1488

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

OpenFunction: An Extensible Data Plane
Abstraction Protocol for Platform-Independent
Software-Defined Middleboxes

Chen Tian", Ali Munir

Abstract—The data plane abstraction is central to software-
defined networking (SDN). Currently, SDN data plane abstrac-
tion has only been realized for switches but not for middleboxes.
A data plane abstraction for middleboxes is needed to realize
the vision of software-defined middleboxes (SDMs). Such a data
plane abstraction should be both platform independent and fully
extensible. The match-action abstractions in OpenFlow/P4 have
limited expression power to be applicable to middleboxes.
Modular abstraction approaches have been proposed to imple-
ment middlebox data plane but are not fully extensible in
a platform-independent manner. In this paper, we propose
OpenFunction, an extensible data plane abstraction protocol for
platform-independent software-defined middleboxes. The main
challenge is how to abstract packet operations, flow states, and
event generations with elements. The key decision of OpenFunc-
tion is: actions/states/events operations should be defined in a uni-
form pattern and independent from each other. We implemented
a working SDM system including one OpenFunction controller
and three OpenFunction boxes based on Netmap, DPDK, and
FPGA, respectively, to verify OpenFunction abstraction.

Index Terms— Software-defined networking, network middle-
boxes, network function virtualization.

I. INTRODUCTION
HE data plane abstraction is central to Software-Defined
Networking (SDN). Abstraction means that heterogenous
network devices of different vendors/architectures have com-
mon data plane programming interfaces for implementing
the functionalities needed by the control plane. Abstraction
helps to break device vendor lock-in by allowing third-party

Manuscript received December 2, 2016; revised June 24, 2017 and
February 19, 2018; accepted April 15, 2018; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor Y. Chen. Date of publication
May 2, 2018; date of current version June 14, 2018. This work was supported
in part by the National Science and Technology Major Project of China
under Grant 2017ZX03001013-003, in part by the Fundamental Research
Funds for the Central Universities under Grant 0202-14380037, in part by
the National Natural Science Foundation of China under Grant 61772265,
Grant 61602194, Grant 61671130, Grant 61671124, Grant 61502229, Grant
61672276, and Grant 61321491, in part by the Collaborative Innovation
Center of Novel Software Technology and Industrialization, and in part by
the Jiangsu Innovation and Entrepreneurship (Shuangchuang) Program. The
2-page poster version of this paper titled “OpenFunction: An Extensible
Data Plane Abstraction Protocol for Platform-independent Software-Defined
Middleboxes” was published in the Proceedings of IEEE ICNP, Singapore,
November 2016. (Corresponding author: Chen Tian.)

C. Tian and J. Yang are with the State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing 210023, China (e-mail:
tianchen @nju.edu.cn; jieyang@smail.nju.edu.cn).

A. Munir and A. X. Liu are with the Department of Computer Science,
Michigan State University, East Lansing, MI 48824 USA (e-mail: munirali@
cse.msu.edu; alexliu@cse.msu.edu).

Y. Zhao is with the Department of Computer Science and Engineering,
The State University of New York at Buffalo, Buffalo, NY 14260-2500 USA
(e-mail: yangming @buffalo.edu).

Digital Object Identifier 10.1109/TNET.2018.2829882

, Alex X. Liu

, Jie Yang, and Yangming Zhao

software to run on all SDN compliant network devices. In
contrast, traditional network devices are black boxes where
both hardware and software are tightly coupled as they are
typically from the same vendor, which leads to both network
ossification and vendor lock-in.

Currently SDN data plane abstraction has only been realized
for switches by OpenFlow [30], [35] and its advanced version
P4 [11], but not for middleboxes. A data communication
network has two types of devices, switches and middleboxes.
Switches (including routers in the broader sense) provide
packet forwarding. Middleboxes provide a wide variety of net-
working and security functionalities such as Network Address
Translation (NAT), Load Balancers (LB), firewalls (FW),
WAN optimizers, proxies, IPsec gateways (VPN), and network
Intrusion Detection/Prevention Systems (IDS/IPS) [39].

A data plane abstraction for middleboxes is needed to
realize the vision of software-defined middleboxes (SDM).
SDM provides network operator the ability to dynamically
load/unload various network functions without changing the
network hardware, similar to what OpenFlow/P4 provides for
the switches.

For software-defined middleboxes (SDM), a data plane
abstraction should be both platform-independent and fully
extensible. The platform-independent goal decouples the data
plane function semantics and the underlying hardware that
realizes the network function. This allows any third-party
SDM program’s data plane to execute at any SDM boxes
(i.e., SDM compliant middleboxes) with same semantics but
different performance depending on hardware adequacy. Fully
extensible goal means that any new middlebox functionality
can be defined by an SDM program abstraction, which is
critical to enable innovation for middleboxes. For example,
this enables us to design a new packet encryption algorithm
for VPN, define a new flow state in the data plane for
firewall, or subscribe to an event when a specific condition
is trigged for IPS.

Network Function Virtualization (NFV) attempts to address
the issues of tight hardware/software coupling and hardware
vendor lock-in for middleboxes by implementing middle-
box functions purely in software running on commodity
servers [4], [5]. Unfortunately, NFV middleboxes are software-
based, not software-defined. The key weakness of NFV mid-
dleboxes is low performance because commodity servers are
designed for general computing purpose.

The match-action abstractions defined by OpenFlow/
P4 have limited expression power to be applicable to

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0001-5148-4306
https://orcid.org/0000-0002-6916-1326

TIAN et al.: EXTENSIBLE DATA PLANE ABSTRACTION PROTOCOL FOR PLATFORM-INDEPENDENT SDMS

middleboxes. First, for the match abstraction, Open-
Flow/P4 limit themselves to match packet headers. OpenFlow
can only specify matching conditions over a fixed number of
predefined packet header fields. P4 improves over OpenFlow
by allowing users to extract customized packet header fields.
However, many middleboxes, such as application firewalls and
IPsec, need to match packet payload against signatures [26].
Second, for the action abstraction, OpenFlow/P4 limit them-
selves to a fixed number of actions. However, middleboxes,
such as IPsec VPN, often need to perform complex payload
actions like encryption and decryption. To address this limi-
tation, the OpenFlow standard has kept adding new actions.
This is not a sustainable solution as packet processing actions
can never be exhaustively standardized. Furthermore, frequent
standardization of new action abstraction leads to frequent
redevelopment of software/hardware, which results in ver-
tically integrated hardware-software that must be replaced
all together while performing network upgrades [7]. Third,
the table abstraction in OpenFlow/P4 is fundamentally inca-
pable of modeling the scheduling function. Scheduling is
essential to implement Quality-of-Service (QoS), which is
further essential for many middlebox functionalities. This
inability is because the table abstraction performs splitting an
aggregate flow into multiple flows whereas scheduling per-
forms merging multiple flows into an aggregate flow. In some
sense, a table and a scheduler perform opposite functionalities,
and one cannot model the other.

Recently, modular abstraction approaches have been pro-
posed to implement middlebox data plane [7], [12], [37], using
insights from Click router [23] functionality. However, these
approaches do not meet all the requirements of SDM data
plane abstraction. Similar to Click router [23], E2 allows com-
posing arbitrary packet processing functions, each configured
as a data flow graph of processing elements [37]. Similarly,
Slick [7], NetBricks [38], and OpenBox [12] allow implement-
ing network functions as chains of low-level processing stages.
Compared with match-action, modular abstraction is a more
natural way of expressing SDM data plane. However, existing
designs are not fully extensible in a platform-independent
manner. They either rely on specific platforms, or do not
consider how to extend data plane in a platform-independent
manner at all.

In this paper, we propose OpenFunction, an extensible
and platform-independent data plane abstraction protocol for
software-defined middleboxes. This abstraction layer should
be hardware optimizable, which means that the performance
of an SDM box can be optimized by various hardware accel-
eration technologies. OpenFunction architecture consists of a
logically centralized OpenFunction controller and a number of
OpenFunction boxes distributed around a network. OpenFunc-
tion abstraction exposes an extensible set of elements to the
control plane using the modular style. SDM programmers need
not to be aware of the underlying hardware features of SDM
boxes: just define the behaviour of data plane as a data flow
graph of processing elements, and focus on the application
logic of control plane. Under the hood, a OpenFunction
defined data plane can be realized by a platform-dependent
implementation that fully leverages the hardware features of

1489

the underlying SDM box. To support new operations, Open-
Function provides a platform-independent pseudo language
for specifying customized elements beyond those predefined
ones. Such a platform-independent pseudo program can be
compiled to a platform-dependent element implementation by
the underlying box.

The main challenge is how to abstract packet operations,
flow states and event generations with elements. A data packet
should be abstracted first before any access operation can
be defined over it. There are three types of flow states: per-
flow, multi-flow, or global [16], [42]. For example, an IDS’s
data plane might need to record packet counts of each flow,
of flows to each destination, and of all the pass-through flows
simultaneously. Some operations might depend on the flow
states as input: for example, send an event to control plane
when the number of packets to a destination exceeds a given
threshold. Events can be used in various forms according to
control plane’s requirements. Apparently, explicitly defining
different states/events for each application scenario separately
would result in the exponential growth of the number of
elements and unnecessary duplicate implementation.

The key design idea of OpenFunction is that
actions/states/events should be defined in a uniform pattern
and independent from each other. Accordingly, it separates
three kinds of primitive data plane processing elements:
action, state and event. An action element can modify
packet data, but can not modify a state or issue an event to
the control plane; a handful number of state elements are
dedicated to updating the state records; several event elements
are dedicated to issuing events. OpenFunction protocol treats
every state as a record in a conceptually global key-value
store. As a result, states can be accessed in a uniform way.
OpenFunction treats the trigger condition of each event as a
Boolean expression, and the event as a formatted string. As a
result, event elements can be abstracted in the evaluate-format
form.

OpenFunction data plane faces various other challenges.
First, an SDM box may implement different kinds of network
functions simultaneously. As a result, different elements may
interact with each other to complete the service chain. Second,
different elements may need to be loaded/unloaded dynam-
ically to support different network functions’ requirements.
During load/unload operations, the OpenFunction box must
not experience packet drops and hence degrade application
performance. We propose a buffer-less in-box service chaining
based solution to address this challenge. An OpenFunction box
runs a parent program that creates the memory and defines the
data structures for child processes. Each element is then started
as a child process that can use the shared memory. Therefore,
each element of a network function can be loaded/unloaded
in a seamless fashion without hurting the application
performance.

We implement an SDM system including one OpenFunc-
tion controller and three OpenFunction boxes based on
Netmap [43], Data Plane Development Kit (DPDK) [21]
and FPGA [27]. We also develop two stateless network
functions (i.e., NAT and IPsec), and two stateful network
functions (stateful firewall and IPS). We draw the following

1490

conclusions from our experimental results. First, middlebox
functions implemented by using our OpenFunction abstraction
can achieve high performance. For example, our FPGA plat-
form can achieve near 10 Gbps throughput for NAT and IPsec
middleboxes. Second, the performance of extended elements
via OpenFunction pseudo programs are platform-dependent.
Rest of the paper is as follows: Related work is presented
in § II. SDM architecture overview is presented in § III and
the OpenFunction abstraction is in § IV. Control plane service
chain scheduling algorithms is in Section V. Prototype system
implementation is described in § VI. Evaluation results are
demonstrated in § VII and we conclude in § VIII.

II. BACKGROUND AND RELATED WORK
A. Network Function Virtualization

As an emerging direction of middleboxes, Network Func-
tion Virtualization (NFV) attempts to address the issues of
tight hardware/software coupling and hardware vendor lock-in
for middleboxes by implementing middlebox functions purely
in software running on commodity servers [4]. Such a software
based middlebox is called a Virtual Network Function (VNF).
Its data plane can be realized by multiple VMs, each is called a
VNF instance. Unfortunately, NFV middleboxes are software-
based, not software-defined. NFV changes middleboxes from
monolithic hardware/software blackboxes to monolithic soft-
ware blackboxes. It does not provide a data plane abstrac-
tion, hence it is not a candidate architecture for the vision
of software-defined middleboxes (SDM) [7], [37]. The key
weakness of NFV middleboxes is low performance because
commodity servers are designed for general computing pur-
poses. The functions and requirements of packet processing are
significantly different from those of general computing. Such
differences warrant a wide variety of specialized hardware
acceleration technologies such as ASIC chips and Network
Processing Units (NPU), which typically have a 10-50 times
performance improvement over commodity server based solu-
tions [24]. This partially explains that market has been in favor
of the closed-but-fast model, which uses proprietary hardware
platform with fast packet processing capability, over the open-
but-slow model, which uses commodity servers with slow
packet processing capability.

OpenFunction advances the vision of NFV from two fronts.
First, OpenFunction supports heterogenous hardware plat-
forms (including hardware/software platforms such as network
processors, multi-cores, ASICs, FPGAs, GPUs, and CPUs),
whereas NFV only supports commodity servers. Commodity
servers are designed for general computing purpose, not packet
processing functions in middleboxes, which are quite unique
in that they often have extremely high demand for time
and memory efficiency. OpenFunction supports continuous
innovation in both hardware and software of middleboxes.
Second, OpenFunction abstraction significantly simplifies the
programming of middlebox functions whereas in NFV every
middlebox functionality has to be programmed from scratch
as NFV does not have such an abstraction layer.

Some recent work focus on the smooth state transition
among commodity servers for middlebox function scale-in and

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

out. These techniques can be used by, and are complementary
to, OpenFunction to support the extensible and manageable
data plane. Split/Merge [42] groups middlebox states into
partitioned and coherent categories and uses an application-
level library to help middleboxes manage the state elastically.
OpenNF [16] uses a combination of events and forwarding
updates to address the race condition during the state migra-
tion phase. A software NFV framework CoMb [45] exploits
consolidation opportunities in middlebox deployment to save
cost. It also provides solutions to resource management, traf-
fic redirection, and coordination among different data plane
processing elements. CoMb limits the VNFs of a service chain
in a single host. Another software NFV framework NetBricks
builds a small set of customizable network processing elements
and provides isolation [38]. Different from them, OpenFunc-
tion is fully platform-independent and can be implemented in
both hardware (e.g., FPGA) and software platforms.

With software-defined security (SDS) [6], [44], [46], infor-
mation security is implemented, controlled and managed by
security software. Being part of SDN, SDS is designed to
be modular and scalable [44]. FRESCO is an application
development framework designed to facilitate design, and
modular composition of OpenFlow-enabled security detection
and mitigation modules [46]. Based on the Mininet simulator,
Darabseh et al. develop an experimental framework for SDS
systems [50]. SDS could be seen as a kind of SDM. SDS could
enjoy the benefits, such as platform independence, brought by
OpenFunction.

B. Router Abstraction

Decomposing network protocols to components is impor-
tant for performance and flexibility of implementation [34].
Some prior work focus on designing an abstraction
layer to support portability across heterogeneous platforms.
Handley er al [19], [20] built extensible routers on
top of commodity platforms called XORP, focusing on
breaking the complex control plane of routing protocols.
Mogul et al. [32] advocated an abstraction layer called Orphal
to support portability of third-party software in a position
paper. XORP and Orphal significantly differ from OpenFunc-
tion. First, XORP and Orphal are not designed for SDN
whereas OpenFunction is. Second, XORP and Orphal are not
platform-independent whereas OpenFunction is. Furthermore,
XORP focuses on routing whereas OpenFunction focuses on
middlebox functionalities. Orphal is based on router specific
hardware resources (such as TCAM and DPI engines) whereas
OpenFunction is based on middlebox functionalities and is
hardware agnostic. Song [47] proposed a hardware abstraction
called POF, which focuses on protocol-oblivious forwarding.
It extends the OpenFlow instructions with protocol-oblivious
operations such as AddField and SetFieldFromValue. Theoreti-
cally, a complete set of such low-level primitives can compose
any data plane operation. However, using these primitives to
construct middlebox functions is extremely difficult because
they are too low-level. We implemented the POF abstraction
and used these primitives to implement a NAT, and our
experience well confirms the above insight. Anwer et al. [7]

TIAN et al.: EXTENSIBLE DATA PLANE ABSTRACTION PROTOCOL FOR PLATFORM-INDEPENDENT SDMS

FWCP NAT CP

v ! v_ | v

Management OpenFunction m
Controller
73 ¥,
> 7 |

[OpenFunction Shim Layer] (
Y T

[Fv;m‘u]

OpenFunction Shim Layer]

i v i
[NAvT oP 1) (Fwor2] (LBDP1)

[OpenFunction Abstraction Layer] [OpenFunction Abstraction Layer]

[SDM Box 1 Hardware Resources] [SDM Box 2 Hardware Resources]

Fig. 1. Software-defined middlebox architecture.

proposed to decouple the processing at the controller and
at middleboxes while providing an interface by which they
can communicate. This vision is similar to ours, whereas the
proposed architecture is not platform-independent [7].

C. Data Plane Programmability

Several systems focus on the data plane throughput of
extensible software-based routers. These systems are orthog-
onal to OpenFunction and they are useful to build Open-
Function boxes. RouteBricks exploits parallelism both across
multiple servers and across multiple cores inside each sin-
gle server [13]. PacketShader exploits the massive parallelism
of GPU for batch processing [18]. Programmable Protocol
Processing Pipeline platform is based on FPGA [17]. GASPP
focuses on stateful packet processing, and its GPU-accelerated
framework can achieve multi-gigabit processing [48]. Some
systems focus on data plane extensibility of new network
forwarding protocols. The main direction is to pair the high-
throughput ASIC processing path with a fully programmable
co-processer to enhance the programmability. ServerSwitch
uses x86 CPU as the co-processor [28], [29]. SSDP instead
uses an NPU-driven subsystem [33]. SwitchBlade allows
rapid prototyping in FPGA [8]. OpenDataPlane is an open-
source cross-platform set of APIs for programming network
processors [2]. OpenDataPlane abstraction is at a lower level
than OpenFunction as OpenDataPlane specifies how fo do by
directly manipulating device resources whereas OpenFunction
only specifies what to do and lets devices decide how to
implement each action.

III. SDM ARCHITECTURE OVERVIEW

OpenFunction-enabled SDM architecture consists of a log-
ically centralized OpenFunction controller and a number of
OpenFunction boxes distributed across the network. Every box
implements the OpenFunction abstraction layer (Fig. 1).

Architecture: In OpenFunction, a network function (such as
NAT, LB, or FW) is implemented by a Control Plane (CP)
process and a set of Data Plane (DP) processes running on
OpenFunction boxes. The CP and DP processes communicate
with each other using the OpenFunction protocol. The CP
process has a global view (via the controller) and its main

1491

role is to manage and deploy the DP processes according
to required middlebox functionality. It receives events from
DP processes, performs analysis, makes decisions, and sends
commands to DP processes to enforce its decisions. A DP
is modeled as a directed acyclic graph where each node is
an element that implements middlebox functionality. A DP
process has a local view of the network, it receives commands
from CP and its main role is to process data plane packets
accordingly. Based on the processed traffic, it may generate
events for its corresponding CP process. We call a CP process
together with its group of DP processes a Software-Defined
Middlebox (SDM). With OpenFunction, implementing a mid-
dlebox functionality on the data plane becomes much simpler
as it mostly involves composing a graph of pre-defined ele-
ments, possibly with a few user-defined elements. Thus, SDM
developers mostly focus on designing CP programs, which are
often the most innovative part of their implementation.

OpenFunction controller manages DP elements and makes
scheduling decisions to install/remove elements and packet
handling decisions. OpenFunction controller sends flow steer-
ing instructions to the OpenFunction shim layer running on
SDM boxes, which maintains network state information and
deploys network elements accordingly.

Data Plane: OpenFunction data plane abstraction is element
oriented, similar to Click. An element is a self-contained
and functionally independent packet processing unit, such
as decreasing the TTL field, calculating the TCP check-
sum, or increasing a flow state counter. OpenFunction exposes
an extensible set of elements to the control plane. The
semantics of an element is to take a packet as its input,
perform some operations, and either push the packet to the next
element or wait for the next element to pull the packet. Each
element object is an instance of an element class. There are
three element classes: actions, states and events. For example,
an element may need to update the flow counter state whenever
a packet passes through this element. Another element may
send an event to the control plane. There are two kinds of
elements: pre-defined and user-defined. Pre-defined elements
are those supported by OpenFunction compliant boxes and
user-defined elements are those written by users using a
platform-independent pseudo language. We allow multiple DP
processes running on the same OpenFunction box, similar
to router virtualization, where in the same box, different
DP processes belongs to different CP processes for different
middlebox functions (§IV).

Control Plane: OpenFunction, together with OpenFlow,
makes service chain construction and scheduling much easier
than the current NFV architecture. A service chain is a
sequence of middlebox functions that the network operator
wants certain traffic to traverse in order. To construct and
schedule service chains, the OpenFunction controller performs
resource allocation according to a given optimization policy
(e.g., load balancing) in collaboration with the forwarding
plane authority (e.g., an OpenFlow controller). For example,
suppose the network operator wants to allocate 10 Gbps
bandwidth between two networks and let all traffic between
the two networks pass through an IDS. First, the OpenFlow
controller finds an appropriate path between the two networks

1492

where each switch on the path has at least 10 Gbps band-
width and the path contains at least one OpenFunction box.
Second, the OpenFunction controller starts a new IDS DP
process on that OpenFunction box. In this SDM+SDN and
OpenFunction+OpenFlow paradigm, one technical challenge
is service chain scheduling: given a service chain that a flow
needs to traverse, the controller chooses a sequence of middle-
box data plane processes (running on one or more OpenFunc-
tion boxes) to form the service chain. The scheduling needs
to satisfy three requirements: service chain constraints, device
resource constraints, and flow conservation. Furthermore,
it needs to be done in a load balancing way to minimize the
maximum utilization of the resources in candidate devices.
To address this challenge, in this paper, we formulate service
chain scheduling as a NP-Hard problem, and propose both
offline and online scheduling algorithms (§V).

Benefits: OpenFunction realizes the centralization vision of
SDN for middleboxes by the logically centralized OpenFunc-
tion controller. As it is well understood that centralization in
OpenFlow brings a long list of benefits to packet forwarding
such as flexible path selection, better load balancing, finer-
grained network control, less configuration errors, higher man-
ageability, and increased reliability and security, centralization
in OpenFunction brings many benefits to network functions.
The global view that a CP process obtains from the events
generated by its DP processes helps the CP to make better
informed decisions. For example, an IDS CP process can per-
form correlation analysis on the events from its DP processes
to better identify attack activities.

IV. OPENFUNCTION ABSTRACTION

In this section, we present OpenFunction abstraction. We
first introduce how a data flow graph is implemented, followed
by packet abstraction and pseudo language to implement
elements in platform-independent manner. We then provide
a deep down on the element abstraction at action, event and
state level.

A key design aspect of OpenFunction abstraction is flex-
ibility and extensibility. As mentioned above, OpenFlow is
vertically integrated since it continuously adds new actions.
A program calls new actions cannot run on a device supporting
only older versions. OpenFunction does not enforce any stan-
dard element definition to prevent the exact fate. Instead, a set
of elements are recommended; and for each such an element,
a default implementation written in OpenFunction pseudo
language (§IV-B) is provided. An OpenFunction box can
choose elements to be optimized by exploiting their underlying
hardware acceleration capabilities. For elements whose opti-
mized implementation is not available at the box, the default
pseudo code can be used, like user-defined elements.

Furthermore, we allow OpenFunction boxes to provide
multiple implementations for the same element: for example,
one version is CPU based and another version is GPU based.
The controller can dynamically determine which version to
load/unload based on the availability of network resources and
the processing requirements of flows at run time.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

@ FromDevice(1) fromdevice

@ ExactMatch(PROTO_IP,-) match
@ DecapHeader(14) decap

@ ESPEncap espencap

@ Aes(EBC) aes

@ IPsecEncap ipencap

@ ChangeSrcIP(IP_SRC) srcip

@ ChangeDstIP(IP_DST) dstip

@ SetIPChecksum checksum

@ EncapHeader(MAC_DEST, MAC_SRC, PROTO_IP)
encap

11: @ ToDevice(2) todevice

R A A ol e

—
=

12: fromdevice 0 0 match; match 0 0 decap
13: decap 0 0 espencap; espencap 0 0 aes
14: aes 0 O ipencap; ipencap 0 O srcip

15: srcip 0 O dstip; dstip O O checksum

16: checksum 0 0 encap; encap 0 O todevice
17: match 1 O discard;

Fi

g. 2. Pseudo code of IPsec Script (one way).

A. Data Flow Graph

OpenFunction datapath is modeled as a directed acyclic
graph where each node is an element that implements one
middlebox functionality. OpenFunction data plane specifica-
tion can be implemented using a script, which contains the
definition of each element and the definition of connection
between elements. An example IPsec middlebox data plane
is shown in Fig. 2. In OpenFunction script, each element
instance definition line starts with an “@”. After that, each line
defines a connection between an egress port of one element
and an ingress port of another element. Element definitions
and connection definitions together construct the graph of a
DP process.

As the target of element operations, a packet class consists
of two types of data: fields, and properties. A property is
a non-modifiable information about the packet, such as the
packet size or the physical port from which the packet is
received. Although some properties of a packet may change
after certain actions, e.g., the length of a packet changes
after encapsulation, the properties of a packet cannot be writ-
ten or modified by elements directly. Note that we deliberately
do not include metadata in the packet abstraction. Metadata are
short-lived attribute values attached with each packet, usually
for the purpose of passing parameters among processing
stages. Since metadata information are extracted from packet
fields or properties, it can be regarded as implementation
optimization, instead of a native packet abstraction.

B. Pseudo Language

We propose a platform-independent pseudo language that
allows SDM developers to design arbitrary new middlebox
data plane element, and should be supported by any Open-
Function enabled device. The vendor of an OpenFunction box
needs to provide a source-to-source translator, which takes a
pseudo C program as its input and outputs a native program
that exploits the hardware acceleration strength of the box.

TIAN et al.: EXTENSIBLE DATA PLANE ABSTRACTION PROTOCOL FOR PLATFORM-INDEPENDENT SDMS

Link Transport
HeaderJ $Header Packet
G RIS PSR
| Headroom Sesssstssgy Talrom
Network Application D Afield
Header Header

Fig. 3. Abstraction of packet field.

The output platform-dependent program is further compiled
into executable components using the box’s native compiler.
As a proof-of-concept, shown in Section VI, in our prototype
system an element class can be translated either to a platform-
dependent C/C++ program such as a Click element, or a
FPGA block (in Verilog).

We now introduce the packet field abstraction that the
pseudo programs operate on. The whole packet is assumed
to be stored in a continuous memory location as shown
in Figure 3. There is large headroom/tailroom before/after the
packet data. Such spaces are reserved for actions that change
packet length (i.e., Encap/Decap and Pad/Unpad). We also
assume the existence of a mandatory preprocessing step, which
marks the start offset of link/network/transport/app layers
(if they exist). Each field is a continuous range of bytes
in a packet memory range, defined by a tuple (header,
offset, type) and can be attached with a name. For
example, IP checksum can be defined as a field starts at
the 10th bytes offset of the network header by the FIELD
keyword. The length is automatically determined by its data
type UNIT16. Note that a special type is DATA, which
represents a raw array of bytes.

A property of a packet is accessed as a named object (with
keyword PROP). In OpenFunction, a (type, length)
tuple defines a specific object. The length configuration
is required only when the type is DATA. Note that packet
properties are limited to a small set of intrinsic packet charac-
teristics and read-only to program. Element parameters (with
keyword PARA) are also accessed as named objects. The
additional feature of a parameter is that it can be read/written
by the control plane.

A key design decision is to separate packet access code and
normal code. More specifically, we use character “@” at the
start of a line to denote a data access line. Following the “@”
letter, there should either be a packet variable definition of
FIELD, PROP or PARA, or LOAD/STORE to access the data.
Currently, we do not support direct algorithmic operations over
packet data variables. They are used to denote the physical
locations in the packet. Instead, we first load them into local
variables, perform calculation, and then store them back. The
benefit is that all non-data-access codes can be written as
normal C codes.

Fig. 4 shows an example pseudo program. This user-defined
SetIPChecksum action accepts an incoming IP packet and
calculates and sets its IP checksum field. Here the action
assumes that the incoming packets are with MAC headers.
As an example, the iphlen is defined first (Line 1), and loaded
into a local variable hlen before access (Line 5).

1493

1: @ FIELD iphlen NETWORK 0 UINT8
: @ FIELD ipcsum NETWORK 10 UINTS8
: @ FIELD ipheader NETWORK 0 DATA

unsigned char hlen

@ LOAD iphlen hlen
hlen = hlen & 0xOf
hlen = hlen < 2

@ STORE ipcsum 0

9: unsigned int sum=0

10: unsigned short hoffset=0

11: unsigned short tempshort=0

12: while hoffset < hlen do {

13: @ LOAD ipheader tempshort hoffset

[SSIN)

A

®

UINT16
14: hoffset = hoffset + 2
15: sum = sum + tempshort

16: }

17: unsigned int tempint =0

18: tempint = sum & Oxffff0000
19: while tempint !=0 do {

20: sum = sum & Oxffff

21: tempint = tempint > 16

22: sum = sum + tempint
23: tempint = sum & Oxffff0000
24: }

25: sum = ~sum
26: @ STORE ipcsum sum

Fig. 4. SetIPChecksum (User Defined).

C. Action Elements

To carefully tradeoff composability and optimizability,
we analyze a number of middleboxes such as NAT, IPsec, and
IDS, and design a suite of primitive actions that we classify
into the following five categories:

o starting action: These actions receive packets from either
hardware/virtualized NICs, or specific memory locations
(e.g., FromDevice in the IPsec example).

o one-to-many action: This category consists of actions
based on the following four matches: exact-match (e.g.,
in the IPsec example), longest-prefix-match (e.g., used in
FIB), first-match (e.g., used in ACL), and pattern-match
(e.g., regular expression for payload used in DPI).

o many-to-one action: A flow scheduling action takes mul-
tiple flows as input, and outputs one combined stream
of traffic. Example flow scheduling operations include
strict priority (SP) and weighted round robin (WRR).
Traffic shaper can be regarded as a special case of this
category.

e one-to-one action: An action performs a single packet
processing such as changing the length of a packet,
either at the head (i.e., Encap/Decap) or the tail
(i.e., Pad/Unpad), modifying a field or the metadata
of a packet (i.e., decreasing the IP TTL value and
setting the ECN bit are two actions), and decompress-
ing/compressing packets (i.e., stateful Web cache).

1494

1: @ FIELD ect NETWORK 1 UINTS8
2: @ STR str "ECN Enabled ”

3: @ COND hlen & 0x02
4: @ FIRE str ect

Fig. 5. ECN Event Parameter.

o ending action: These actions send packets to either hard-
ware/virtualized NICs, or specific memory locations (e.g.,
ToDevice in the IPsec example).

The parameters of an action can be set either at the config-
uration phase, or at run-time. Considering the IPsec example
again. For a given IPsec tunnel, the IP_SRC/IP_DST para-
meters of ChangeSrcIP/ChangeDstIP actions are set at the
configuration phase as parameters. While for the ESPEncap
action, its security index SPI and replay parameter RPL should
be negotiated by the control plane at run-time. The [Psec DP
process leaves the two parameters unset at first, and lets the
CP process performs negotiation before setting the attribute
value.

D. State Elements

Many middlebox states can only be maintained in the data
plane. OpenFunction treats every data plane state as a record
in a conceptually global key-value store. Currently, only flows’
five tuples (i.e., source/dest IP, source/dest port, and protocol)
are supported as key in OpenFunction. Wildcards are used to
represent the keys of multi-flow and global states. We believe
it is easy to extend the design by using a data structure to
support more data as key.

In OpenFunction, state elements are dedicated to updating
the state records: e.g., IncreaseStateNumerical and UpdateSta-
teOctet. Action and event elements can read states by directly
accessing the global key-value store. The reason is that state
value can be updated in many ways. Sometimes the new value
is not directly related to the old value: for example, a state of
the TCP ack-window sequence number. Sometimes the new
numerical value is related to the old value: for example, per-
flow packet counter. Also, value can have many data types:
e.g., integer and octet.

E. Event Elements

The event abstraction uses a single evaluate-format element.
As a configuration parameter, each event instance specifies the
trigger condition by a matching rule, and an octet array that
is the content of the event.

Fig. 5 shows an example parameter string passed to an event
element instance. In this setting, if the transport protocol sets
the ECN enable bit, an event is sent to the control plane. The
information used are defined in the first part (line 1 and 2);
the matching rule is in line 3; the event formation is defined
in line 4.

FE. State Management

We classify the states inside any middlebox appliance as
internal and external [42]. An internal state is transient and

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

can be created, modified and destroyed during the course of
processing a packet. External states are further classified into
coherent and partitioned states. An coherent state, consists of
static configuration information, is maintained by the global
controller. A partitioned state represents the flow-specific
state maintained by each middlebox appliance. In our current
design, partitioned states are maintained in the data plane,
by each action element.

We manage the flow-specific states inside each action ele-
ment explicitly. By explicit state management, we mean that
each action element has to explicitly acquire and release any
flow-specific state that it maintains, before and after processing
a packet respectively. Explicit state management has been
shown to enable the design of robust and scalable middlebox
applications [40]-[42].

We create two generic interfaces, namely read_flow and
write_flow, that each action needs to implement. read_flow
needs to read the flow-specific state from the middlebox
device and pass it on as input, along with the packet to the
action element. Similarly, write_flow needs to write the flow-
specific state to the middlebox device, for future retrieval,
followed by passing the packet to the subsequent action in the
processing graph. In DPDK-based appliances, read and write
flow implementations translate into reading and writing to the
action’s internal flow table entries. In hardware-based mid-
dleboxes, these implementations may be optimized to lookup
from internal TCAM tables or other storage media. Each
action’s read_flow and write_flow are represented as action
elements themselves, in the processing graph that represents
the middlebox application.

V. SERVICE CHAIN SCHEDULING

One challenging task for OpenFunction controllers is to
perform service chain scheduling. Given a flow and a sequence
of SDM functions that the flow needs to pass through, the con-
troller needs to choose a sequence of DP processes of that
SDM so that the flow can go through this sequence of DP
processes. Note that, if a specific action in the program has
multiple implementations (e.g., both CPU-based and GPU-
based), then the compiled SDM data plane also has mul-
tiple implementations. The controller can load any desired
implementation according to the resource scheduling and flow
requirements. For example, if a middlebox’s data plane graph
has 3 actions and each action has 2 implementations. In
total there could be 23 = 8 implementations stored for this
middlebox. Due to the cheap price of storage, we consider
this exponential increase in the number of implementations a
trivial concern.

Some existing schemes in service chain scheduling and
enforcement can be used in OpenFunction to control the
service chain among middlebox platforms [14], [39] with
intelligent optimizations. CoMb requires that the middlebox
processes of the whole service chain, pertaining to a given
session flow, run on the same device [45]. However, this is
not optimal in many OpenFunction scenarios. For example,
imagine that one hardware platform has special optimization
for IPsec, and another platform has special optimization for

TIAN et al.: EXTENSIBLE DATA PLANE ABSTRACTION PROTOCOL FOR PLATFORM-INDEPENDENT SDMS

TABLE I
SYMBOLS USED IN THIS PAPER

k, K SDMk, 1< k< K.

n, N OpenFunction box n, 1 < n < N.

r R resourcer, 1 < r < R.

N, I{l Input binary constant of flow f’s service chain to
indicate if SDM [is the next SDM of k

Dy ;. | The amount of resource r is required to support a unit
of flow for SDM k with implementation .

Tnr the existing utilization of resource r in box 7.

[the capabilities of resource r in box n.

Ay The amount of flow f

Z;l;,]{,f’ Binary variable to indicate if flow f is traversed from
the SDM k with implementation ¢ on box n to SDM [
with implementation j on box m.

Xk,i,n | The amount of flows traversing node n for SDM k with
implementation <.

cache. Forcing the whole service chain in a single node com-
promises the benefits of global resource optimization. Some
schemes have been proposed to solve the problem of steering
traffic among physical middleboxes to follow the network
policy (i.e., service chain). As a pioneer work, the pswitches
(i.e., policy-aware switches) scheme adds a new layer-2 for
data centers, which can steer the network traffic through
unmodified middleboxes [22]. Using SDN, SIMPLE can
enforce flow-level policy even if middleboxes modify the
packets or change the session level semantics [39]. FlowTag
takes a step further by attaching tags to flow packets to enable
flow tracking [14].

The scheduling in this paper focuses on load balancing
across different physical nodes. For isolation purpose, many
researchers focus on the VM based VNF placement scheme.
E2 [37] realizes each VNF as a VM and consolidates the VMs
for a chain to a server, and hence reduces the inter-server
traffic. Stratos [15] is another traffic-aware NFV placement
which is an orchestration layer mainly to deal with the
mangling NFs. VNP-OP [9] studies joint optimization of the
VM placement and traffic routing to minimize the deployment
cost and forwarding cost. PACE [25] also focuses on the VNF
placement to accommodate as many requests as possible, but
it assumes that all NF requirements in a chain are unordered.

Next, we present the service chain scheduling algorithm.
Table I summarizes the symbols used in this section. For a
given flow, the OpenFunction controller needs the following
three types of inputs to perform service chain scheduling.

o Chaining Requirement: Each flow has a classification rule

that uniquely identifies the flow and estimated bandwidth.
For the given flow, we use SDM7, SDMs, -+, SDMy
to denote the sequence of K SDMs that it needs to
traverse. This flow specification is typically specified by
network operators.

o Implementation Availability: For each SDMj, let Vj
denotes the total number of different implementations of
SDMj,. Each implementation has its specific resource
requirement, which is usually multi-dimensional because
different actions in an implementation may require dif-
ferent resources.

e Box Capability: Let N denote the set of OpenFunc-
tion boxes. Let 2, . denote the capabilities of resource

1495

in each box n. Also, the existing utilization of resource r
in OpenFunction box n is denoted as I, ;. (in percentage).
The OpenFunction controller obtains box capabilities by
performing resource monitoring of each OpenFunction
box in real time.

As a practical constraint, we assume, all packets in a given
flow should traverse the same DP process for a given SDM in
the chain.

Below, we formulate the resource allocation problem as
an integer linear program and propose an offline and online
heuristic to solve ILP problem.

ILP Formulation: The optimization objective in service
chain scheduling is load balancing across all resources of all
nodes.

'X’1'7D C,,T
Ek ZZQk7’7 ki 4 Fn,r (1)
n,r

The main constraint is traffic conservation for each flow
crossing the SDMs

>

l,j,m>n

minimize max

1 ifk=0,n=0
oozfimt=S -1 ifk=K,n=N

l,j,m<n 0

Lijm,f _
k,i,n

otherwise
(2)

In addition, a flow may traverse from SDM k to SDM [only
if SDM £ is followed by SDM [on flow f’s service chain,

N{, >zt 3)

kyin

Based on this flow conservation constraint, the traffic can be

calculated by
Xiin =22 > Az’ @
foLim

To derive an ILP formulation, we can introduce an auxiliary
variable z to present the objective function and z should satisfy

. >k i XkyinDrsiyr 4T

n,r 5
Qn,r ’ ()
and the objective becomes

minimize z (6)

Therefore, the Integer Linear Programming (ILP) formulation
of this problem can be summarized as the resource utilization
optimization problem (RUOP). The ILP model formulated
above is intractable in large networks. Specifically, due to the
large dimension of binary variable Z,ijqzlf , there will be more
than 107 binary variables in the model even if each index has
only 10 possible values. Accordingly, we need to design an
efficient heuristic to solve this problem.

Offline Algorithm: We first consider the offline scheduling,
where a number of flows are known and resource allocation
can be optimized simultaneously. Since the most critical ele-
ment which makes our problem intractable is the large number
of binary variables, we consider relaxation and rounding
method to solve this problem. For presentation clarity, we call
the enforced service chain (i.e., the ordered SDM) as the
path of this flow. Following the relaxation and rounding idea,

1496

Algorithm 1 Offline Resource Utilization Optimization

Require: Flow volume and service chain requirement,
resource requirement for each SDM implementation

Ensure: The SDM path of each flow

1: Formulate RUOP model according to the input

2: while not all Z,»"™/ = 0or1 do

3 Solve RUOP model

4. Geta forbidde;rn threshold ¢
L,j,m,
5. for all Z,ﬂ:’; do
6: if Z,lC’JZ.’ZL’f < € then
7: Add one more constraint Z,lcjlzlf = 0 into RUOP
model
8: end if
9: end for

10: end while
11: return {z¥}

we first relax the binary constraint of the variable Z,ijqzlf s

i.e., treat it as a real variable in the range [0, 1], and solve the
derived Linear Programming model. With this solution, each
flow may be split among multiple paths which are determined
by the value of Z ,iJZZ’f . To get an unsplittable path for each
flow, a simple method is to directly round each flow to the
path which carries the largest fraction of this flow. However,
this method can not obtain a good result especially when there
are a lot of boxes and many implementation versions for each
SDM. In this case, each path may carry only a small fraction
of the flow. Directly rounding each flow to the path carrying
the maximum fraction may deviate far away from the ILP
optimum. To solve this problem, we propose a progressive
method for the rounding phase to get unsplittable paths.

The main idea of progressive rounding is to iteratively
forbid some links that carrying very small fraction for each
flow, till there is only one path for each flow or there is
a path carrying most of the fraction of a flow. Based on
above discussions, we design Algorithm 1 to solve the RUOP
formulation.

Line 4, requires finding a threshold € to determine if a
Z,lszzlf should be set to O for the rounding purpose. On
the one hand, € defines the tradeoff between the algorithm
performance and the algorithm running time. With a large e,
more Z kizlf will be set to 0 in each loop and hence there are
fewer loops executed in the algorithm. With a small €, we can
derive a better solution. On the other hand, we should update
€ in each loop since Z,lszzlf should become larger in each
loop as there are fewer paths can be used by the flows with
the algorithm execution. Accordingly, without updating the
rounding threshold, there will be endless loop in the algorithm.

From Offline to Online: We extend the algorithm to an
online version of this problem. In real networks, service
chain requests may arrive randomly, and not all at once. Our
approach to solve this problem is to treat all new flows in
a fixed interval (i.e., 1 us) as a group. OpenFunction then
triggers the offline algorithm to reserve SDM resources for this
group of flows. This batch calculation is an optimization to
save computation. This implementation-specific optimization

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

can be customized and disabled. If the flow arrival rate is
very small, holding flows to wait for later flows may be a large
overhead for flows arrived earlier. In the worst case, we can
treat each flow as a group to trigger Algorithm 1 to set up
SDMs for each single flow.

V1. PROTOTYPE IMPLEMENTATION
A. Platform

We build a proof-of-concept system to verify the OpenFunc-
tion abstraction and estimate achievable performance.

Data Plane: We develop two x64 platform OpenFunc-
tion boxes based on Netmap [43] and DPDK [21], and one
hardware box based on FPGA [27]. Netmap is a tool designed
for high speed packet I/O in commodity servers. Implemented
as either a modified NIC driver or a kernel module, Netmap
also enables high-speed processing in user space. Supported by
Intel, Data Plane Development Kit (DPDK) is a combination
of data plane libraries and NIC drivers for fast packet process-
ing in user space. Poll mode drivers (PMD) are designed to
enable direct packets exchange between a user space process
and a NIC. A low overhead run-to-completion model is used
to achieve fast data plane performance.

In our testbed, there are 16 Dell R320 machines, each has
a 10 Gbps Intel X520-SR1 ethernet NIC and is both DPDK
and Netmap enabled. We use Redis distributed key-value store
for SDM states [49]. We also develop a prototype box in
a FPGA card via Xilinx Vivado High-Level Synthesis tool,
which supports C/C++ to describe designs and translates
them into hardware description languages (HDL) such as
VHDL or Verilog HDL [31]. The platform is a programmable
FPGA card with a Xilinx Kintex 7 chip, two 10 Gbps NICs
and four 1 Gbps NICs.

For each prototype box, OpenFunction needs to provide
three supports: OpenFunction script, OpenFunction language
and in-box chaining. The third requirement means that the
device needs to load/unload DP functions dynamically. For
example, consider a scenario where initially only flow 1 passes
through SDM 1 and SDM 2. Later the operator decides
to add an additional action to be performed on that flow,
which requires SDM 3 be inserted into the service chain.
An example use case of this scenario is that a company
may want to perform DPI to block instant message packets
(such as GTalk and Skype) only during the office hours. Such
temporary insertion/deletion of data plane instances should be
seamless as packet losses during transition can affect appli-
cation performance. A simple solution could be temporarily
hold the packets of the flow, construct a new service chain,
and switch to the new chain. However, this approach adds
significant delay to packets processing during the transition.
Instead, we prefer a buffer-less solution (§VI-D), where a
function can be inserted/deleted without incurring a packet
loss.

Control Plane: We use OpenDaylight (ODL) [36] as the
OpenFlow controller that manages OpenFlow capable switches
and routers. OpenFunction controller runs as an OpenDaylight
application and sends flow steering instructions to the Open-
flow controller. It uses many base functions provided by ODL
to learn about the network and control network elements.

TIAN et al.: EXTENSIBLE DATA PLANE ABSTRACTION PROTOCOL FOR PLATFORM-INDEPENDENT SDMS

inl :: FromDevice(netmap:ethl, PROMISC true)
out2 :: Queue(100)—ToDevice(netmap:eth2)
elementclass ExactMatch Classifier
EM::ExactMatch(12/0800,-)

5: inl =EM—DecapHeader(14)—MyIPsecESPEncap
—MyAes(1)—IPsecEncap— SetIPChecksum
—MarkIPHeader(OFFSET 0)—ChangeSrcIP
—ChangeDstIP—EncapHeader—out2

6: EM[1]->Discard

Fig. 6.

BN

Translated Click IPsec script.

In our testbed, we use OpenvSwitch [3] as a switching
element to steer traffic. We use a quad core 3.0 GHz AMD
Phenom(tm) IT X4 945 Processor system to host the Open-
Function controller, the OpenFlow controller and all SDM CP
processes.

B. Script Support

In this section, we discuss how OpenFunction uses script
support for different platforms. For brevity, we only discuss
Netmap and FPGA platforms.

Netmap tool focuses on high-speed 10 and does not provide
enough native packet libraries. For Netmap boxes, we use
Netmap to perform IO and use Click as the packet processing
pipeline library. We translate Netmap parameters to Click
element style. The translated Click script of the IPsec data
plane specification (Fig. 2) is shown in Fig. 6. This translation
faces multiple challenges. First, how to handle the abstract
parameters of actions in the specification? To address this
challenge, we either replace them with real parameters in
Click format, or implement them as action attributes, and
let the IPsec CP process sets these parameters at runtime.
Second, what other elements need to be defined? To address
this challenge, we add additional elements. For example,
we add additional MarkMACHeader and MarkIPHeader ele-
ments (Fig. 6), after the input device action, for Click specific
requirements.

For FPGA box, both OpenFunction script and pseudo lan-
guage are translated to the special C/C++ code: the specifi-
cation is translated to the top level block (composed by a call
graph among low level blocks), while each pseudo language
based action definition is translated to a low level block. The
translation of data plane IPsec specification (Fig. 2) as shown
in Fig. 7, requires (1) defining the inter-link between functional
actions (i.e., Line 5-20); and (2) using direct function calls
to represent actions (e.g., Line 21-29). Note that in FPGA
platform, we implement all parameters as action attributes,
which are controlled by its corresponding CP process.

C. Language Support

In Netmap platform, we translate each action pseudo pro-
gram to an element class definition in Click. Mostly, the gen-
erated codes are in the simple_action function. Each special
line in the pseudo language file is processed. For example,
Fig. 8 is the translated code of generating a pointer to IP

1497

—_

void ipsec(stream< axiWord > &inData,
stream<axiWord> &outData) {

#pragma HLS dataflow interval=1

#pragma HLS INTERFACE port=inData axis

#pragma HLS INTERFACE port=outData axis

Bl

: static stream<axiWord> ippacket(”ippacket”);

static stream< axiWord>

decap2espencap(’decap2espencap”);

7: static stream<axiWord> espencap2aes(’espencapaes”);

8: static stream<axiWord> aes2ipencap(”aes2ipencap”);

9: static stream< axiWord>
ipencap2changeSrcIP(”ipencap2changeSrcIP”);

10: static stream<axiWord>
changeSrcIP2changeDstIP(changeSrcIP2changeDstIP”);

11: static stream<axiWord>
changeDstIP2ipchecksum(”changeDstIP2ipchecksum”);

12: static stream<axiWord>

ipchecksum2macencap(”ipchecksum2macencap”);

13: #pragma HLS STREAM variable=ippacket depth=16

14: #pragma HLS STREAM variable=decap2espencap
depth=16

15: #pragma HLS STREAM variable=espencap2aes depth=16

16: #pragma HLS STREAM variable=aes2ipencap depth=16

17: #pragma HLS STREAM variable=ipencap2changeSrcIP
depth=16

18: #pragma HLS STREAM
variable=changeSrcIP2changeDstIP depth=16

19: #pragma HLS STREAM
variable=changeDstIP2ipchecksum depth=16

20: #pragma HLS STREAM
variable=ipchecksum2macencap depth=16

[\

21: parser(inData, ippacket);

22: decap(ippacket, decap2espencap);

23: espencap(decap2espencap, espencap2aes);

24: aes(espencap2aes,aes2ipencap);

25: ipencap(aes2ipencap, ipencap2encap);

26: encap(decap2encap, encap2changeSrcIP);

27: changeSrcIP(encap2changeSrclP,
changeSrcIP2changeDstIP);

28: changeDstIP(changeSrcIP2changeDstIP,
changeDstIP2ipchecksum);

29: ipchecksum(changeDstIP2ipchecksum, outData); }

Fi

=

g. 7. Translated Xilinx specification.

1: nh_data = p—network_header();

: unsigned char* pch = NULL
: pch = nh_data
: pch=pch + 0
: unsigned char* iphlen = pch

W AW N

Fig. 8. Translated Click source.

header length field (Fig. 4 Line 1). Other codes are input from
the pseudo program as it is.

OpenFunction language translation in Xilinx FPGA is sim-
ilar to the operations of that in Netmap. The major difference

1498

(\ 10->SDM 1 (\ 10->SDM 1
:DDD SDM 1 :DDD SDM 1
DDE]: Data Plane DDE]: Data Plane
SDM 1->10 SDM 1->10
10 ->SDM 3 10->SDM 3
10 111 E:> 10 11 SDM 3
Process DDE]: Process DDE]: Data Plane
SDM 3 ->10 SDM 3 -> 10
10 ->SDM 2 10 ->SDM 2
:DDD SDM 2 :DDD SDM 2
DDE]: Data Plane DDE]: Data Plane
~— SDM 2 -> 10 ~— SDM 2 -> 10
Fig. 9. 10 based service chain.

is that: an additional C++ encapsulation class is required for
each action class, to express the state transition semantics in
FPGA hardware. Due to space limitation, we omit the details
of both FPGA and DPDK platforms.

D. In-Box Service Chain

An OpenFunction box may implement more than one kind
of network functions therefore, an SDM box may require
different elements to interact with each other, within the
same box, to implement a network functionality. One of the
key requirement of in-box service chaining is that it should
support loading/unloading elements dynamically. Below we
discuss how we implement in-box service chaining for differ-
ent platforms. For brevity, we only explain DPDK and FPGA
platforms.

In DPDK equipped boxes, we use process group to realize
the service chain and treat each SDM data plane instance as
a separate process. In this model a central (parent) process
sets up all memory structures for use by child processes
(elements) and handles packet reception and transmission,
as shown in Figure 9. A pair of rings is setup between the
IO process and an SDM process for packets exchange. When
a new SDM DP process starts, it discovers both the rings and
packet memory locations via DPDK library support. The 1O
process sends a packet’s descriptor through the ring. An SDM
data plane processes the packet and returns it via another ring.

The pair of rings is the key to realize dynamic load/unload
of the service chain elements. Each packet’s metadata carries
the service chain information. Metadata carries two entries:
first, an ordered array records the indexes of ring pairs it
needs to traverse, and second, an index pointer keeps the
value of the next pair. Let’s consider a scenario where initially
flow 1 passes only through SDM 1 and SDM 2. Later the
operator decides to add an additional action to be performed
on that flow, which requires SDM 3 to be inserted into the
service chain between SDM 1 and SDM 2. Initially only
SDM 1 and SDM 2 are traversed by a flow. Later when
the new SDM 3 data plane process starts, all subsequent
packets’ metadata change to the new service chain SDM 1 —
SDM 3 — SDM 2; and as a result, packets traverse SDM 3
between SDM 1 and SDM 2. Similarly, to unload a service
chain, when SDM 3 is removed from the service chain,
the metadata of all subsequent packets change to the new
service chain SDM 1 — SDM 2 again; the controller
waits for a while, before it cleans up the SDM 3 process

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

from the system. For performance consideration, we assume
all processes of a group is running on a single CPU socket
(possibly with multiple cores). Note that multiple process
group are supported, if we start different process groups in
different sockets.

For FPGA equipped SDM boxes, in-box service chain-
ing can be achieved using hardware support from FPGA.
Unlike software, loading/unloading new data plane functions
in programmable hardware needs direct support from hard-
ware. Partial Reconfiguration is a feature of modern FPGAs,
which allows a subset of the logic fabric of a FPGA to be
dynamically reconfigured while the remaining logic continues
to operate [10].

E. Developed SDMs

We implement NAT and IPsec gateway as two stateless
SDMs on Netmap, DPDK and FPGA platforms. The NAT
middlebox performs simple address translation. The mapping
table is stored in its CP process and the mapping item is send
to a DP process when the first packet of a flow comes in.
The IPsec gateway uses ESP tunnel model with AES-EBC
encryption. The control plane negotiates with the remote peer,
and sends command to DP processes after security negotiation.

With Netmap, we also implement a simple stateful firewall
and a stateful IPS. The stateful firewall monitors all pass-
through TCP connections. It removes the allow rules in both
directions whenever a RESET flag is detected. The stateful IPS
monitors FTP connections: some FTP commands are allowed
only after the user authentication; otherwise an alert signal is
generated.

VII. EVALUATION

In this section, we evaluate OpenFunction DP and CP
performance. For DP, we are interested in the overall through-
put achieved by different SDM implementations. For CP,
we are interested in controller performance to see, how fast a
OpenFunction CP adapts to dynamic network conditions and
how quickly it can add/remove new network functions.

A. Data Plane Performance

First, we test the OpenFunction specification performance
for the data plane abstraction of each SDM. For each SDM,
we use the same set of OpenFunction specifications. We test
with both small size packets (60 bytes) and large size packets
(1400 bytes). The results of NetBricks on the same hardware
platform are also added for comparison. Table II shows the
throughput performance.

For non-stateful SDMs (NAT and IPsec), DPDK box
achieves higher throughput than Netmap-based box in almost
all the scenarios. This demonstrates that, even with the same
OpenFunction abstraction implementation and same hardware,
the performance actually relies on underlying systems. In turn,
the FPGA box is always better than DPDK.

Key Takeaway 1: OpenFunction abstraction accommodates
vendor differentiation with the same code across heteroge-
neous systems, which is beneficial for the NFV community.

TIAN et al.: EXTENSIBLE DATA PLANE ABSTRACTION PROTOCOL FOR PLATFORM-INDEPENDENT SDMS

TABLE 1I
THROUGHPUT OF OPENFUNCTION MIDDLEBOXES (G BIT-PER-SECOND)

[[Netmap | DPDK | FPGA [FPGA-C [NetBricks |

NAT Small 0.14 1.84 1.64 0.24 5.19
NAT Large 0.20 9.96 9.34 0.53 9.99
IPsec Small 0.02 1.2 2.61 0.04 N/A
IPsec Large 0.17 2.8 9.35 0.10 N/A
FW Small 0.03 N/A N/A N/A 0.32
FW Large 0.18 N/A N/A N/A 5.63
IPS Small 0.02 N/A N/A N/A N/A
IPS Large 0.19 N/A N/A N/A N/A

Next, we replace the SetIPChecksum and SetTCPChecksum
actions in the specification with user defined versions (written
in OpenFunction language and translated). The performance
overhead caused by user defined versions is negligible: for
these software-based boxes, without special acceleration treat-
ment, the C compiler performs most of the optimization work.
Also, for such an action, the efficiency of a translated version
is similar to the implemented version.

For FPGA platform, the performance gap between opti-
mized implementation and OpenFunction language generated
version (i.e., FPGA-C) is significant (10x in this case) in
Table II. The reason is that FPGA enables a programmer to
introduce several optimizations. For example, for NAT func-
tion, the programmer may choose to calculate the checksum
at line rate, without the need to receive complete packet.

Key Takeaway 2: The performance of SDM data plane
actions, if generated from OpenFunction pseudo language,
is dominated by the nature of system.

Similarly, for two stateful SDMs (FW and IPS), the perfor-
mance is comparable to non-stateful SDMs.

Key Takeaway 3: OpenFunction abstraction has the potential
to support various stateful firewalls.

Lastly, we consider two scenarios to evaluate OpenFunction
data plane overhead: (1) time it takes to start/stop a data plane
process in the service chain; and (2) additional path delays due
to our chain enforcement inside a box. In the first case, we are
interested in understanding how much delay is incurred when
a new service chain or SDM DP is added or removed from
the network. To evaluate, we use a small topology with five
DPDK middleboxes and generate TCP flows between source
and destination. We have two DPDK boxes on path 1 and
one DPDK box on path 2. We initiate flows on path 1 and
path 2 which initiates flow rule installation in the switches
along the datapath and calculate datapath setup times. Our
evaluation shows that it takes less than 100 msec to add a new
datapath or service chain in the network. In the second case,
we are interested in understanding the additional delays caused
by enforcing service chains in the MB’s. Our evaluations
shows that it adds less than 20 usec per SDM DP in the service
chain.

We evaluate the responsiveness of the controller to adapt to
dynamic network conditions and measure the time required to
reconfigure the network in case of SDM DP failure or traffic
overload in some of the service chains. We consider same
topology as before, with DPDK middleboxes, and use Iperf [1]
to generate TCP flows between source and destination. We first

1499

0.7

= Offline Algorithm
| | =©=— Online Algorithm
=—3— LP solution

2
=N

el 1N e
) S n
T T

e
o
T

Maximum resource utilization

0.1

Flow Number

Fig. 10. Performance impacted by flow number.

initiate flows on pathl and path2 by install rules in the
switches along the datapath and distribute load evenly across
the two paths. Next, we bring down the switch in path2 and
observe how quickly network converges to the stable state and
diverts traffic to pathl. Our evaluation shows that network
takes less than 200msec to converge to a stable state and
reconfigure flows to use other paths. We also dynamically
change the datapaths, to replicate the SDM insertion and
deletion scenarios, in our topology to steer network traffic
through different paths and we observe that the network
quickly adapts to these changes without any drop in the flow
throughput.

Key Takeaway 4: OpenFunction abstraction is flexible and
has light overhead.

B. Scheduling Performance

In this section, we evaluate our algorithm by leveraging
the traffic data collected from a production datacenter hosted
by IBM global services. To this end, we conduct performance
evaluation from two perspectives. First, we evaluate the impact
of varying number of flows in the system on algorithm
performance, and then the impact of threshold selected at line
4 in Algorithm 1 on algorithm performance.

Performance Impact by Varying the Number of Flows: In
this section, we fix the box number to be 10, there are
6 SDMs and the required SDM number of each flow is evenly
distributed in the range [1,5]. Each SDM has 2 or 3 versions
implemented in the system. In addition, we set the forbidden
threshold to be 0.2, i.e. 20% of the Z,ijqzlf and the fraction
value according to the LP solution will be set to 0 in each
iteration. To see how the algorithm performance changes with
the number of flows, we change the flow number from 104
to 10°, and the simulation results are shown in Fig. 10.
We evaluate the performance of proposed online and offline
algorithm and compare it to the LP solution, which treats
all the flows as splittable, and hence the LP solution is a
lower bound of our problem. From Figure 10, we make two
observations: i) the online algorithm achieves performance
very close to LP solution, and ii) its performance margin from
offline approach improves with increasing number of flows in
the system.

1500

I
Q

o
o
u.
T
i

e
=
T
i

o
W
[
T
i

e
[
T
i

—— Maximum resource utilization

Maximum resource utilization
=1
B
wn
-
i

0.4r 1
0.35F 1
031 1
0.25F 1
0.2 i i i i
0.2 0.4 0.6 0.8 1
Percentage

Fig. 11. Performance impacted by threshold e.

A single flow only needs very little system resource com-
pared to the available system resources, and therefore, we can
treat all the flows as splittable in the system’s point of view.
As a result, the performance of offline algorithm is very close
to the LP solution.

The performance of online algorithm deviates from the
optimal solution as the number of flows increase in the system.
This is for the reason that the online algorithm is a myopic
algorithm and optimizes the flows one by one, whenever a
flow enters the system, it optimizes the maximum resource
utilization based on the current system utilization but does not
consider future flow arrivals.

The Impact of Threshold e:

In this section, we study how the forbidden parameter
impacts the offline algorithm performance. For this purpose,
we inject 400 flows into the system and change the value of
forbidden threshold from 0.1 to 0.95.

The simulation results, Fig. 11, show that for smaller
thresholds, the offline algorithm performance degrades very
slowly with increasing the value of forbidden threshold.
However, when the threshold value exceeds a certain point,
the algorithm performance degrades quickly. The reason is
that in the LP solution, there are many Z,i]z:?f with very
little fraction, and they can be set to O at one time without
impacting the performance significantly.

In addition, as the value of the forbidden threshold continues
to increase, the performance degradation slows down. This
happens because if we set too many Z,i]z:?f as zero, the opti-
mization space for the flows reduces siéniﬁcantly. Therefore,
forbidding more Z,i]z:?f cannot degrade the algorithm perfor-
mance if the forbidden parameter is relatively large.

Key Takeaway 5: Load balancing is just one scheduling
objective, and there could be more scheduling challenges for
OpenFunction.

VIII. CONCLUSIONS

In this paper, we make three main contributions. First,
we propose the concept of Software-Defined Middleboxes
to realize abstraction for middleboxes, which complements
existing SDN efforts. Second, we propose OpenFunction as an
SDM data plane abstraction protocol. Third, we implemented

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

a working OpenFunction system including one OpenFunction
controller, three OpenFunction boxes, and four network func-
tions including both stateful and stateless ones. Our experi-
mental results show that the middlebox functions implemented
by using our OpenFunction abstraction can achieve high
performance and platform independence.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their valuable comments.

REFERENCES

[1] iPerf: The TCP/UDP Bandwidth Measurement Tool. Accessed: 2018.
[Online]. Available: https://iperf.fr

[2] OpenDataPlane. Accessed: 2018. [Online]. Available:
http://www.opendataplane.org/
[3] Open vSwitch. Accessed: 2018. [Online]. Available:

http://openvswitch.org/

[4] M. Chiosi et al., “Network functions virtualisation: An introduction, ben-
efits, enablers, challenges and call for action,” in Proc. SDN OpenFlow
World Congr., 2012.

[5] C. Cui, “Network functions virtualisation: Network operator perspectives
on industry progress. White Paper No. 3, Issue 1,” in Proc. SDN
OpenFlow World Congr., Dusseldorf, Germany, 2014.

[6] M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk, and A. Rindos,
“Sdsecurity: A software defined security experimental framework,”
in Proc. IEEE Int. Conf. Commun. Workshop (ICCW), Jun. 2015,
pp. 1871-1876.

[71 B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming slick
network functions,” in Proc. I1st ACM SIGCOMM Symp. Softw. Defined
Netw. Res., 2015, p. 14.

[8] M. B. Anwer, M. Motiwala, M. B. Tariq, and N. Feamster, “Switchblade:
A platform for rapid deployment of network protocols on programmable
hardware,” in Proc. ACM SIGCOMM, 2010, pp. 183-194.

[91 M. FE. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. (2015). “On

orchestrating virtual network functions in NFV.” [Online]. Available:

https://arxiv.org/abs/1503.06377

B. Blodget, C. Bobda, M. Hiibner, and A. Niyonkuru, “Partial and

dynamically reconfiguration of Xilinx Virtex-II FPGAs,” in Proc. Int.

Conf. Field Program. Logic Appl., 2004, pp. 801-810.

P. Bosshart er al, “P4: Programming protocol-independent packet

processors,” SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87-95,

Jul. 2014.

A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: Enabling inno-

vation in middlebox applications,” in Proc. ACM SIGCOMM Workshop

Hot Topics Middleboxes Netw. Function Virtual., 2015, pp. 67-72.

M. Dobrescu et al., “RouteBricks: Exploiting parallelism to scale

software routers,” in Proc. ACM SIGOPS, 2009, pp. 15-28.

S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,

“Enforcing network-wide policies in the presence of dynamic middlebox

actions using flowtags,” in Proc. USENIX NSDI, 2014, pp. 533-546.

A. Gember et al. (2013). “Stratos: A network-aware orchestration layer

for virtual middleboxes in clouds.” [Online]. Available: https://arxiv.

org/abs/1305.0209

A. Gember-Jacobson et al., “OpenNF: Enabling innovation in network

function control,” in Proc. ACM Conf. SIGCOMM, 2014, pp. 163-174.

1. Hadzi¢ and J. M. Smith, “Balancing performance and flexibility with

hardware support for network architectures,” ACM Trans. Comput. Syst.,

vol. 21, no. 4, pp. 375-411, 2003.

S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-

accelerated software router,” in Proc. ACM Conf. SIGCOMM, 2010,

pp. 195-206.

M. Handley, O. Hodson, and E. Kohler, “XORP: An open platform for

network research,” ACM SIGCOMM Comput. Commun. Rev., vol. 33,

no. 1, pp. 53-57, 2003.

M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov,

“Designing extensible IP router software,” in Proc. USENIX NSDI, 2005,

pp- 189-202.

Data Plane Development Kit, Intel, 2014.

D. A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware switching layer

for data centers,” in Proc. ACM Conf. SIGCOMM, 2008, pp. 51-62.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

TIAN et al.: EXTENSIBLE DATA PLANE ABSTRACTION PROTOCOL FOR PLATFORM-INDEPENDENT SDMS

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[471

[48]

[49]

[50]

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3,
pp. 263-297, 2000.

J. Larkins, “Recent trends in virtual network functions acceleration
for carrier clouds,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun.
Syst. (ANCS), May 2015, p. 3.

L. E. Li et al., “PACE: Policy-aware application cloud embedding,” in
Proc. [IEEE INFOCOM, Apr. 2013, pp. 638-646.

A. X. Liu, C. Meiners, E. Norige, and E. Torng, “High-speed application
protocol parsing and extraction for deep flow inspection,” IEEE J. Sel.
Areas Commun., vol. 32, no. 10, pp. 1864-1880, Oct. 2014.

J. W. Lockwood et al., “NETFPGA—An open platform for gigabit-rate
network switching and routing,” in Proc. Microelectron. Syst. Educ.,
Jun. 2007, pp. 160-161.

G. Lu et al., “ServerSwitch: A programmable and high performance
platform for data center networks,” in Proc. USENIX NSDI, 2011,
pp. 1-2.

G. Lu, R. Miao, Y. Xiong, and C. Guo, “Using CPU as a traffic co-
processing unit in commodity switches,” in Proc. 1st Workshop Hot
Topics Softw. Defined Netw., 2012, pp. 31-36.

N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69-74,
Apr. 2008.

W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt,
“An overview of today’s high-level synthesis tools,” Des. Autom.
Embedded Syst., vol. 16, no. 3, pp. 31-51, 2012.

J. C. Mogul, Y. Praveen, and T. Jean, “API design challenges for open
router platforms on proprietary hardware,” in Proc. HotNets, 2008,
pp. 7-12.

R. Narayanan er al., “Macroflows and microflows: Enabling rapid
network innovation through a split sdn data plane,” in Proc. Softw.
Defined Netw. (EWSDN), Oct. 2012, pp. 79-84.

S. W. O’Malley and L. L. Peterson, “A dynamic network architecture,”
ACM Trans. Comput. Syst., vol. 10, no. 2, pp. 110-143, 1992.

ONE. (2015). OpenFlow Switch Specification Version 1.5.0. [Online].
Available: https://goo.gl/oACYmp

S. Ortiz, “Software-defined networking: On the verge of a break-
through?” Computer, vol. 46, no. 7, pp. 10-12, 2013.

S. Palkar et al., “E2: A framework for NFV applications,” in Proc. Symp.
Oper. Syst. Principles, 2015, pp. 121-136.

A. Panda et al., “NetBricks: Taking the V out of NFV,” in Proc. 12th
USENIX Symp. Oper. Syst. Design Implement. (OSDI), vol. 16. 2016,
pp. 203-216.

Z. A. Qazi et al., “SIMPLE-fying middlebox policy enforcement
using SDN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 27-38, 2013.

S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A high
availability framework for middleboxes,” in Proc. 4th Annu. Symp. Cloud
Comput., 2013, p. 1.

S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, “Escape
capsule: Explicit state is robust and scalable,” presented at the 14th
Workshop Hot Topics Oper. Syst., 2013.

S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” in Proc. USENIX NSDI, 2013, pp. 227-240.

L. Rizzo, “NetMap: A novel framework for fast packet I/0,” in Proc.
USENIX Annu. Conf., 2012, pp. 101-112.

M. N. Sadiku, A. E. Shadare, S. Koay, and S. M. Musa, “Software-
defined security,” Int. J. Eng. Res. Adv. Technol., vol. 2, no. 10,
pp. 13-17, 2016.

V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” in Proc.
USENIX NSDI, 2012, p. 24.

S. Shin et al., “FRESCO: Modular composable security services for
software-defined networks,” in Proc. NDSS, 2013, pp. 1-16.

H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,” in Proc. 2nd ACM SIGCOMM
Workshop Hot Topics Softw. Defined Netw., 2013, pp. 127-132.

G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis,
“GASPP: A GPU-accelerated stateful packet processing framework,” in
Proc. USENIX Annu. Conf. (USENIX ATC), 2014, pp. 321-332.

J. Zawodny, “Redis: Lightweight key/value store that goes the extra
mile,” Linux Mag., Aug. 2009.

A. Darabseh et al., “SDSecurity: A software defined security experimen-
tal framework,” in Proc. IEEE Int. Conf. Commun. Workshop (ICCW),
2015, pp. 1871-1876.

-

-

g-\

-

1501

Chen Tian received the B.S., M.S., and Ph.D.
degrees from the Department of Electronics and
Information Engineering, Huazhong University of
Science and Technology, China, in 2000, 2003, and
2008, respectively. From 2012 to 2013, he was a
Post-Doctoral Researcher with the Department of
Computer Science, Yale University. He was an Asso-
ciate Professor with the School of Electronics Infor-
mation and Communications, Huazhong University
of Science and Technology. He is currently an Asso-
ciate Professor with the State Key Laboratory for

Novel Software Technology, Nanjing University, China. His research interests
include data center networks, network function virtualization, distributed
systems, Internet streaming, and urban computing.

Ali Munir received the B.S. degree in electronics
engineering and the M.S. degree in electrical engi-
neering from the National University of Sciences and
Technology, Pakistan. He is currently pursuing the
Ph.D. degree with the Computer Science and Engi-
neering Department, Michigan State University. His
research interests focus on networking and security.

Alex X. Liu received the Ph.D. degree in computer
science from The University of Texas at Austin
in 2006. His research interests focus on networking
and security. He received the IEEE and IFIP William
C. Carter Award in 2004, the National Science
Foundation CAREER Award in 2009, and the Michi-
gan State University Withrow Distinguished Scholar
Award in 2011. He received best paper awards
from ICNP-2012, SRDS-2012, and LISA-2010. He
is currently an Associate Editor of the IEEE/ACM
TRANSACTIONS ON NETWORKING, an Editor of the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, and an
Area Editor of Computer Communications.

A

’l\ _p\’
] <o ELA 4

A

Jie Yang received the B.S. degree in computer
science from Nanjing University, China. He is cur-
rently pursuing the master’s degree with the Com-
puter Science Department, Nanjing University. His
research interests focus on networking and computer
architecture.

Yangming Zhao received the B.S. degree in com-
munication engineering and the Ph.D. degree in
communication and information system from the
University of Electronic Science and Technology of
China in 2008 and 2015, respectively. He is currently
a Post-Doctoral Researcher with SUNY Buffalo. His
research interests include network optimization and
data center networks.

