerator while our work can sched-
ule the job to further improve the system performance. [31]
focuses on the job scheduling in heterogeneous Cloud with
accelerators. However, it only considers the fairness among
jobs, and does not consider the job transmission phase. [32] is
the work to present how to program and implement the

2525

FPGA accelerators. It develops the API for job scheduling,
and provides an easy way to implement our scheduling algo-
rithms in the Cloud systems. Our previous work [33] also con-
siders the scheduling problem in the job level, however, it
assumes the egress bandwidth of the requester hosts is infi-
nite, which is not always the case in practical.

7 CONCLUSIONS

To minimize the make-span of a given batch of FPGA accel-
erator requests, in this paper, we proposed 2-approximation
algorithms for the computation-intensive case and network-
intensive case, respectively. In addition, we also designed
an efficient heuristic for the case where both computation
and network are bottlenecks. We implemented our schedul-
ing algorithms in a real Cloud system, and conducted exten-
sive evaluations to show that our scheduling algorithms can
reduce the make-span compared with the Shortest-Job-First
scheme. Different from previous works, this work considers
multiple resource bottlenecks for FPGA accelerator pools in
Cloud computing.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their valuable comments. This work was supported in part
by the National Science and Technology Major Project of
China under Grant Number 20172X03001013-003, the Fun-
damental Research Funds for the Central Universities under
Grant Number 0202-14380037, the National Natural Science
Foundation of China under Grant Numbers 61772265,
61602194, 61671130, 61671124, 61502229, 61672276, and
61321491, the Collaborative Innovation Center of Novel Soft-
ware Technology and Industrialization, and the Jiangsu
Innovation and Entrepreneurship (Shuangchuang) Program.

REFERENCES

[1] A.Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constanti-
nides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
etal., “A reconfigurable fabric for accelerating large-scale datacen-
ter services,” in Proc. 41st Annu. Int. Symp. Comput. Architecuture,
2014, pp. 13-24.

[2]]. Ouyang, S. Lin, W. Qi, Y. Wang, B. Yu, and S. Jiang, “SDA:
Software-defined accelerator for largescale dnn systems,” in Proc.
IEEE Hot Chips 26 Symp., 2014, pp. 1-23.

[3] D. Ciregan, U. Meier, and]J. Schmidhuber, “Multi-column deep
neural networks for image classification,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2012, pp. 3642-3649.

[4] S.Zhang, C. Zhang, Z. You, R. Zheng, and B. Xu, “Asynchronous
stochastic gradient descent for dnn training,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process., 2013, pp. 6660—6663.

[5] B.Li K. Tan, L.L.Luo,Y.Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance net-
work processing with reconfigurable hardware,” in Proc. ACM
SIGCOMM, 2016, pp. 1-14.

[6] A.M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architec-
ture,” in Proc. 49th Annu. IEEEJACM Int. Symp. Microarchitecture,
2016, pp. 1-13.

[7] Z. AMI, “Getting started with zebra on aws,” 2017. [Online]. Avail-
able: http:/ /www.mipsology.com/aws/getting_started.html

[8] A.Putnam, “Large-scale reconfigurable computing in a microsoft
datacenter,” in Proc. IEE Symp. Hot Chips, 2014, pp. 1-38.

[9] S. Kestur, J. D. Davis, and O. Williams, “BLAS comparison on
FPGA, CPU and GPU,” in Proc. IEEE Annu. Symp. VLSI, 2010,
pp- 288-293.

http://www.mipsology.com/aws/getting_started.html

2526

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.11, NOVEMBER 2018

S. Asano, T. Maruyama, and Y. Yamaguchi, “Performance com-
parison of FPGA, GPU and CPU in image processing,” in Proc.
Int. Conf. Field Programmable Log. Appl., 2009, pp. 126-131.

S.Zhou, Y. Zhu, C. Wang, X. Gu, J. Yin,]. Jiang, and G. Rong, “An
FPGA-assisted cloud framework for massive ECG signal proc-
essing,” in Proc. IEEE 12th Int. Conf. Dependable, Autonomic Secure
Comput., 2014, pp. 208-213.

Q. Liu, Z. Xu, and Y. Yuan, “A 66.1 Gbps single-pipeline AES on
FPGA,” in Proc. Int. Conf. Field-Programmable Technol., pp. 378-381,
2013.

J. P. Orellana, M. B. Caminero, and C. Carrién, “On the provision
of SaaS-level quality of service within heterogeneous private
clouds,” in Proc. IEEE/ACM 7th Int. Conf. Utility Cloud Comput.,
2014, pp. 146-155.

V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and
C. Yan, “Speeding up distributed request-response workflows,”
in ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, 2013,
pp- 219-230.

M. Zaharia, T. Das, H. Li, S. Shenker, and 1. Stoica, “Discretized
streams: An efficient and fault-tolerant model for stream process-
ing on large clusters,” in Proc. 4th USENIX Conf. Hot Top. Cloud
Comput. 2012, pp. 1-6.

Y.-T. Chen, J. Cong, Z. Fang,]J. Lei, and P. Wei, “When spark
meets FPGAs: A case study for next-generation dna sequencing
acceleration,” in Proc. 8th USENIX Conf. Hot Top. Cloud Comput.,
2016, pp. 64-70.

J. Gu, M. Zhu, Z. Zhou, F. Zhang, Z. Lin, Q. Zhang, and
M. Breternitz, “Implementation and evaluation of deep neural
networks (DNN) on mainstream heterogeneous systems,” in Proc.
5th Asia-Pacific Workshop Syst., 2014, Art. no. 12, pp. 1-7.

N.-F. Standard, “Announcing the advanced encryption standard
(AES),” Federal Inf. Process. Standards Publication, vol. 197, pp. 1-
51,2001.

G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi,
P. Crescenzi, and V. Kann, Complexity and Approximation: Combina-
torial Optimization Problems and Their Approximability Properties, 1st
ed. Secaucus, NJ, USA: Springer, 1999.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” ACM SIGCOMM Comput.
Commun. Rev., vol. 38, no. 4, pp. 63-74, Aug. 2008.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VI2: A scalable
and flexible data center network,” in Proc. ACM SIGCOMM Conf.
Data Commun., 2009, pp. 51-62.

J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algo-
rithms for scheduling unrelated parallel machines,” in Proc. IEEE
28th Annu. Symp. Found. Comput. Sci., Oct. 1987, pp. 217-224.

C. Banino-Rokkones, O. Beaumont, and H. Rejeb, “Scheduling
techniques for effective system reconfiguration in distributed stor-
age systems,” in Proc. IEEE Int. Conf. Parallel Distrib. Syst. Conf.,
2008, pp. 80-87.

D. P. Palomar and]. R. Fonollosa, “Practical algorithms for a fam-
ily of waterfilling solutions,” IEEE Trans. Signal Process., vol. 53,
no. 2, pp. 686-695, Feb. 2005.

F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and
K. Wang, “Enabling FPGAs in the cloud,” in Proc. 11th ACM Conf.
Comput. Frontiers, 2014, Art. no. 3, pp. 1-10.

W. Wang, M. Bolic, and J. Parri, “pvFPGA: Accessing an FPGA-
based hardware accelerator in a paravirtualized environment,” in
Proc. 9th IEEEJACM/IFIP Int. Conf. Hardware/Software Codes. Syst.
Synthesis, 2013, pp. Art. no. 10, pp. 1-9.

S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow,
“FPGAs in the cloud: Booting virtualized hardware accelerators
with openstack,” in Proc. IEEE 22nd Int. Symp. Field-Programmable
Custom Comput. Mach., 2014, pp. 109-116.

O. Knodel and R. G. Spallek, “Computing framework for dynamic
integration of reconfigurable resources in a cloud,” in Proc. Euro-
micro Conf. Digit. Syst. Des., 2015, pp. 337-344.

S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA accel-
erators for efficient cloud computing,” in Proc. 7th Int. Conf. Cloud
Comput. Technol. Sci., 2015, pp. 430-435.

S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa,
“TimeGraph: GPU scheduling for real-time multi-tasking envi-
ronments,” in Proc. USENIX Conf. USENIX Annu. Tech. Conf.,
2011, pp. 1-12.

[31] G. Lee, B.-G. Chun, and H. Katz, “Heterogeneity-aware resource
allocation and scheduling in the cloud,” in Proceedings 3rd USE-
NIX Conf. Hot Top. Cloud Comput., 2011, pp. 1-5.

[32] M. Huang, D. Wu, C. H. Yu, Z. Fang, M. Interlandi, T. Condie, and
J. Cong, “Programming and runtime support to blaze fpga accel-
erator deployment at datacenter scale,” in Proc. 7th ACM Symp.
Cloud Comput., 2016, pp. 456-469.

[33] Y. Zhao, X. Liu, and C. Qiao, “Job scheduling for acceleration sys-
tems in cloud computing,” in Proc. IEEE ICC, 2018, pp. 1-6.

Yangming Zhao received the BS degree in com-
munication engineering and the PhD degree in
communication and information system from the
University of Electronic Science and Technology
’ of China, in 2008 and 2015, respectively. He is a

;";._ research scientist with SUNY buffalo. He is a vis-
» iting scholar with Nanjing University. His research

‘ I interests include network optimization and data

N e A 4

?

center networks.

Chen Tian received the BS, MS, and PhD
degrees from the Department of Electronics and
Information Engineering, Huazhong University of
Science and Technology, China, in 2000, 2003,
and 2008, respectively. He is an associate profes-
sor with State Key Laboratory for Novel Software
Technology, Nanjing University, China. He was
previously an associate professor with the School
of Electronics Information and Communications,
Huazhong University of Science and Technology,
China. From 2012 to 2013, he was a postdoctoral
researcher with the Department of Computer Science, Yale University.
His research interests include data center networks, network function
virtualization, distributed systems, Internet streaming, and urban
computing.

Zhuangdi Zhu received the bachelor's degree
from the College of Elite Education, Nanjing Uni-
versity of Science and Technology, in 2015. She
is working toward the PhD degree in the Com-
puter Science Department, Michigan State Uni-
versity. She joined IBM Research China as a
research assistant, in 2014. Her research inter-
ests include systems, networking, and Internet of
Things.

Jie Cheng received the PhD degree from the
Huazhong University of Science and Technology,
in 2011. He worked as a postdoctoral researcher
with Prince Edward Island University from 2011
to 2015. He is currently a senior Sstaff engineer
with the Data Center Technology Laboratory,
Huawei Technologies Company, Ltd., China. His
research interests include cloud computing, artifi-
cial intelligence, machine learning, and big data.

ZHAO ET AL.: MINIMIZE THE MAKE-SPAN OF BATCHED REQUESTS FOR FPGA POOLING IN CLOUD COMPUTING 2527

Chunming Qiao is a SUNY distinguished profes-
sor and also the current chair with the Computer
Science and Engineering Department, University
at Buffalo. He was elected to IEEE fellow for his
contributions to optical and wireless network
architectures and protocols. His current focus is
on connected and autonomous vehicles. He has
published extensively with an h-index of over 69
(according to Google Scholar). Two of his papers
have received the best paper awards from IEEE
and Joint ACM/IEEE venues. He also has seven
US patents and served as a consultant for several IT and Telecommuni-
cations companies since 2000. His research has been funded by a
dozen major IT and telecommunications companies including Cisco and
Google, and more than a dozen NSF grants. He is a fellow of the IEEE.

Alex X. Liu received the PhD degree in computer
science from the University of Texas at Austin, in
2006. He received the IEEE & IFIP William C.
Carter Award, in 2004, an National Science
Foundation CAREER award, in 2009, and the
Michigan State University Withrow Distinguished
Scholar Award, in 2011. He is an associate editor
of the IEEE/ACM Transactions on Networking,
an editor of the /EEE Transactions on Depend-
able and Secure Computing, and an area editor
of the Computer Communications. He received
Best Paper Awards from ICNP-2012, SRDS-2012, and LISA-2010. His
research interest includes networking and security.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

