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Abstract—Remote Direct Memory Access (RDMA) gains grow-
ing popularity in datacenter networks. The state-of-the-art
congestion control scheme is DCQCN. However, DCQCN has
performance problems when large-scale incast communication
happens. DCQCN uses fixed period and steps for rate increase
when probing for available bandwidth and this scheme is not
scalable. The solution is adaptive parameter control: using a
long period and a small increase step for large-scale incast,
and a short period and a large increase step for small-scale
incast. Although the idea is intuitive, there are many practical
challenges. The scale of congestion is not easy to estimate while
control scheme should be cautiously designed. In this paper, we
propose DCQCN+ to improve performance for large-scale incast
congestion in RDMA networks. DCQCN+ adapts the rate control
mechanisms to different scenarios. DCQCN+ can deal with incast
congestion of at least 2,000 flows both in simulation and testbed.
The scale is 10 times larger than that of DCQCN in simulation
and 4 times larger in testbed. DCQCN+ also has 10 times smaller
latency.

I. INTRODUCTION

Remote Direct Memory Access (RDMA) [1] gains grow-

ing popularity in datacenter networks. Residing in operating

systems’ kernel space, the traditional networking stack (i.e.,
TCP/IP) has high CPU overhead and adds additional kernel

processing latency. Originating in supercomputing, RDMA

protocol stack is implemented in NIC hardware and can

directly access a remote host’s memory. RDMA thus provides

high throughput, low latency and low CPU consumption simul-

taneously. RDMA over Converged Ethernet v2 (RoCEv2) [2]

builds RDMA on lossless Ethernet, which uses Priority-based

Flow Control (PFC) [3] to prevent packet loss at the link

level. RoCEv2 is the dominant deployment form in datacenter

networks [4].

The state-of-the-art congestion control scheme in RoCEv2

networks is DCQCN [5]. DCQCN is a rate-based congestion

control. Similar to DCTCP, a switch marks the Explicit Con-

gestion Notification (ECN) bit of passing packets if congestion

happens. A receiver periodically notifies its sender via a

signal packet called Congestion Notification Packet (CNP).

The sender increases/decreases its sending rate accordingly.

However, DCQCN has performance problems when large-

scale incast communication happens. When many servers

synchronously send data to the same receiver, incast oc-

curs [6]. This many-to-one traffic pattern is common for many

data center applications such as MapReduce shuffle [7] and

distributed storage (e.g., Ceph). DCQCN cannot suppress an

incast congestion when its number of flows exceeds hundreds

(Section III). This problem leads to an extremely large queue

length at the congestion point, which leads to a large packet

latency. Also, it can cause congestion spreading via long-

lasting PFC storms [4], which in turn can cause problems such

as victim flows and traffic collapse.

DCQCN uses fixed period and step for rate increase when

probing for available bandwidth and this scheme is not scal-

able. Fixed rate recovery period and fixed increase steps (i.e.,
55μs and 40Mbps by default in DCQCN [5]) perform well for

small-scale incast congestions. As the number of incast flow

grows, the rate of a single flow becomes too small to send

even one packet in a single rate recovery period. Thus, a flow

cannot get a rate cut CNP signal before it increases rate. As

a result, the summed-up rate at the congested point is always

larger than the expected convergence rate. Congestion cannot

be alleviated in this case. Note that simply tuning parameters

for large-scale incast congestion would hurt performance of

small-scale incast scenarios. When using a large enough period

and a small increase step, rate recovery is accordingly much

slower. This causes throughput loss which is also unfavorable.

Our key insight is that: senders should be aware of the scale

of each incast, so that they can adjust their aggressiveness

accordingly. There already exist end-2-end signal packets (e.g.,
CNPs in DCQCN). An incast receiver can exploit them to

explicitly relay the scale information to senders. Concretely,

we can use a reserved field of CNP packets. Thus, senders

can estimate the scale with the information, then update their

congestion control parameters properly.

The challenges come from different aspects. Firstly, estimate

for congestion scale is not that simple. Generally, flows that

traverse the same congested switch port can have different

senders and receivers. For deployment in datacenters, we

should only use commodity switches with limited functions.

This means that we must infer the scale of congestion on

endpoints. Meanwhile, for minimal modification to the original

protocol, the measure for congestion scale should be simple.

Secondly, there should be additional modification to the

protocol so that it can keep working well when parameters

are adaptively changed. Since the scale is large, congestion

is hard to drain off. On the other hand, a design with

excessive suppression on flows can easily cause throughput

loss. Adaptive parameters may not work well without proper

compensation on the design.

In this paper, we propose DCQCN+ to improve perfor-

mance for large-scale incast congestion in RDMA networks.
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DCQCN+ adapts the rate control mechanisms to different

scenarios. For example, it adaptively allocates CNP resource

under the constraint of a NIC’s hardware capability. We

build a simulator for DCQCN+ on NS-3 [8] for performance

evaluation. Besides, we conduct approximation experiments by

adjusting parameters of Mellanox ConnectX-4 NICs to verify

our design points. DCQCN+ can deal with incast congestion of

at least 2,000 flows both in simulation and testbed. The scale

is 10 times larger than that of DCQCN in simulation and 4

times larger in testbed. DCQCN+ also has 10 times smaller

latency.

II. BACKGROUND

A. RDMA

RDMA is a network feature that allows user-space ap-

plications to directly read or write remote memory without

kernel interference or memory copying. The kernel bypass

characteristic of RDMA provides high bandwidth and low

latency for datacenter applications. So it is preferred in

datacenter networks.

RDMA is designed to be lossless, which means there must

be no packet loss due to buffer overflow at switches. In

RoCEv2, this is ensured by PFC in L2. PFC is a simple

traffic control scheme that pauses and rewakes the upstream

port according to buffer occupation status. PFC can prevent

packet loss, but incurs many other problems such as unfairness,

victim flows[5], and deadlock[4]. Besides, congestion cannot

be drained off only by PFC. We do need flow-level rate control

at the sources on endpoints. Thus, DCQCN is designed and

widely deployed in RDMA networks.

B. DCQCN

DCQCN requires both NICs on endpoints and switches to

participate in. ECN is configured on switches to find out

congestion. Notification and reaction parts are designed on

NICs.
1) ECN Configuration: At the egress queues of switches,

packets are marked on ECN bits randomly according to queue

length as Fig. 1 shows. RED is used for randomly marking.

When ingress rate is larger than egress rate, the buffer accu-

mulates. As the queue length exceeds the minimal threshold,

packets are marked on ECN bits to indicate congestion.

To obtain low queueing latency, DCQCN maintains a low

buffer occupation on switches. Each packet of 1KB size in

the buffer adds 0.8us on queuing time at 10Gbps links. The

maximal ECN threshold (200KB) means 160μs (40μs) delay

for 10Gbps (40Gbps) links, which is acceptable as a maximal

value. The average queue length is smaller[5].

2) Flow rate reduction: The receiver generates and sends

a CNP to the sender only if (1) the received packet is marked

on ECN bits and (2) the flow has not been notified for a fixed

period. This period, called interval between CNPs N , is a

static parameter that needed to be configured ahead of time.

[5] chooses the value 50μs considering the CNP generating

power of NICs and the number of packets with common MTU

(1,000B) can be received during this time. Actually, another

consideration of this design is to wait and observe. Even

though the rate of flows has already been cut, the queue length

needs time to decrease. Besides, the interval also includes time

for CNP transport.

Senders cut the current rate RC and the target rate RT as

follows:

RT = RC , (1)

RC = RC(1− α

2
), (2)

RC = max {RC , Rmin} , (3)

α = (1− g)α+ g, (4)

here α denotes the reduction factor, g is a pre-configured

constant, and Rmin means the minimum rate of a flow. Rate

cut is trivial. If CNPs are received for 2 or more periods, α
will increase and rate cut ratio will be larger at the next time.

3) Flow rate recovery: Receivers maintain a time counter

and a byte counter and corresponding state bits for each flow.

There is also a state counter to sign the state of increase. The

time state and byte state are set to 0 after rate cut. When

a flow has not received CNPs for time K = 55us, its time

state increases. When a flow has already sent B bytes without

receiving a CNP, its byte state increases. When one of the two

states is not 0, the flow starts recovery in a bisecting way for

F = 5 rounds called Fast Recovery (FR):

RC =
RT +RC

2
. (5)
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TABLE I
PARAMETERS CONTRAST IN DCQCN AND CX4

CX4 Parameter CX4 value DCQCN Parameters DCQCN value
rpg time reset 300us Timer (K) 55us
rpg byte reset 2MB Byte Counter (B) 10MB
rpg ai rate 5Mbps Additive Increase Step (RAI ) 40Mbps
rpg hai rate 40Mbps Hyper Increase Step (RHAI ) 100Mbps

min time between cnps 0us CNP interval (N) 50us
rate reduce monitor period 4us - -
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(a) DCQCN CX4 implementation
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(b) DCQCN NS-3 simulation with CX4 parameters

Fig. 3. The difference between DCQCN and CX implement

The start of a new round is the increase of the states. After

that, Additive Increase (AI) and Hyper Increase (HI) can be

triggered. In Additive Increase, rate increases by fixed step

RAI :

RT = RT +RAI , (6)

RC =
RT +RC

2
. (7)

Hyper Increase is triggered when both the states exceed F .

In Hyper Increase, the rate shows an exponential growth with

parameter RHAI :

RT = RT + iRHAI , (8)

RC =
RT +RC

2
(9)

where i = min {time state, byte state} − F .

At each recovery, α will also decrease:

α = (1− g)α. (10)

4) Line-rate strategy: In DCQCN, flows start at line rate

to get full utilization of links. With line-rate strategy, small

flows obtain very high throughput without additional pre-

communication.

However, line-rate is so aggressive that, as the number of

congested flow grows, the trivial-way rate cut needs more

periods to take effect. During this time, the queue length is

large enough to trigger PFC. If the flow rate can be finally

pressed down, then the buffer will drain. But if the flow rate

is not suppressed appropriately, pause caused by PFC will last

until the end of the congested flows, which is a big hurt to

performance.

III. PROBLEMS OF DCQCN

In this section, we illustrate the problems of DCQCN that

we discovered in our simulation and testbed experiments.

Firstly, we show the differences between the configurations

of DCQCN and CX4 implementation. The designs are also d-

ifferent. To deal with this, we have to conduct our experiments

in both simulation and testbed. Secondly, we demonstrate and

analyze the incast problem of DCQCN. With these phenomena

and the analysis of their reasons, we can see the inspiration

for the new congestion control scheme.

A. Experiment Setup

1) Simulation: The DCQCN simulation[5][9] on NS-3 has

been released by Yibo Zhu, the designer of DCQCN. We check

the design and configuration according to [5].

2) Testbed: We use 9 hosts with Mellanox ConnectX-4

NICs (CX4 in short) and 1 Mellanox SN-2700 switch in our

testbed. A topology of 8:1 incast as is used, as shown in

Fig. 2. For large-scale congestion, same number of flows start

on each sender. In testbed experiments, we use libpcap[10]

to capture packets for throughput statistics. To trigger traps

in libpcap, we must turn on the sniffer on NICs. However,

this functionality is a heavy load on NICs. With sniffer on,

we can only capture throughput of about 18Gbps. So libpcap

is only used in the experiments in Fig. 3 where links are

restricted to 10Gbps. This is necessary since we have to clearly

observe how DCQCN and CX4 work to know the differences.

In other testbed experiments, we turn off the sniffer to prevent

performance loss. We use the tool ib send lat in Perftest
package[11] to test latency of flows. The maximal buffer

in usage can be known from the counters on the switches.
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(c) Incast tests on CX4, 10Gbps links.

Fig. 4. DCQCN fails to drain off congestion both in NS3 simulation and CX4 testbed.

These measurements cost very little thus are not harmful to

performance.

B. Difference Between DCQCN and CX4 Implementation

We have observed that there are some differences between

DCQCN in [5] and Mellanox CX4 implementation. However,

the proprietary algorithm in the firmware of CX4 keeps

updating. Besides, the recommended parameters are adjusted

based on their real deployment environments. Thus, only by

comparison of parameters and results of experiments can we

learn something about these differences.

The setting of CX4 parameters is different at many points

from DCQCN in [5]. Table I shows some parameters in

contrast. Note that min time between cnps (CNP interval

in DCQCN) is set to 0 by default in CX4 implementation.

This seems to be too small. However, by measuring the

interval between CNPs,we have verified that the CNP in-

terval of each flow is exactly controlled by the parameter

min time between cnps. It means that NIC will send CNP

for each ECN-marked packet that it receives. Using such low

CNP interval, when congestion happens, consecutive packets

are marked and this cause excessive rate cut. To prevent this,

CX4 uses a new parameter rate reduce monitor period
(4μs by default), which represents the minimum time interval

between two rate reductions.

We noticed that with such parameters, rate should increase

much less and slower, which means longer convergence time

after rate cut. However, the result is not that clear since the

difference between results of simulation and testbed is not

negligible. We suspect that there are still other adjustments

between them. To show this, we configured our simulation

with CX4 parameters and conducted a simple experiment: 4

hosts are connected to one switch with 10Gbps links, 3 senders

starts 1 flow each to the only receiver. Fig 3 shows how the

rates of flows alter with respect to time in CX4 and simulation.

In CX4 implementation, flows converge much faster than in

simulation with the same parameters.

It is hard to say how the firmware works in the NIC, so it

is necessary to discuss in simulation and CX4 implementation

separately. Though with different incast scales, the failure

for congestion occurs both in the simulation and testbed for

CX4. Besides, we verify our explanation and design both in

simulation and CX4 implementation. Thus, our result is both

suitable for the initial DCQCN and CX4 implementation.

C. The Failure of DCQCN for Large-scale Incast

We have observed that both in simulation and testbed

experiments, switch buffer queue length at congestion point

maintains a very large value when large-scale incast happens.

This shows a failure for convergence of DCQCN. For experi-

ments, we use an incast topology of 9 hosts and 1 switch as

Fig. 2 shows both in simulation and testbed. 8 senders start

flows of the same number and keep sending until the end of

experiments. In simulation, all flows are started at a uniform

random value of (0, 0.1).
Fig. 4 shows the relation between buffer queue length

and number of flows in NS-3[8] simulation. In simulation

default parameters of DCQCN in [5] is adopted. For 10Gbps

links, we try another experiment with the parameters of rate

increase (e.g. RAI ) 1/4 of that on 40Gbps links. As the

figure shows, under incast of about 80 (160) flows for 10Gbps

(40Gbps) links, DCQCN works poorly and congestion cannot

be alleviated.

Fig. 4(c) shows the relation of average latency, maximal

buffer size and number of flows in CX4 implementation.

Here average latency and maximal buffer are counted from 5

seconds after flows start. 5 seconds is a long enough time for

flows to reduce rate and eliminate congestion as it is thousands

of a single period. As we can see, under an incast of about

480-560 flows, CX4 can no longer deal with the congestion.

The maximal buffer usage is more than 4MB, and large buffer

queue causes extremely long average latency. Average latency

of about 2,000μs means 2.5MB buffer on average. PFC has

to work to prevent packet loss all the time. The scale is larger

than the result of simulation since the parameter difference in

DCQCN and CX4 implementation that we have discussed.

We have verified that when using the parameters of CX4 in

simulation, the largest scale is also 480-560 flows. However,

in the following discussion, we will see that simply using

different parameters is not a suitable solution for large-scale

incast.

D. Why DCQCN Fails for Large-scale Incast
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We can summarize the failure for large-scale congestion

into 3 possible reasons: insufficient CNP supply, fixed-step

increase, and fixed recovery timer.

Insufficient CNP supply can only happen in the implemen-

tation. We test the maximal CNP generation rate of the NIC

by keeping min time between cnps 0μs, and configure

wrong VLAN tags such that the CNP can be captured by

libpcap rather than used and absorbed by the NICs. The CNP

generation rate of CX4 is about 1 packet per microsecond.

This is sufficient for 10Gbps links as packets of 1KB size

arrive every 1.25 μs. But for 40Gbps and 100Gbps links, this

is far from enough. If some congested flows cannot receive

CNPs in time, rate recovery will continue. It means that

flows are unaware of congestion sometimes, which may break

convergence. We can regard this a performance requirement

for NICs rather than a design problem, but we should see the

price to generate and transport so much CNPs at the same

time.

Fixed-step increase is a simple design that is easy to im-

plement. However, it is not robust for large-scale congestion.

Total increase step of throughput is proportional to the number

of recovering flows. For an extreme example, if there are 1,000

flows in AI with RAI = 40Mbps, the total rate increase step

can be as large as 20Gbps, i.e. half of the line rate on 40Gbps

links. This is too large a step to converge.

The last but most important reason is that the fixed recovery

timer is too short. In DCQCN, the recovery timer is set to

55μs. For example, it takes 100μs to send one packet of 1KB

if flow rate is 80Mbps. This time is almost twice of the timer.

Then the timer is certain to exceed and flow rate increases. In

other words, with this timer flow rate is almost always larger

than 80Mbps. Besides, the minimum rate should be much

smaller than the convergence rate to drain off congestion.

80Mbps is the convergence rate of only 500 flows for 40Gbps

links (125 for 10Gbps). This is a simple upper bound for the

scale of congestion when using DCQCN. Although recovery

timer has been enlarged in the CX4 implementation, it is still

not enough for thousands of flows.

One may think using larger recovery time or smaller in-

crease step to deal with congestion. However, this is harmful to

throughput for small incast. Fig. 5 shows the total throughput

of 8 flows when using different parameters. We can see clearly

that the recovery speed is dominated by the timer and increase

step. Unfortunately, total throughput recovery is also related

to number of flows since increase step is fixed for a single

flow. Thus, parameters that work for large incasts cause an

unbearable throughput loss for small incasts. The parameters

are fixed, but the number of active flows is varying as flows

start and end.

IV. DESIGN

A. Design Intuition and Overview

To deal with the incast problem, DCQCN+ uses dynamic
parameters scheme. For adapting parameters, senders must

know about the incast scale. In DCQCN+, we use two kinds

of information. The first is the CNP period carried in CNPs. In
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Fig. 5. Parameters (Recovery Timer (K), Additive Increase Step (RAI )) for
large flows cause throughput loss at small incast in DCQCN.

our design, all congested flows with the same receiver share

the CNPs equally by time multiplexing. Thus, CNP period

can reflect the number of congested flows on the receiver. We

utilize an available field in CNPs to carry the CNP period

without using additional signal packets. The second thing to

learn about congestion is the flow rate itself. Generally, flows

of larger rate have more packets in the congested queue, thus

with a larger possibility packets it will receive a CNP and

reduce rate. So when converged, all congested flows have

almost same rate, which is related to the flow number.

How to choose parameters according to the CNP period and

the flow rate is another question. There are two design points.

(1) The recovery timer should always be larger than the CNP

period to receive a CNP. Besides, it should be large enough for

the rate to send at least one packet. Basically we can set the

maximum of them as the recovery timer. In addition, we use

a relaxation ratio λ (λ > 1). (2) The total throughput increase

should not increase as the number of congested flows grows.

Thus, increase step RAI should be proportional to flow rate.

However, with such parameters flow recovery will be pretty

slow after congestion. So we use an additional exponential

growth phase HI. Though has the same name with an increase

phase in DCQCN, this is a little different from the design

DCQCN as this exponential increase is related to the flow

rate rather than to a constant. Besides, it is easier for small

flows to trigger HI in DCQCN+ than in DCQCN. In HI, a

small flow can increase 1,000 times only in 10 iterations.

Generally speaking, DCQCN+ is not very sensitive to

its parameters based on such designs. Dynamic parameters
scheme makes DCQCN+ less sensitive compared to the static
DCQCN. We will discuss into more details in section VI.

Just like DCQCN, DCQCN+ can be divided into 3 logical

parts: Congestion Point (CP), Notification Point (NP) and

Reaction Point (RP). We discuss each part separately.

B. Design Details

1) CP Algorithm: DCQCN+ uses the same CP algorithm

as DCQCN does since a friendly-deployed solution always

requires little from the switches. Switches are configured RED

for ECN marking like Fig. 1, but the minimal and maximal

marking threshold is 20KB and 200KB. Here we use a bigger
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minimal marking threshold to guarantee a higher bandwidth.

5KB, i.e. 5 packets, is a little shallow for real environment

and large-scale scenarios.

PFC is necessary to prevent packet loss. Our PFC configu-

ration is the same as DCQCN in [5]. This configuration has

been calculated and verified when DCQCN is designed.

2) NP Algorithm: As we mentioned, CNP plays an im-

portant role in congestion control. With insufficient CNP

supply, it is possible that the flow rate will never converge.

DCQCN supposes that the NICs can generate CNPs as it

wants. Differently, the CNP generation power of NICs is taken

into consideration at NP in our design.

CNP interval of each flow is required to be rather fixed for

setting recovery timers. To achieve this, NP maintains a list

of all congested flows, and traverses the list to send CNPs for

the flows that have received ECN-marked packets. A record

in the list contains the flow identification, the ECN bit and a

time field. If an ECN-marked packet is received, NP will set

the ECN bit of the record to 1. NP checks one record at a

time to decide whether to send CNP for this flow. CNP will

be sent if the ECN bit is set to 1 and the flow has not been

sent CNP to for a while (the minimal CNP interval, 45μs by

default). The CNP period τ that is written into CNP to notify

RP denotes the time span of checking the same flow record, so

can be calculated by CNP generation interval δ and list length

l as follows:

τ = l ∗ δ. (11)

Once NP sends a CNP, it resets the ECN bit and the time that

it sent this CNP in the list. We use the Reserve field [2] of

CNP packet to explicitly carry the CNP period to the sender.

Thus, the sender can set the timer according to this value. This

field is 16 Bytes and is not used by now.

3) RP Algorithm: When RP receives a CNP, it reduces

the target rate and current rate RT , RC of the flow just like

DCQCN:

RT = RC , (12)

RC = RC(1− α

2
), (13)

α = (1− g)α+ g. (14)

Besides, there is a minimal rate protection Rmin:

RC = max {RC , Rmin} . (15)

Note that a minimum rate gives an upper bound of flow

numbers for incast, we use a small value Rmin = RC/10000
at the bound of 10,000 flows.

There are timers of each flow for rate recovery and update

of α. When a timer expires, the corresponding update is

processed. RP gets the CNP interval from the PSN field of

the CNP and resets the timer according to it. The timer must

be long enough for the flow to send several packets and no

shorter than the CNP period. Thus if the CNP interval τ is

larger than 50us, the timer of α update Kα and the timer of

rate increase K will update as follows:

Kα = λα max

{
τ,

M

RC

}
, (16)

K = λmax

{
τ,

M

RC

}
, (17)

where M denotes the maximal MTU of packets and λ, λα are

the enlarging ratios. In our experiments, M is set to 1000KB,

λα is set to 1 and λ is set to 2.

A state counter S is used to signify different phases of

rate recovery. When the rate recovery timer expires, the state

increases 1. If the state is less than the threshold F = 5, the

flow rate increases as FR in DCQCN:

RC =
RT +RC

2
. (18)

If the state is more than F but less than 4F , a different AI
increase is used:

RT = RT +

{
min

{
1
5RC ,

1
50Rl

}
, if α > 0.1,

min
{

1
10RC ,

1
100Rl

}
, otherwise,

(19)

and current rate increase as the same way:

RC =
RT +RC

2
, (20)

here Rl denotes the link capacity. Note that we use a different

increase step when α is different. When α is large, bigger

step is used for a rapid recovery. Small α means the flow rate

is close to convergence, so smaller step should be set. The

increase step RAI is calculated in the form of a ratio of the

current rate, thus total throughput increase of the congested

point is only related to the total throughput now, and won’t

increase as the number of flows grows. Besides, we use a ratio

of Rl to bound the increase step for small incast cases, this is

necessary according to our experiments.

HI increase is used if the state is more than 4F :

RT = RT +min

{
RC ,

S − 4F

100
Rl

}
, (21)

RC =
RT +RC

2
, (22)

where S denotes the state counter.

HI is designed as a rapid growth to ensure high bandwidth.

It only takes 10 periods for small flow rate to grow 1,000

times in HI phase. The increase is also bounded by another

exponential increase step with no respect to flow rate to protect

for the cases of large flows.

When the timer for α update is out, we update α as follows:

α = (1− g)α. (23)

We do not use byte counter in our design since the rate

increase will be ambiguous under different timers. Actually,

in DCQCN, it takes 2ms to send 10MB data for increasing

the state even at 40Gbps rate. This is 40 times of the recovery

timer, and is even larger when using 10Gbps links. Thus

this design with this configuration has little influence for the

recovery.
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6.(a) Queue length, 10Gbps link.
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6.(b) Throughput, 10Gbps link.
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7.(a) Throughput of TIMELY, 10Gbps links.
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6.(c) Queue length, 40Gbps link.
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6.(d) Throughput, 40Gbps link.
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7.(b) Queue length of TIMELY, 10Gbps links.

Fig. 6. DCQCN+ at large incast. Fig. 7. TIMELY at large incast.

V. EVALUATION

A. Large-scale Incast

The initial design goal of DCQCN+ is to deal with the large

incast problem. To verify our design, we test the performance

of DCQCN+ under large incast in our simulation. We use

the incast topology of 8 senders and 1 receiver as Fig. 2

shows. Each sender starts same number of flows. To ensure

incast, all flows are started at a uniformly random time in

0.1 seconds. Fig. 6(a)(b) shows variation of the queue length

of the congestion point as flow number grows. As we can

see, DCQCN+ can handle the congestion of at least 2,000

flows both at 10Gbps and 40Gbps links. The queue length

of the congested point is bounded by about 200KB when

the flows are converged. In the worst case, the switch buffer

can be pressed down in about 0.1 seconds after the time

all flows are started. Recall that in Fig. 4, DCQCN cannot

drain off congestion of up to 160 flows in the same scenario.

When using DCQCN, the queue length is the maximal value

that is prevented by PFC, i.e. 4.9MB. DCQCN+ has 20×
smaller queue length, which means 20× smaller queuing

delay. Besides, it will not suffer from the side effects caused

by PFC storms while DCQCN will.

It is notable that 2,000 is not the limit of this congestion

control scheme. However, we think that it is not practical to

simulate under larger scale of incast since other parts (e.g.,
queue pairs of NICs) could be the bottleneck of the system.

However, there is a bound for the flow number 10, 000 given

by Rmin. The bound is not tight since flow rate must be

lower than the convergence rate at some time to drain off

the congestion. If we want to deal with a larger scale, we can

just use smaller Rmin.

TIMELY[12] is another congestion control scheme for

RoCEv2 that is based on RTT. [13] compares DCQCN and

TIMELY on different aspects of performance, and claims that

ECN is a better congestion signal compared to delay. We use

the TIMELY simulation[13] on NS3 to learn how TIMELY

deals with large-scale congestion for comparison. Fig. 7 shows

the performance of TIMELY under large-scale congestion.

Much better than DCQCN, TIMELY can still limit the queue

length of the congestion point at the scale of 1200 flows.

However, TIMELY still fails for larger scale for the lack of

specialized design. Besides, the throughput of flows is very

unsteady and a little low when the flow number is large.

To deal with large congestion, our design sacrifices a small

ratio of throughput. Throughput loss mainly happens in the

short recovery time just after the end of the congestion.

Fig. 6(c)(d) shows the relation between total throughput and

time as flow number grows. Note that when we talk about

throughput, we refer to total sending rate calculated by

counting the packet size sent in a fixed time span at all

senders. This value is more interesting since we can see how

the total rate changes when DCQCN+ works. The throughput

of receivers is shaped by the switch buffer, thus more steady.

There is no packet loss under the protection of PFC, so all the

throughput of senders is effective. We can see that throughput

loss is always less than 0.1 second, which is an acceptable

price. Convergence throughput is always more than 90% of

the link.

B. Small-scale Incast

It is also important to concern the convergence and per-

formance of DCQCN+ in small-scale incast scenarios. We
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(b) Flow rate of DCQCN, 40Gbps links.
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Fig. 8. Flow rate convergence at small incast.

conducted a 3:1 incast simulation using the same incast

topology to verify this. 3 flows start at 0s, 0.1s and 0.3s thus

we can see how the rate of the flows increase and recover.

Fig. 8(a)(b)(d)(e) show the flow rate variation on 10Gbps and

40Gbps links. Flows in DCQCN and DCQCN+ converges

similarly. Rates of flows are cut after a very short time, and

converge with small variation. DCQCN+ has a little smaller

variance than DCQCN on 10Gbps links.

Fig. 8(c)(f) shows the total throughput. DCQCN+ has

similar throughput and flow completion time compared to

DCQCN on 40Gbps links, but has lower throughput (about

4%) on 10Gbps links. This loss can be compensated by

more meticulous adaption on design or tuning on parameters,

especially on RAI . However, this is an acceptable loss.

C. Large Topology

In large-scale incast tests, we use different numbers of flows

on 8 hosts to get large incast. However, today’s Datacenter

network has hundreds or thousands of hosts using CLOS[14]

topology. To be practical, we should simulate in such environ-

ments. We build a CLOS topology of 2410 nodes similar to

[14] and test incast scenarios for DCQCN+ in such topology.

But the number of core switches is 10 rather than 100 to get

a contraction ratio of 0.1 for core congestion.

1900 senders in 19 racks send to 10 receivers in another

rack. All flows are started randomly in 0.1 seconds. Fig. 9

shows total throughput and one example of buffer variation

of switches. Buffer can be cut down to less than 200KB as

we expected. The total throughput is converged to 400Gbps,

which is equal to total throughput of 10 receivers. Note that

our throughput denotes the total throughput of all the senders,

thus throughput is larger than 400Gbps at the beginning, and

is low for a short time to drain off the buffer queue. Average

throughput when converged is about 95%.

D. Testbed Approximation

To verify our design, we figure out a way to mimic

DCQCN+ using CX4 NICs in our testbed. The key point

of design of DCQCN+ is to use different parameters for

different scenarios. With similar parameters, DCQCN+ and

DCQCN work similarly. Thus, we can use DCQCN with the

static parameters of DCQCN+ at the converge point to mimic

DCQCN+. For example, for 540 flows incast, we configure

CX4 with K = 2 ∗max
{
540 ∗ 1us, 8000bits/( 10Gbps

540 )
}

and

RAI = 1
10 × 10Gbps

540 . Since DCQCN+ adapts its parameter

according to the flow rate and number of flows, at the

beginning and the end of the traffic DCQCN+ has smaller

CNP period and larger RAI . But these parameters are close

to the parameters that DCQCN+ has when converged in the

same scenario. The time for DCQCN to reach convergence is

much slower in this case, but they have similar convergence

states. Fig. 10 shows the result of such experiments in our

testbed. We use the incast topology of Fig. 2 on 10Gbps

links. Here we choose some flow numbers near the threshold

that CX4 fails on and a larger one to show scalability. We

can see that the approximation, i.e. CX4 with static DCQCN+

parameters, does work for large incast in real environments.

Congestion drains and the queue length is very short. Using

these parameters gains 10× smaller buffer queue length and

latency in this scenario.

E. Realistic Workload

To test the performance of DCQCN+ under realistic work-

loads, we conducted experiments in NS3. The incast topology
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Fig. 9. 1900:10 incast in CLOS topology, DCQCN+.
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Fig. 10. Using parameters of DCQCN+ in CX4 for approximation. Fig. 11. Realistic Workload (10Gbps, load = 0.8).

is still used, but this time all hosts can be both the sender

and the receiver. We generate flows subjected to Poisson

Process according to the load and the distribution of flow

sizes in workloads. Fig. 11 shows the number of flows with

different Flow Completion Time (FCT). FCT is measured with

logarithm scale from 1μs to 106μs. Compared to DCQCN,

DCQCN+ has only slightly smaller flow completion time with

similar distribution. This is not unexpected because incast

scenario does not exsit in such realistic workload models. The

maximal number of flow at one sender or receiver is about

200, and these flows are not running at the same time. Thus,

the incast degree is even much smaller. In such cases, the

performance of DCQCN+ is similar to that of DCQCN with

limited improvement.

VI. DISCUSSION

A. Convergence and Adaptivity

DCQCN+ adjusts values of timers by calculations using the

information that the CNP carries, so it is adaptive to both

heavy and light traffic. For convergence, we can make sure

that at least one packet is sent during the interval of increases,

and one CNP can be sent in the next period if RP receives an

ECN-marked packet. This guarantee is irrelevant with traffic,

flow numbers or CNP generation capability. Thus, in most

scenarios a rate cut happens always before an increase if

needed. Besides, the influence of missing rate reduction with

small probability is small even the number of flows is large.

Therefore, we believe this design is very strong for most cases.

Our simulation has shown its power under 2,000 flows.

The strict proof of the convergence of DCQCN+ is left to

future work.

B. Parameter Tuning

Setting parameters is always a tradeoff among differen-

t performance indexes. For an example, to get a higher

throughput, we considered using a lower rate cut ratio in

equation (13). This value, i.e. the coefficient of α, is 1/2
by default. Fig. 12(c)(d) show the buffer queue length and

throughput using different maximal rate cut ratio. We use 720

flows at 8:1 incast topology of 10Gbps links, all flows start

randomly in 0.1 seconds. Under higher maximal cut ratio,

DCQCN+ can drain off the congestion more quickly, but have

a bigger throughput loss at the same time. Choice can be made

according to requirements, but we suggest using 1/2 and our

other simulation results are based on this value. However, such

differences are very limited and not essential.

Actually, DCQCN+ is not very sensitive to such parameter

tuning. Fig. 12(a)(b) show the performance of DCQCN+

when using different times of HI parameters. Here we use

incast topology in Fig. 2. The incast scale is 1200:1 and

the speed of links is 10Gbps. DCQCN+ works with high

performance unless the parameters are very extreme (5× HI).

5× means increasing 1Gbps or doubling the rate for a flow

when increasing in HI. We believe that it is the pattern of

dynamic rather than the parameters that matter. For further

discussion, we plan to study the influence of parameters

based on mathematical analysis when proving the stability of

DCQCN+ in future work.
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Fig. 12. Insensitiveness of DCQCN+ parameters. Fig. 13. Fairness of DCQCN+.

C. Fairness

Fairness is also an important index for network traffic. In

DCQCN+, at one congestion point, all congested flows equally

share the link capacity. This is ensured by the linear ECN

marking probability since large flow has a larger possibility to

be marked and thus get cut. This is similar to DCQCN.

We use CDF of flow completion time to measure fairness.

We compare our design to DCQCN both in small and large

incast using topology in Fig. 2 with 40Gbps links. Fig. 13(a)

shows the CDF of 8 flows in total. Each flow has 10,000

packets of 1000KB and starts precisely at the same time. We

can see that DCQCN+ is more fair and has smaller average

completion time than DCQCN in such cases. Fig. 13(b) shows

the CDF of 800 flows in total, i.e. 100 flows per host. To

mimic the real environment, all flows are started in a uniform

random time of (0,1) microseconds. Each flow has 30,000

packets of 1,000B. In such case, DCQCN cannot alleviate the

congestion and PFC lasts till the end. Flows are periodically

paused and resumed, thus DCQCN is good in fairness. It is

not strange that DCQCN+ is not that fair in large incast cases

since the recovery is very fast thus litter jitter may cause large

throughput difference. Anyway, DCQCN+ has only 4% longer

maximal flow completion time than DCQCN in such cases,

and still has a better average flow completion time.

D. Implementation Cost

It is valuable to discuss the cost of implementing DCQCN+

and deploying it in datacenters. DCQCN+ does most part of

jobs on endpoints, thus it does not have special requirements

for switches. Basically, PFC and RED-based ECN should be

equipped. Priority should be supported to transport control

signals such as CNPs.
The NP algorithm is implemented in the smart NICs. NIC

has to query, insert, update and delete the flow list. This is an

additional computing cost compare to DCQCN. A record in

the list needs at most 3 bytes for flow identification, 1 byte for

the ECN bit and 4 bytes to record last CNP time, thus we need

8 bytes for each record. To conclude, the size of list increase

1KB for each 125 flows. This is an affordable space cost. It

is lucky that we do not need to lock the list when updating

since the worst result is one additional or missing CNP.
The RP algorithm is also implemented in the smart NICs.

We use two timers and one state for each flow, and a rate-

limiter should be implemented. These requirements are just

the same as DCQCN has, thus can be implemented. We do

not use byte counter and all kinds of rate recovery are based

on timers, thus this cost can be cut.

E. PFC Influence on Rate Recovery
One may consider that the pause of flows caused by PFC

has influence on rate recovery, and regard it as a possible

reason that DCQCN fails. A reasonable choice is to pause

corresponding timers when a priority queue is paused. But

to pause a timer may be not that easy for hardware imple-

mentation in NICs. Besides, we find this actually not crucial

in our experiments. DCQCN breaks convergence without it

and our design remains working. But for robustness, we use

a simplified solution in DCQCN+. When a timer is out, we

check the pause state of the priority queue of that flow first,

and only conduct rate recovery and state increase when this

queue is not paused. This is much easier to implement and

can limit the recovery of a paused flow.
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VII. RELATED WORK

Reactive congestion control schemes start to work and deal

with congestion after it happens. Congestion can be measured

by many ways, such as queue length and RTT. DCQCN,

just like DCTCP, QCN, are based on ECN while TIMELY

is based on RTT. [13] compares DCQCN and TIMELY on

different aspects of performance, and claims that ECN is a

better congestion signal compared to delay. [15],[16] and [13]

analyze the stability and convergence of similar congestion

control schemes. [17] improves ECN with Micro-burst traffic

using Combined Enqueue and Dequeue Marking (CEDM).

[18][19] give theoretical analysis of ECN.

Proactive congestion control schemes use other special

techniques to avoid congestion before it happens. [20][21] use

additional control signals called credit or token to control the

permission for flows to send, thus possibly avoiding incast

before it happens. In such methods there are other design

points and problems to be discussed.

VIII. CONCLUSION AND FUTURE WORK

We have shown the problems that we observed when using

DCQCN. Convergence are broken when there are a large

number of congested flows. In this case, extremely large

buffer queue length results in very high latency and more

troubling long-lasting PFC for preventing packet loss. We

analyze DCQCN’s failure and give several reasons. Using

these insights, we designed DCQCN+ and keep revising it.

DCQCN+ has similar performance compared to DCQCN

under small incast. Meanwhile it is capable to deal with large

incast.

For future work, there are still improvements on throughput

and fairness to explore. The strict analysis and proof of

convergence and throughput of DCQCN+ remain. Discussion

on parameters sensitiveness should also be included in this

analysis. Besides, comparing different kinds of congestion

control schemes to find the optimal solution for datacenter

traffic is actually the final blueprint.
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