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Abstract—Reducing Coflow Completion Time (CCT) has a
significant impact on application performance in data-parallel
frameworks. Most existing works assume that the endpoints of
constituent flows in each coflow are predetermined. We argue
that CCT can be further optimized by treating flows’ destinations
as an additional optimization dimension via reducer placement.
In this paper, we propose and implement RPC, a joint online
Reducer Placement and Coflow bandwidth scheduling framework,
to minimize the average CCT in cloud clusters. We first de-
velop a 2-approximation algorithm to minimize the CCT of
a single coflow, then schedule all the coflows following the
Shortest Remaining Time First (SRTF) principle. We use a real
testbed implementation and extensive large-scale simulations to
demonstrate that RPC can reduce the average CCT by 64.98%
compared with state-of-the-art technologies.

I. INTRODUCTION

Data transfer has a significant impact on application perfor-

mance in data-parallel frameworks, such as MapReduce [1],

Pregel [2] and Dryad [3]. These computing paradigms all

implement a data flow computing model, in which a group

of data flows need to pass through a data transfer phase (i.e.,
shuffle in Hadoop) before generating the final results. For some

applications, 50% of the job completion time is spent on trans-

ferring data across the network [4]. Though a work claimed

that improving the data transfer cannot greatly improve the job

performance [5], its application scenario is found to be very

limited. In many cases, optimizing the network performance

can greatly speed up the job completion [6]. Accordingly, we

focus on reducing the time for data transfer in this work.

Usually in data-parallel frameworks, a network transfer

phase is not considered complete till all its constituent flows

have finished. For example in MapReduce [1], a computation

stage cannot complete, or sometimes even start, before it

receives all the flows from the previous stage. These flows

between two stages are known as a coflow. Minimize the

average Coflow Completion Time (CCT) can improve both

responsiveness and throughput [7].

Prior works on minimizing data transfer time have focused

on either task placement or coflow bandwidth scheduling, but

not both. In those task placement schemes [8], [9], [10], [11],

the main idea is to allocate each task to a place such that the

data locality can be improved, which can reduce the amount

of data that needs to be transferred, and also the time for the

data transfer phase. Coflow scheduling [12], [7], [13], [14],

[15] controls the priority and/or the sending rate of each flow

to minimize the average CCT. They assume that the tasks

have already been placed and hence the endpoints of flows

are predetermined.

We observe that CCT can be further optimized by jointly

optimizing the reducer placement (i.e. task placement) and

coflow scheduling. Fig. 1 shows an example. There are two

coflows C(1) and C(2). In C(1), there are three reducers to

fetch flows with 1 Gb, 1.5 Gb and 2 Gb, respectively. There

are three reducers in C(2) to fetch flows with 1.5 Gb, 2

Gb, and 2 Gb, respectively. Three hosts (M1, M2 and M3)

can be used to allocate the reducers. The available incoming

bandwidths of these three hosts are 2 Gbps, 1 Gbps and 1

Gbps, respectively (note that such a heterogeneous bandwidth

scenario can happen if some of the bandwidth has been

assigned to other applications). For simplicity, we assume that

the outgoing bandwidth of the hosts generating these flows

are 10 Gbps and the hosts generating data and receiving data

are not overlapped. In this case, the network bottleneck only

exists on the incoming links of the hosts receiving data.

Fig. 1(a) shows the case that we schedule these two coflows

optimally but with a suboptimal reducer placement. In this

case, the reducers for the largest flow in both coflows are

placed on a host with only 1 Gbps incoming rate. By schedul-

ing the coflows following the Shortest-Remaining-Time-First

(SRTF) principle to minimize the average CCT [12], the com-

pletion times of these two coflows are 2s and 4s, respectively.

The average CCT is 3s. For comparison, in Fig. 1(b), we

place the reducers in an optimal way but let all flows share

the bandwidth equally. In this case, both coflows finish in 3s.

Finally, we can optimize both reducer placement and coflow

scheduling using the optimal solution shown in Fig. 1(c). Here,

the reducers to process the largest flows in each coflow are

placed on the host with the largest incoming bandwidth, and

we schedule all the coflows following the SRTF principle. In

this case, C(1) completes in 1.5s and C(2) completes in 3s.

The average CCT is 2.25s.

In this paper, we propose and implement RPC, a joint online
Reducer Placement and Coflow bandwidth scheduling frame-

work, to minimize the average CCT. It is worth noting that

RPC does not optimize the placement of both mappers and

reducers as in [16], since optimizing the mapper placement

would introduce more traffic into the network and prolong the

data transfer phase. The key idea of RPC is to first minimize

the completion time of each single coflow through reducer
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Fig. 1. Motivation example. All the flows belonging to C(1) are drawn in white, and all flows in C(2) are drawn in blue.

placement and flow transmission rate control, and then sched-

ule all the coflows following the SRTF principle (Section III).

Though it is NP-hard to minimize the CCT of a single

coflow via reducer placement and flow scheduling, we develop

a 2-approximation algorithm (Section IV). We use a real

testbed implementation and extensive large-scale simulations

to show that RPC can reduce the average CCT by 64.98%

compared with state-of-the-art technologies (Section V and

Section VI).

II. BACKGROUND AND SYSTEM MODEL

A. Previous Works
There are a number of related works of task placement and

coflow scheduling. We review the most closely related ones.

Coflow Scheduling: Orchestra [4] is perhaps the first

work that takes the coflow concept into consideration when

optimizing flow transfers in data centers. After that, Varys [12]

and Baraat [15] start to apply the coflow concept in their

network optimization. D-CAS [14] proposes a distributed

coflow scheduling scheme, and Aalo [13] extends the work

to scenarios where flow sizes are not known in advance. All

these works assume that task placement is already determined.

Task Placement: Most task placement approaches follow the

“maximizing data locality” principle. DelayScheduling [8] and

Quincy [9] try to place tasks on the hosts or racks where most

of their input data are located. ShuffleWatcher [17] attempts

to localize map tasks of a job to one or a few racks, and

thus reduces cross-rack shuffling. They do not take network

scheduling into consideration.

Given a network scheduling algorithm, NEAT [18] chooses

the best task placement for new requests. Without joint

scheduling, its performance is suboptimal, as we will show

later in our evaluations. 2D-Placement [16] also leverages

task placement to balance network load for future scheduling.

However, it assumes that both the source and destination of

each constituent flow can be arbitrarily optimized. The source

of each constituent flow has only a few choices (e.g., there

are only 3 copies of each data chunk in HDFS), or even

only one choice (e.g., the intermediate data generated by

the mappers). This is exactly why previous task placement

approaches pursue data locality to reduce network traffic.
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Fig. 2. Data center fabric with 3 ingress/egress ports

Move the source would inevitably increase network traffic, and

negate any possible advantage brought by scheduling. Also,

it only proposes a heuristic algorithm without any theoretic

analysis. Our evaluations demonstrate that, its performance is

even lower than NEAT.

B. System Model

Network Model. Given the recent progress in data center

fabrics [19], [20], [21], we can abstract the network as a

giant nonblocking switch that interconnects all physical hosts

(as shown in Fig. 2). The network bottlenecks only exist at

the NICs of physical hosts. Therefore, we focus on how to

assign the bandwidth at the outgoing/incoming links of each

physical host when we schedule the coflows, without paying

attention to the flow routing and bandwidth assignment in the

fabric. It should be noted that since the physical hosts in a

data center can be heterogeneous, or some of the bandwidth

has been occupied by other applications, the capacity of each

outgoing/incoming link can be different.

When a coflow arrives, we should allocate the reducers

for this coflow to the physical hosts. As a consequence, the

destinations of its constituent flows are determined. We also

determine the transmission rate of each individual flow. In

this paper, we assume that network is the only bottleneck,

and hence we do not consider the computation phase in our

optimization.

Coflow Abstraction. In many cases, such as in MapReduce,

the amount of data each flow needs to transfer can be known

before the flow starts [12], [15], [4]. Accordingly, we use

vector C(i) =< v
(i)
1 , v

(i)
2 , . . . , v

(i)
Ki

> to denote the traffic

requirement of coflow i, where v
(i)
k is the amount of data that
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Algorithm 1: The RPC Framework

Input: Uncompleted coflows Ω; available bandwidth B

1: Sort all the coflows in Ω non-increasingly according to

their waiting time

2: while Ω �= Φ do
3: Tmin ←∞, Cmin ← Φ;

4: for C ∈ Ω do
5: Compute the minimum completion time for coflow

C, TC , reducer placement and rate allocation

6: if C.waitT ime() > δ then
7: Tmin ← TC , Cmin ← C;

8: break;

9: end if
10: if TC < Tmin then
11: Tmin ← TC , Cmin ← C;

12: end if
13: end for
14: Ω← Ω \ Cmin;

15: Assign all the flows in coflow Cmin using reducer

placement and bandwidth allocation scheme derived

in Line 5, and then update B;

16: end while

should be transferred by the kth flow of coflow i and Ki is

the number of flows belonging to coflow i. For simplicity, we

also use v
(i)
k to denote the kth flow of coflow i. In addition,

we use D
(i)
n to denote the nth reducer that should be set up

for the next computation stage of coflow i. k ∈ D
(i)
n denotes

that v
(i)
k should be fetched by reducer n. C(i) and {D(i)

n } can

be reported by coflow i through the Coflow API [12].

III. DESIGN OVERVIEW

Given each coflow with information about its constituent

flows, such as flow sizes and sources, RPC determines where
to place the reducers, when to start and at which rate to serve

each individual flow. Inspired by [4], [12], RPC works in a

centralized, cooperative manner. This is also coherent with

many recent centralized data center designs such as [22], [23],

[1], [19], [20], etc.

At a high level, to achieve scalability, RPC mainly or-

chestrates large coflows of data-intensive applications. For

the latency-sensitive individual flows and small coflows, RPC

treats them as background traffic, and randomly places the

reducers for background traffic and sends out these flows with

a high priority. A site broker periodically predicts the usage of

background traffic in each incoming/outgoing port, and derives

the residual bandwidth for coflow scheduling.

We describe the optimization framework of RPC with Al-

gorithm 1, which is invoked whenever a new coflow comes or

an existing flow finishes. More specifically, when a new coflow

arrives, RPC is invoked to compute its reducer placement and

the transmission rate for its each constituent flow. When an

existing coflow finishes, RPC is invoked to determine which

coflows should take up the released network resources. The

underlying scheduling policy RPC takes is Shortest Remaining

Time First (SRTF) [12], [7], [24].

The inputs of Algorithm 1 are all the uncompleted coflows Ω

and the available bandwidth B. Even if a coflow is occupying

the bandwidth in the network, it may be preempted if a

“smaller” coflow arrives. In addition, if a coflow is partially

served, its remaining volume information should be updated

when we recompute the coflow scheduling order. It should

be noted that when an individual flow starts, the location of

the reducer to fetch this flow cannot be changed anymore. To

prevent starvation, RPC first schedules the coflows that are

waiting for a long time (Lines 6 – 9). Otherwise, RPC turns

to the coflow with the shortest completion time (Lines 10 –

12). When the coflow to schedule is selected, RPC sets up the

corresponding reducers, assigns bandwidth to its constituent

flows and updates the network resource utilization (Line 15).

Till now, one of the uncompleted coflows is scheduled and

RPC continues to schedule the next one.

It is worth noting that RPC does not pursue work con-

servation property in its framework. Though it is a common

property to pursue in most of the works to minimize the

average CCT, it is not the case when the reducer placement

is also an ingredient to optimize. Recall the example we have

discussed in Fig. 1(c), at the time 1.5s, the reducer on host M3

completes and there is still one reducer that has not started.

To pursue the work conservation property, we should place

the unstarted reducer on host M3 to fully utilize the network

resources. As shown in Fig. 1(d), though the completion time

of C(1) is still 1.5s, pursuing the work conservation would

delay the completion time of C(2) to 3.5s, which increases

the average CCT. Accordingly, work conservation is not an
objective to pursue when we jointly schedule the reducer
placement and coflow bandwidth to minimize the average CCT.

The key algorithm in RPC is to calculate the minimum

completion time for each coflow given the information of all

its constituent flows and the network resource that can be used

(Line 5). In the next section, we will discuss this problem in

detail.

IV. ALGORITHM DETAILS

In Section IV-A, we discuss how to minimize the completion

time for a single coflow by integrating the reducer placement

and flow scheduling. After that, we analyze the approximation

ratio of our algorithm in Section IV-B. Since the available

bandwidth for a single coflow is dynamically changing in

practice, we discuss how to adjust the CCT for more efficient

scheduling in Section IV-C. At last, we discuss a few practical

issues in our system in Section IV-D.

A. Minimize Single Coflow Completion Time

Given the information of a coflow, we formulate the problem

of minimizing the completion time of coflow i as follows:

minimize T (i) (1)
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Subject to:

∑
k

r
(i)
kj (t) ≤ binj (t), ∀j, t (1a)

∑
j

∑
k:s(i,k)=u

r
(i)
kj (t) ≤ boutu (t), ∀u, t (1b)

∑
j

∫ T (i)

0
r
(i)
kj (t)dt = v

(i)
k , ∀k (1c)

r
(i)
kj (t) ≤ x

(i)
nj b

in
j (t), ∀j, k, t, n : k ∈ D

(i)
n (1d)∑

j

x
(i)
nj = 1, ∀n, j, (1e)

x
(i)
nj ∈ {0, 1}, ∀j, n (1f)

The objective is to minimize the CCT of coflow i, which

is denoted as T (i). With r
(i)
kj (t) denoting the traffic rate of the

kth flow in coflow i sending to host j at time t, and binj (t)

denoting the available incoming bandwidth of host j at time t,

the first constraint says the rate sum of all the individual flows

sent to host j cannot exceed the available incoming bandwidth

of host j at any time. (1b) is used to limit the outgoing rate of

each host u, where s(i, k) is the source host of the kth flow of

coflow i and boutu (t) is the outgoing bandwidth limitation of

host u at time t. With v
(i)
k denoting the volume of the kth flow

of coflow i (also denoting this flow), (1c) means that all the

data of v
(i)
k should be sent out before the CCT. In (1d), x

(i)
nj is

a binary variable to denote if reducer D
(i)
n is placed on host

j. This constraint says that a flow can only be sent to the host

where its reducer is placed. (1e)–(1f) are used to indicate that

every reducer should be placed onto one and only one host.

Problem (1) is NP-hard even if all the flows are generated by

the same host and the incoming and outgoing rate of each host

is constant [25]. It is difficult to solve due to three reasons: 1)

the remaining bandwidth on each host is time varying; 2) the

upper bound of the integration in constraint (1c) is a variable;

and 3) x
(i)
nj are binary variables. Hereafter, we present how to

address these issues.

To address the first challenge, we try two cases: 1) the

coflow only uses the remaining bandwidth left by the coflows

already scheduled, and can start transmission at once; 2) the

coflow can use the entire bandwidth to/from each host, but

should wait for the completion of previous flows to/from

this host. With these two cases, we calculate the reducer

placement and flow scheduling scheme. Then, we adjust the

bandwidth assignment to derive a more accurate minimum

CCT estimation (see detail in Section IV-C).

To eliminate the variable in the upper bound of the integra-

tion in constraint (1c), we propose the following theorem:

Theorem IV.1. When the incoming and outgoing bandwidth
of each host j is constant (denoted as binj and boutj ), suppose
r̂
(i)
kj and x̂

(i)
nj are the solutions, and f̂ (i) is the objective value

of the following optimization problem:

maximize f (i) (2)

Subject to: ∑
k

r
(i)
kj ≤ binj , ∀j (2a)

∑
j

∑
k:s(i,k)=u

r
(i)
kj ≤ boutu , ∀u (2b)

∑
j

r
(i)
kj = v

(i)
k f (i), ∀k (2c)

r
(i)
kj ≤ x

(i)
nj b

in
j , ∀j, k, n : k ∈ D

(i)
n (2d)∑

j

x
(i)
nj = 1, ∀n (2e)

x
(i)
nj ∈ {0, 1}, ∀n, j (2f)

then, T (i) = 1

f̂(i) is the optimal objective value of (1). r(i)kj (t) ={
r̂
(i)
kj for t ∈ (0, 1

f̂(i) )

0 for t ∈ (f̂ (i),∞)
, and x

(i)
nj = x̂

(i)
nj are the solutions

to achieve the optimal objective value.

Proof: Suppose Topt is the optimal objective of (1), and

roptkj (t) is the corresponding solution, by setting

r
(i)
kj =

∫ Topt
0 roptkj (t)dt

Topt

we have, ∑
k

∫ Topt

0
roptkj (t)dt =

∑
k

r
(i)
kj Topt

Since ∑
k

∫ Topt

0
roptkj (t)dt =

∫ Topt

0

∑
k

roptkj (t)dt

≤
∫ Topt

0
binj dt = Toptb

in
j

we know
∑

k r
(i)
kj ≤ binj . In the same way, we can verify that

r
(i)
kj also satisfies constraint (2b) and (2d).

For constraint (2c), we can see that

∑
j

∫ Topt

0
roptkj (t)dt =

∑
j

r
(i)
kj Topt = v

(i)
k

Let f (i) = 1
Topt

, we get

∑
j

rikj =
v
(i)
k

Topt
= v

(i)
k f (i)

Above discussion shows that r
(i)
kj =

∫ Topt
0 r

opt
kj

(t)dt

Topt
and f (i) =

1
Topt

is a feasible solution of (2). Therefore, we have

f̂ (i) ≥ 1

Topt

In addition, we can easily verify that the variable settings

claimed in Theorem IV.1 is a feasible solution of (1). There-

fore, we have

Topt ≤ 1

f̂ (i)
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Accordingly, we have Topt =
1

f̂(i)

As f (i) is the inverse of minimum CCT, we say it is the

coflow transmission frequency. Theorem IV.1 shows that we

can solve problem (2) instead of (1) to calculate the reducer

placement and individual flow transmission rate, such that the

CCT of coflow i can be minimized when all the available

bandwidth is constant. However, there is still a binary variable

in problem (2), which makes the problem intractable in large

size networks.

To solve this problem, we first consider combining all the

hosts for reducer placement to be a single “big” host. In this

case, all reducers should be placed on the unique “big” host,

and the binary variable x
(i)
nj is eliminated:

maximize f (i) (3)

Subject to: ∑
k

r
(i)
k ≤

∑
j

binj (3a)

∑
k:s(i,k)=u

r
(i)
k ≤ boutu , ∀u (3b)

r
(i)
k = v

(i)
k f (i), ∀i (3c)

In this formulation, r
(i)
k is the transmission rate of v

(i)
k . Now,

problem (3) becomes a Linear Programming (LP) problem

which is easy to solve. After solving problem (3), r
(i)
k is the

upper bound of the transmission rate of the kth flow in coflow

i, since combining all the hosts for reducer placement as a

“big” one is a relaxation of the original problem. To derive a

feasible solution, we must assign reducers to different hosts. To

this end, it is inevitable to scale down the flow transmission

rate. Say the scale down ratio is α, i.e. transmitting v
(i)
k in

the rate r
(i)
k /α, we should minimize such scale down ratio to

reduce the CCT:

minimize α (4)

Subject to: ∑
n

(
∑

k∈D
(i)
n

r
(i)
k )x

(i)
nj ≤ αbinj , ∀j (4a)

∑
j

x
(i)
nj = 1, ∀n (4b)

x
(i)
nj ∈ {0, 1}, ∀n, j (4c)

It should be noted that r
(i)
k is a constant parameter, which is

derived by solving (3). By defining e
(i)
nj =

∑
k∈D

(i)
n

r
(i)
k /b

(in)
j ,

which presents the scale down ratio that should be enforced

on all flows k ∈ D
(i)
n if reducer n is the only reducer placed

on host j, we have

minimize α (5)

Subject to: ∑
n

e
(i)
njx

(i)
nj ≤ α, ∀j (5a)

(4b), (4c)

This is a classic unrelated parallel machine scheduling problem

that can be solved by relaxation and rounding [26]. To solve

(5), we first relax the binary variable constraint on x
(i)
kj and

get

minimize α (6)

∑
n∈Ej(α)

e
(i)
njx

(i)
nj ≤ α, ∀j (6a)

∑
j∈Hn(α)

x
(i)
nj = 1, ∀n (6b)

x
(i)
nj ≥ 0, ∀n, j (6c)

where Ej(α) is the set of reducers {n|e(i)nj ≤ α}, and Hn(α) is

the set of hosts {j|e(i)nj ≤ α}. Though (6) is not an LP model

with variable α in the summation operator, it is an LP model

for a fixed α. Accordingly, this model can be solved by a

binary search with logarithmic iterations.

By solving (6), we can derive a fractional solution of

the reducer placement problem. Then, we should round the

solution to derive a feasible reducer placement scheme. To

this end, we first propose the following lemma:

Lemma IV.1. Suppose there are N reducers and M hosts for
reducer placement, then at most (N + M) variables will be
non-zero in the optimal solution of (6).

Proof: The objective α is the minimum value that makes

(6) feasible. In this case, the feasible region is a single point

which is determined by v linearly independent rows of the

constraint matrix such that each of these constraints is satisfied

with the equality, where v is the number of variables in (6)

when α is fixed.

Consider that there are v + M + N constraints in (6), but

only M constraints in (6a), N constraints in (6b), accordingly,

there are at least v −N −M constraints in (6c) that hold the

equality. Therefore, at most N +M constraints in (6c) do not

hold equality, which means at most N + M variables have

non-zero values.

From Lemma IV.1, we can get the following corollary.

Corollary IV.1. We construct a bigraph G(x) = {U, V,E} ac-
cording to the solution of (6), x, where U = {u1, u2, . . . , uM}
is the set of nodes denoting hosts, called host nodes, while
V = {v1, v2, . . . , vN} is the set of nodes denoting reducers,
called reducer nodes. There is an edge between vn and uj , iff
x
(i)
nj > 0. In this case, any connected component, P , in G(x)

can be modified to a pseudo tree (a tree or a tree plus one
edge) without increasing the scale down ratio.

Without ambiguity, we say reducer/host v instead of the

reducer/host associating with node v hereafter for brevity.

Proof: If we solve (6) by only using the reducers and

hosts associated with P , say the solution is x′, it is obvious that

the scale down ratio is smaller than or equal to that derived by

using all the reducers and hosts. According to Lemma IV.1,

the non-zero variable number in the solution is at most the
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Algorithm 2: Reducer Placement

Input: The solution of problem (6), {x(i)nj}
Output: Reducer assignment

1: Construct a bigraph BG according to {x(i)nj} as in

Corollary IV.1

2: Remove all the reducer nodes with only one node degree

and place these reducers to the connecting host

3: for all connected components P ∈ BG do
4: if |N(P )| = |L(P )| then
5: Find the unique cycle in P with depth first search

6: Arbitrarily orient the cycle in one direction and

assign each reducer to the host succeeding it on

the cycle

7: Remove this cycle from P , and what remains

overall is a forest of trees, each of which contains

at most one reducer leaf node

8: for all the remaining trees do
9: Rooting at the unique reducer leaf node (if

there is), or arbitrary reducer node

10: Assign each reducer to its child responder host

that services most fraction of this reducer

11: end for
12: else
13: Treat arbitrary reducer as the root to form a tree

and assign each reducer to its child host that

services most of this reducer

14: end if
15: end for

number of nodes in P . Therefore, P can be modified to a

pseudo tree by changing the edges according to x′.
Based on Corollary IV.1, Algorithm 2 is designed for

reducer placement. Line 2 is to handle the reducers with only

one host to place according to the solution of (6). After that,

each reducer node in P has at least two node degrees. For each

connected component P ∈ BG, if |N(P )| = |L(P )|, where

N(P ) is the set of nodes in P and L(P ) is the set of edges

in P , there must be a cycle in P . In this case, we first find

out this cycle by Depth-First Search (DFS), and determine the

reducer assignment on this cycle (Line 6).

By removing this cycle from P , there must remain a forest

of trees, each of which contains at most one reducer leaf node.

If there is a reducer leaf node on the resulting tree, we can

root the tree at this reducer leaf node, and assign the reducer

to its child host that serves most fraction of this reducer.

Otherwise, we root the tree at arbitrary reducer node and do

the reducer assignment to its child host (Lines 8 – 11). In this

way, each host receives at most one split reducer according
to the solution of (6).

With Algorithm 2, we can find the reducer placement

that can minimize the CCT. However, it does not determine

the transmission rate of each individual flow. Algorithm 3

leverages Algorithm 2 to determine the reducer placement and

schedule bandwidth. In this algorithm, we first calculate the

Algorithm 3: Minimize CCT through reducer placement

and coflow scheduling

Input: The size of individual flows v
(i)
k , incom-

ing/outgoing rate of each host {binj } and {boutj }
Output: Reducer placement x

(i)
nj and flow transmission

rate {r(i)kj }
1: Formulate and solve (3) and get the maximum trans-

mission rate r
(i)
k

2: Based on the solution of (3), formulate model (4) and

solve it with Algorithm 2, say the solution is x
(i)
nj

3: for all host j do

4: r
(i)
kj ← r

(i)
k x

(i)
nj |n:k∈D

(i)
n

, αj ←
∑

k r
(i)
kj

binj
5: if αj > 1 then

6: r
(i)
kj ←

r
(i)
kj
αj

7: end if
8: end for
9: return x

(i)
kj and {r(i)kj }

maximum coflow transmission frequency by combining all the

hosts into a “big” one (Line 1). Then, we place reducers to

different hosts based on Algorithm 2 (Line 2). According to

the placement, we calculate the maximum transmission rate of

each individual flow in Lines 3–8. It should be noted that in

Lines 5–8, we only scale down the flow transmission rate if

the scale down ratio is larger than 1. For the flows with scale

down ratio smaller than 1, we should enlarge its transmission

rate to fully utilize the bandwidth at the reducer host side. It

means that the network bottleneck exists at the mapper host

side. Accordingly, we cannot enlarge the transmission rate.

B. Approximation Bound Analysis
In this section, we are to analyze the approximation ratio

of the algorithms we proposed to estimate the CCT, i.e.

Algorithm 3. However, before we present the approximation

ratio of Algorithm 3, we first analyze the approximation ratio

of Algorithm 2, which is an important component to calculate

reducer placement.

Theorem IV.2. The approximation ratio of Algorithm 2 is 2.

Proof: Let αmin is the optimal objective of problem (6),

which is clearly the lower bound of the optimal objective of

problem (4). In Line 2 of Algorithm 2, we place all the unsplit

reducers accordingly the solution of (6), apparently, all these

unsplit reducers should result in an objective value that is less

than αmin. From Lines 3–15, Algorithm 2 ensures that every

host serves at most one split reducer, which leads to a scale

down ratio increase by at most αmin. Accordingly, the scale

down ratio derived by Algorithm 2 is at most 2αmin.

Theorem IV.3. The approximation ratio of Algorithm 3 is 2.

Proof: There are two cascading bottlenecks in our system,

the bandwidth of the outgoing port and the bandwidth of the

incoming port. When we solve the problem (3), we can get the
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optimal solution which solves the bottleneck of the outgoing

ports. Then, Algorithm 3 scales down the flow transmission

rate to solve the bottleneck at the incoming ports, which may

result in a loss of approximation factor of 2. Accordingly, the

approximation ratio of Algorithm 3 is 2.

Theorem IV.4. The approximation bounds for both Algorithm
2 and 3 are tight.

Proof: For Algorithm 2, suppose there are M(M − 1)+1

reducers (reducer 0 to reducer M(M − 1)) and M hosts (host

0 to host M − 1) that can be used to place these reducers.

For M(M − 1) of these reducers, we have e
(i)
nj = T for all

j and 0 ≤ n ≤ M(M − 1) − 1, while e
(i)
M(M−1),j

= MT

for all j for the remaining one reducer. Apparently, the

optimal solution to problem (5) is that x
(i)
M(M−1),M−1

= 1 and

x
(i)
n,n mod (M−1)

= 1, otherwise x
(i)
nj = 0, with the objective

value MT . With Algorithm 2, the optimal solution of (6)

can be x
(i)
M(M−1),j

= 1/M and x
(i)
n,n mod M = 1, otherwise

x
(i)
nj = 0. In this case, after the rounding procedure of Algo-

rithm 2, the objective value is (2M − 1)T . The approximation

ratio is 2M−1
M . When M approaches infinite, the approximation

ratio approaches 2. Accordingly, the approximation bound for

Algorithm 2 is tight.

For Algorithm 3, we can see that the only step that intro-

duces the approximation is leveraging Algorithm 2 to deter-

mine the reducer placement. Accordingly, we can conclude

that the approximation bound for Algorithm 3 is also tight.

C. Coflow Completion Time Adjustment
In the last subsection, we calculate the CCT of a coflow

under the assumption that the bandwidth is constant, however,

it is not the case in practice. To solve this problem, we try

two extreme cases with Algorithm 3. The first one is that

we assume the later coflow should wait for the completion

of previous one, and hence it can use all the bandwidth; the

second one is that the later coflow starts once it arrives, but

each flow only uses the remaining bandwidth. Then, we use

the smaller CCT between these two cases as the estimated

CCT to determine the order of coflow scheduling.

However, both methods do not fully utilize the bandwidth.

For the first case, we can first transmit the flow with a smaller

transmission rate. As shown in Fig. 3(a), say the incoming

bandwidth is 2 Gbps and there is already a flow scheduled

with 1 Gbps from 0s to 2s, if the later flow waits for the

completion of previous one, it will end in 3.5s. However, we

can transmit the later flow with the remaining bandwidth 1

Gbps from 0s to 2s, and transmit it with 2 Gbps after the first

flow ends. In this case, the later flow will end in 2.5s.

If we calculate the CCT only with the remaining bandwidth,

the flow scheduling may be as shown in Fig. 3(b). In this case,

we can enlarge the flow transmission rate when previous flows

end. After adjusting the transmission rate of all the individual

flows in the coflow, we set the completion time of the latest

flow as the CCT of the coflow. All the bandwidth adjustment

can be done with the classic water-filling algorithm [27].

D. Discussions

Started reducer: Since RPC updates the scheduling scheme

whenever a coflow arrives or some flow completes, some of the

reducers may already be started on a certain host. If reducer n

has already started on host j, we can add a constraint x
(i)
nj = 1

into the problem (4). All the algorithms to calculate the CCT

of coflow i and the approximation ratio will not change.

Reducer number constraint: So far, we assume each host

can support many reducers simultaneously, however, a host can

support only a few reducers in practice. In most of the cases,

this would not be a problem since we should distribute the

reducers among as many hosts as we can to reduce the CCT,

and hence not too many reducers would be placed onto the

same host. Even if we need to limit the number of reducers per

host, we can monitor the number of reducers that have already

assigned to each host. When the number meets the constraint

on host j, we first fix all the reducer placement that has already

determined, and execute Algorithm 2 again by setting x
(i)
nj = 0

for all the reducers that have not been placed onto any hosts.

Local reducer: When the host issuing flow can host the

compute reducers, we can first fix some of the reducers

to the host that contains most of its required data. If no

such host exists, we still use Algorithm 2 to calculate the

reducer placement as we cannot greatly improve the CCT by

leveraging the data locality.

Multi-wave reducers: When the reducers are executed in

multi-wave [28], only the last wave of reducers determines

the CCT. Accordingly, we have at least two solutions to deal

with this case. First, we can place all but the last waves of

reducers and transmit the corresponding flows by pursuing

work conservation, and only optimize the last wave of reducers

with the algorithms proposed in this paper. Second, we can
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enforce our algorithms to every wave of reducers to minimize

the CCT.

Scalability: In Algorithm 1, we schedule all the coflows and

let them queue at each physical host, which may be time

consuming. In practice, we can pause the algorithm when

each physical host takes at least one reducer that has not been

assigned any bandwidth. This can reduce the computation time

and ensure that when some resources are released, there are

reducers to take up them. When the waiting reducer is started,

RPC invokes Algorithm 1 to calculate the further scheduling.

In addition, there should be millions of hosts in a data center

network, and hence we may need to solve large scale LP

models which is computation expensive. To save computation

cost, we can limit each job to be executed on only a few

hosts, i.e. the number of hosts that reducers can be placed

onto is limited. In this way, we can reduce the computation

complexity and enhance the algorithm scalability.

V. IMPLEMENTATION

We implement the RPC on a testbed with 7 hosts. One of

them is working as job scheduler to execute the algorithms in

RPC. The remaining 6 hosts are used to transfer coflows. All

of these hosts are connected by a switch, and the NIC rate on

each host is 1 Gbps.

Our scheduling algorithms are implemented on the sched-

uler with CPLEX 12.3 as the linear programming solver.

Whenever a coflow generates, the corresponding hosts will

notify the scheduler through coflow API. The scheduler calcu-

lates the reducer placement and coflow bandwidth scheduling

scheme and responses to the hosts. Whenever a host receives

the signal from the scheduler, it sets up corresponding reducers

to fetch data from the source hosts.

As we need to control the traffic rate of each flow, rate

limitation process should be triggered on every host for each

reducer. We use two methods. If the scheduler has root

privileges, a user-space process is used to control the tc tool

in Linux; otherwise, this control is realized by controlling the

rate to write the data to the socket buffer.

VI. PERFORMANCE EVALUATION

We evaluate RPC through a small-scale testbed emulation

as well as large-scale simulations. We compare the following

schemes with RPC.

• Baseline: all the reducers are randomly placed and all the

flows are fairly competing for bandwidth.

• Scheduling-only (Varys): randomly placed all the reduc-

ers but schedules them according to SRTF, which is the

state-of-the-art scheduling scheme Varys [12].

• Scheduling-aware reducer placement (NEAT): Given

the scheduling scheme follows SRTF, we place the reducers

on the hosts that can minimize the impact on the completion

time of other coflows. It exactly follows the thought of

NEAT [18].

• Placement of both mapper and reducer (2D-Placement,
abbreviated as 2DP in all the figures): Place both of the
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Fig. 4. Testbed experiment results.

mappers and reducers when a coflow arrives following 2D-

Placement [16], and send data to each mapper if it is not

placed at the host having the required data. After that, we

schedule the coflows following SRTF.

Metrics: In this section, we define the performance improve-

ment of scheme 1 compared to scheme 2 as CCT2−CCT1
CCT2

,

where CCT1 and CCT2 are the average CCT derived by

scheme 1 and scheme 2, respectively.

Summary of the main results is as follows:

• Through the experiment on the small scale testbed, we

can see that 39.58% and 9.38% of the average CCT can be

reduced by RPC, compared with the baseline and NEAT,

respectively.

• Compared with the random reducer placement, optimizing

the reducer placement can reduce the average CCT by more

than 99% in a heterogeneous environment.

• RPC can reduce up to 64.98% of the average CCT, even

compared with the state-of-the-art technology (NEAT) to

optimize the average CCT.

A. Testbed Experiment
In our experiment, we use 3 of the hosts as coflow senders

and place reducers on the remaining 3 hosts. To emulate the

heterogeneous hosts, we limit 2 of the switch ports connecting

to the receivers to be 500 Mbps. To evaluate the performance

of RPC, we inject 3 coflows into the network and assume

every flow should be processed by a specific reducer. The

coflow information is shown in Tab. I. As a comparison, we

also evaluate the performance derived by the baselines, Varys,

NEAT and 2D-Placement. The result of this experiment is

shown in Fig. 4. From this figure, we can see that RPC can

save 78.6−46.4
78.6 = 39.58% of the average CCT compared to

the baseline scheme, and it can reduce the average CCT by
51.2−46.4

51.2 = 9.38% compared to the state-of-the-art technology

NEAT on our small-scale testbed. An interesting observation

is that NEAT achieves a smaller average CCT than 2D-

Placement by 55.1−51.2
55.1 = 7.08% i.e. optimizing the placement

of both mappers and reducers derive a worse solution than only

optimizing the placement of reducers. This is because that 2D-

Placement needs to transfer data among mapper hosts, which

delays the completion of coflows.
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TABLE I
COFLOWS INJECTED INTO NETWORK.

Coflow ID Flow ID Flow Volume Source host

Coflow 1
Flow 1 200 MB Server A
Flow 2 500 MB Server B

Coflow 2
Flow 1 500 MB Server A
Flow 2 1 GB Server C

Coflow 1
Flow 1 1 GB Server B
Flow 2 1 GB Server C

B. Large Scale Simulations

Simulation methodology: Similar to [23], [12], we build a

flow-level simulator, which accounts for the flow arrival and

departure events. Whenever such event occurs, the simulator

not only updates the remaining amount of each existing flow,

but also invokes algorithms we proposed to calculate the

reducer placement for newly arrival coflow and update flow

transmission rate. To solve linear programming problems in

RPC, we embed the API provided by CPLEX 12.3 in our

simulator.

In the simulation, we use the MapReduce traffic trace

provided in [29]. Since our system is applied to the data-

intensive applications, we pick out all the 96 jobs whose shuf-

fle traffic is larger than 20 Gbit. Based on the traffic amount

distribution, we generate 1000 candidate jobs to inject into

the system. Given the number of mapper hosts, we randomly

split the shuffle traffic onto these hosts and generate coflows.

Accordingly, the more mapper hosts are in the system, the

more flows are in a coflow. Correspondingly, the average size

of these flows will be smaller. To emulate the heterogeneous

environment, we assume the NIC rate of each host is one of

the value in {0.1, 0.2, 0.5, 1, 10, 40} Gbps. Since the flow

source and host NIC rate distributions may impact the reducer

placement and coflow scheduling, the simulation results in

this section are averaged by 20 tries. The overall simulation

results are shown in Fig. 5–7. In general, we can see that

RPC outperforms all other schemes in all scenarios. Among

the comparison schemes, NEAT derives the best performance,

and hence we treat it as the state-of-the-art technology in

the simulations. Baseline scheme performs worst as there is

no optimization in it, while Varys performs only better than

baseline scheme since it absolutely misses optimizing the

mappers/reducers placement. By introducing the placement

of mappers and reducers, 2D-Placement outperforms Varys.

However, since it introduces additional data transfer into the

system, it cannot work as well as NEAT.

Impact of Coflow Width: The coflow width is defined

as the number of flows in a coflow [12]. In each round of

simulations, we change the number of hosts (the number of

mapper hosts and that of reducer hosts are kept the same)

in the system and observe how the average CCT changes

with the number of mapper hosts in the system. The more

hosts in the system, the shuffle data should be split into more

flows, and hence the wider the coflows are. In addition, we

assume the coflow arriving rate is 20 coflows/second. The

simulation results are shown in Fig. 5. From this figure, we

make following observations.

First, RPC outperforms the schemes without optimizing

the reducer placement, i.e. baseline and Varys, by more than

99%. This is because that a bad reducer placement in the

baseline scheme and Varys will result in an extreme large

completion time to some coflows, especially when they place

a reducer receiving a large flow on a host with small incoming

bandwidth.

Second, 2D-Placement needs about 2-3x of the average

CCT that NEAT needs. For given mapper placement, the 2D-

Placement is almost the same as NEAT. However, to optimize

the mapper location in 2D-Placement, additional data transfer

is required, and this data transfer phase is not optimized.

Accordingly, it results in more than 2x of the average CCT

compared with NEAT.

Third, compared with state-of-the-art scheme (i.e., NEAT),

RPC reduces the average CCT by 46.52%–64.98%. In order

to consider the impact to other coflows, NEAT optimizes the

placement of reducers one by one, rather than optimizing

all the reducers in an overall view. Accordingly, it derives

a performance worse than RPC.

Fourth, regardless of which scheme is adopted, the average

CCT is reducing with the increase of the coflow width. This

observation is intuitive since there are more hosts, and hence

larger bandwidth can be used to serve flows.

Last, Fig. 5(b) shows the CDF of CCT when there are 500

mapper hosts and 500 reducer hosts in the system. From this

figure, we can see that RPC does not result in a long-tail effect

on the CDF of CCT. It means that RPC optimizes the average

CCT without greatly sacrificing the CCT of some individual

coflows.

Impact of Coflow Arrival Rate: To investigate the impact

of coflow arrival rate, we send out 1000 coflows into the

system with 200 mapper hosts and 200 reducer hosts, and

observe the relationship between the average CCT and the

coflow arrival rate. We investigate the coflow arrival rate from

10 coflows/second to 50 coflows/second, since if every coflow

can monopolize the network, the average CCT is 0.141s; and

there is almost no remaining bandwidth in the network when

the coflow arrival rate is 50 coflows/second. From Fig. 6, we

make following observations.

First, the average CCT is increasing with the coflow arrival

rate. When more coflows are arriving in a specific interval,

there are more coflows queuing in the system as there are not

enough resources to deal with the coflows at once when they

arrive. It results in the larger average CCT.

Second, as we have discussed above, NEAT outperforms

2D-placement by 2-3x when the coflow arrival rate changes.

However, with the increase of coflow arrival rate, the perfor-

mance gap between NEAT and 2D-Placement decreases. When

the coflow arrival rate increases, more coflows are queuing in

the system and it results in larger completion time for each

coflow. In this case, the percentage of time to transfer data

among mapper hosts is relatively reduced.
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Fig. 5. The impact of coflow width.
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Fig. 6. The impact of coflow arrival rate.
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Fig. 7. The impact of coflow number.

Third, when the coflow arrival rate is small, the performance

of NEAT and RPC is close. With the increase of the coflow

arrival rate, the performance gap between these two schemes

also increases. When the coflow arrival rate is small, the later

coflow comes when the previous one almost completes. Both

schemes optimize the average CCT by placing the reducers

associated with larger flows to the hosts with larger band-

width. Accordingly, they derive similar performance. When the

coflow arrival rate is large, more coflows in the network and

we should carefully assign the bandwidth to different flows.

Hence, RPC derives the better performance.

Last, compare Fig. 6(b) with Fig. 5(b), we can see that with

larger coflow arrival rate, the CCT spreads in a wider interval.

This is because more coflows queuing in the system results

in a larger completion time for the large coflows, while it

does not impact the completion time of small coflows as RPC

schedules coflows following the SRTF principle.

Impact of Coflow Number: To investigate how the per-

formance of RPC is influenced by the number of coflows in

the system, we assume there are 200 mapper hosts and 200

reducer hosts, and inject a different number of coflows into

the network simultaneously. The simulation results are shown

in Fig. 7. From this figure, we make following observations.

First, the average CCT is increasing with the number of

coflows in the system. This is obvious because, as explained

above, more coflows are injected into the system simultane-

ously, there will be more coflows queuing in the system, which

increases the average CCT. Furthermore, RPC can reduce

average CCT by up to 56.52% compared with NEAT.

Second, the performance gap between NEAT and 2D-

Placement is slightly reducing with the increase of the number

of coflows in the system changes. This is again because that

larger queuing delay mitigates the impact of data transfer

among mapper hosts.

Third, from Fig. 7(b), we can see that the largest CCT

under RPC is similar to that under NEAT. This is because

that when the system is heavily loaded and all the coflows

arrive simultaneously, the largest coflow cannot be sent out

till all other coflows complete or its waiting time exceeds

the threshold. In this case, the largest coflow should wait for

almost the same time before the system starts to serve it under

different schemes. Though RPC and 2D-Placement can still

reduce the completion time of the largest coflow, the queuing

time dominates the CCT, and hence the largest CCT under

different schemes is similar.

Takeaways: For reducing average CCT in a heterogeneous
environment, careful reducer placement is very important.
In addition, we should treat coflow as a whole to optimize
the average CCT, and it is necessary to jointly schedule the
reducer placement and coflow bandwidth.

Work Conservation Issue: In RPC, we propose not to

pursue work conservation when we optimize the average CCT,

which is a proposition different from most of the previous

works. We verify this strategy through some simulations. To

this end, we always serve more flows if there is remaining

bandwidth. To benefit the completion of coflow, we always

assign the remaining bandwidth to the flow with the largest

size in a coflow if we cannot serve all the flows. The

performance comparison between the scheme with and without

pursuing work conservation is shown in Fig. 8.

We can see that when the system is lightly loaded, pursuing

work conservation or not achieves the similar performance,

since there is little bandwidth competition among coflows

and the reducers for each coflow can be optimally placed.
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Fig. 8. Impact of pursuing work conservation.

However, when the system is heavily loaded, to fully utilize the

bandwidth may result in a bad reducer placement and hence

increases the average CCT. This certifies not to pursue work

conservation is good for minimizing the average CCT.

VII. CONCLUSIONS

This work proposed a framework to joint reducer placement

and coflow bandwidth scheduling to minimize the average

Coflow Completion Time (CCT). To the best of our knowl-

edge, RPC is the first work that minimizes the average CCT by

integrating reducer placement and coflow scheduling. Through

real implementation and extensive simulations, we demon-

strate that RPC preserves remarkable performance advantages

over state-of-the-art technologies.
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