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ABSTRACT
Machine slot-time spent on data transmission has
direct impact on average job completion time (JCT).
In this paper, we propose Macroflow, a networking
abstraction that can capture the primitive scheduling
granularity of machine slot-time. We demonstrate that
minimizing machine slot-time is equivalent to minimizing
the average macroflow completion time (MCT). We
prove that minimizing MCT to be strongly NP-hard and
focus on developing effective heuristics. We propose the
Smallest-Macroflow-First (SMF) and Smallest-Average-
Macroflow-First (SAMF) heuristics that greedily sched-
ule macroflows based on their network footprint. To work
with existing commodity switches, priority discretization
is performed to classify macroflows into a small number
of priority queues.
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1 INTRODUCTION
In a data parallel computation frameworks such as
Hadoop, jobs consume machine slot-time. Jobs are
scheduled in the granularity of a series of tasks by
the framework scheduler, where each task is assigned
to a machine slot to read the input data, perform
computation, and output results. A task’s machine slot-
time denotes the occupied machine slot duration spent
on network and computation together. A job’s machine
slot-time is the sum of all its tasks’ slot-time.
Reducing average JCT is crucial for application

performance. When machine slots become insufficient,
machine slot-time spent on networking has a direct
impact on average job completion time (JCT). The
sooner the occupied machine slot can be released, the
quicker the jobs waiting in the queue can be scheduled.
State-of-the-art network researches focus on various

network metrics but ignore the machine slot-time. Many
work minimize flow completion time (FCT) [1–3, 8, 10,
11, 13]. Recently, the coflow abstraction decreases the
gap between network and application metrics [4–7]: a
coflow includes all correlated flows in a communication
stage; its all-or-nothing semantic constrains that all flows
of the stage must finish together for the completion of
the stage. Minimizing coflow completion time (CCT)
might lead to reduced average JCT [5–7].
There could be a large JCT penalty if network

scheduling ignores the occupied machine slot-time spent
on data transmission. Consider the example in Fig. 1:
Job A has two mappers 𝑀𝑎1/𝑀𝑎2, and two reducers
𝑅𝑎1/𝑅𝑎2 with negligible computation durations; totally
there would be 4 flows in its coflow (Fig. 1(a)); there is
an additional Job B, which only has a single mapper task
𝑀𝑏 with 1 slot-time computation waiting to be scheduled.
There exist ingress ports 𝑃1/𝑃2 in this datacenter fabric,
and each port can send 1 unit of data in one time unit;
egress port 𝑃3 can receive 2 units of data per time
unit (Fig. 1(b)); 𝑀𝑎1/𝑀𝑎2 are already finished, and
each flow has 1 unit of shuffle data to be collected; two
machine slots 𝑆1/𝑆2 behind 𝑃3 hold 𝑅𝑎1/𝑅𝑎2 running
independently. Apparently, Job A’s JCT is equal to
CCT, and the CCT is fixed (2 time units for Job A to
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Figure 1: An example: average JCT can be
reduced without change CCT.

complete) regardless of flow scheduling. However, the
average JCT can be quite different with different flow
scheduling policies. A widely-accepted mantra is to finish
all flows simultaneously within a coflow [5, 6]. Suppose
we use fair sharing among flows, then all four flows finish
in time 2. In this case, 𝑀𝑏 can be allocated at time 3: the
resulted average JCT is 2.5 time units (Fig. 1(c)). As a
comparison, if we let flows 𝐹11 and 𝐹21 have priority, then
they can be finished in 1 time unit without impacting
the coflow finish time (Fig. 1(d)). In this case, 𝑅𝑎1 has
received all data and can be completed in time 1; then
𝑀𝑏 can be scheduled to occupy the machine slot released
by 𝑅𝑎1; as a result, the average JCT is only 2 time units.

The key observation is that to minimize machine slot-
time on data transmission, neither flow nor coflow is
the right abstraction for network scheduling. In the
above example, machine slot-time spent by Job A can
be minimized from 4 (Fig. 1(c)) to 3 (Fig. 1(d)), with its
CCT unchanged. For an individual reducer in a shuffle
phase, its computation stage can start as soon as all
constituent flows are finished, which is independent of
all other reducers. Prioritizing some reducers’ flows over
others, and finishing them earlier, can complete existing
tasks earlier; in turn, new tasks can be allocated earlier
and the average JCT can be reduced.
In this paper, we propose Macroflow, a networking

abstraction that can capture the primitive scheduling
granularity of machine slot-time. Each macroflow is
a collection of flows between a single reducer and all
mappers in the shuffle. The flows of a macroflow are
independent to each other: there is no precedence among
them; the completion of the latest flow is regarded as
the completion of the macroflow. Shown in Fig. 1, two
flows 𝐹11 and 𝐹21 together comprise a macroflow with

𝑅𝑎1 as the destination; Given this definition, a coflow is
a collection of macroflows, each with a distinct reducer.
For example, we can use reducer 𝑅𝑎1/𝑅𝑎2 to denote
the two macroflows in Job A’s coflow. Macroflow is an
abstraction with a granularity between flow and coflow.
Marcoflow is equal to coflow only in the special case when
there is only one reducer in a phase. The abstraction
allows the network to take scheduling decisions on the
collection to achieve an optimized goal. We summarize
our contributions as follows.
∙ We demonstrate that the problem of minimizing the total

machine slot-time of reducers is equivalent to minimizing the
average macroflow completion time (MCT). We prove that

minimizing average MCT to be strongly NP-hard and focus on

developing effective heuristics.
∙ We propose the Smallest-Macroflow-First (SMF) heuristics that

greedily schedules a macroflow based on its network footprint.
∙ The SMF approach might interleave macroflows from different

jobs, since the correlations among macroflows in the same coflow

are ignored. Correspondingly, we propose the Smallest-Average-
Macroflow-First (SAMF) heuristics that greedily schedules all
macroflows of a coflow together, based on the average footprint

of all macroflows in this coflow.

∙ To make our algorithms work with existing commodity switches

in datacenters, a priority discretization algorithm is developed

to classify macroflows into a small number of priority queues.

2 OVERVIEW
2.1 Problem Statement
Minimizing MCT: For a job with 𝑁 reducers, each
reducer will occupy a machine slot from the shuffle
starting time to the completion of its computation. We
denote the occupation time of a reducer 𝑅𝑖 as 𝑡𝑖, which
consists of two parts. The first part is the time used
for gathering data from mappers, i.e., time to finish the
macroflow, which we define as 𝑡𝑠𝑖 . The second part is
the time used for processing the data, which we define
as 𝑡𝑐𝑖 . Therefore, the total machine slot-time occupied

by the reducers is
∑︀𝑁

𝑖=1 (𝑡
𝑠
𝑖 + 𝑡𝑐𝑖 ). Note that the first

part,
∑︀𝑁

𝑖=1 𝑡
𝑠
𝑖 , is equal to 𝑁 ×𝑀𝐶𝑇 , where 𝑀𝐶𝑇 is the

average macroflow completion time. The second part,∑︀𝑁
𝑖=1 𝑡

𝑐
𝑖 , is the total data processing time, which can be

regarded as invariant. Therefore, to minimize the total
machine slot-time, we can instead minimize the MCT.

NP Hardness: The MCT minimization problem can
be reduced from the concurrent open shop problem [6],
which is NP-hard [12]. Here we give the skeleton of our
proof only, and details are omit due to space limitation.
Consider a shuffle with 𝑚 different mappers and we need
to transfer data with an amount of 𝑝𝑖𝑗 from mapper 𝑀𝑖

to reducer 𝑅𝑗 . Suppose that all mappers have network
capacity of 1, and the reducers have no network capacity
limit. In this case, any concurrent open shop problem
with 𝑚 machines and 𝑁 orders where order 𝑗 requires
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𝑝𝑖𝑗 processing time on the specific machine 𝑖 [9], can be
converted to the above shuffling problem. As minimizing
the order completion time with 𝑚 ≥ 2 machines in the
concurrent open shop problem is NP-hard [9], minimizing
the MCT is also NP-hard when there are more than one
mappers. Given the complexity, we instead focus on
developing effective heuristics.

2.2 Architecture
In addition to its primary objective of minimizing MCT,
we expect a practical design to satisfy the following
goals.
∙ No-global-scheduling. For scalability concern, we should not

centrally schedule either flow start time or flow rate.

∙ Work-conserving. The system must fully utilize available

bandwidth.

The key idea is to only decide flow priority and
let the network enforces the priority decision. We use
a coordinator to gather/distribute macroflow/coflow
information among machines. Based on the running
jobs, a network priority is assigned for every running
flow. Our Linux kernel modules attach the priority
value to each packet of a pass-through macroflow. The
network uses preemptive scheduling for packets based
on their flows’ priority. This design choice is important
for fault tolerance and scalability; distributed priority
enforcement also provides work-conserving bandwidth
utilization. If the switches support an arbitrary number
of priority queues (e.g., pFabric [2]), our scheduling can
get the best performance improvement. Otherwise, to
be deployment-friendly to existing commodity switches,
a priority discretization algorithm is developed (§3).

2.3 Scheduling Opportunities
We demonstrate the advantages of macroflow over coflow
using real-world traces. We analyzed a Hadoop trace
collected from a 3000-machine, 150-rack cluster [4]. Based
on the number of mappers and reducers in the job’s
shuffle phase, we classify coflows to four network patterns:
1-to-1, M-to-1, M-to-N and 1-to-N. Here M-to-1 means
that there are M mappers and only 1 reducer in the
coflow, and vice visa. The network footprint of different
coflow patterns (percentage in total number of jobs)
are shown in Table 1. We also break down coflows to
corresponding macroflows with the average footprint of
macroflows enclosed in parentheses. For 1-to-1 and M-
to-1 jobs, results are the same for coflow and macroflow
since each job has only one reducer. So, we only show
macroflow results for M-to-N and 1-to-N coflows.

1-to-1 and M-to-1 Coflows: For 1-to-1 coflows,
over 95% jobs have footprint less than 10 MB, and over
87% jobs even have footprint less than 1 MB. Less than
5% jobs have footprint between 10 MB and 1 GB, and
none of the job is larger than 1 GB. M-to-1 jobs are

Table 1: Coflow (Macroflow) Footprint Pattern
Size(MB) 1-to-1 M-to-1 M-to-N 1-to-N

0-10 95.12% 40.28% 7.85%(12.86%) 0%(92.31%)
10-100 2.44% 48.34% 4.29%(32.14%) 69.23%(7.69%)
100-1000 2.44% 10.90% 14.29%(34.29%) 26.92%(0%)
≥ 1000 0% 0.48% 73.57%(20.71%) 3.85%(0%)

similar. Over 40% jobs have footprint less than 10 MB,
and over 48% jobs have footprint between 10 MB and
100 MB. Only 0.48% jobs have footprint larger than 1
GB. We then analyze the distribution of the number of
mappers per job. For 1-to-1 jobs, the network bottleneck
can be near to either its mapper or its reducer. For
M-to-1 jobs, over 63%/98% jobs have less than 10/30
mappers respectively. Usually, the reducer is the network
bottleneck for M-to-1 coflows.

M-to-N and 1-to-N Coflows: As a comparison,
over 73% M-to-N jobs have over 1 GB data to shuffle and
over 87% of them have over 10 reducers. When looking
from the macroflow level, M-to-N jobs demonstrates
large diversity. Over 12% jobs have average macroflow
footprint less than 10 MB, while there are also over 20%
jobs have average macroflow footprint larger than 1 GB.
1-to-N is the most interesting type. Around 70% of them
have footprint between 10 MB to 100 MB, and over
15% jobs have more than 50 reducers each. However, at
macroflow level, over 92% jobs have average macroflow
footprint less than 10 MB.

Optimization Opportunities: Compared with the
coflow concept, the new macroflow abstraction provides
scheduling opportunities to reduce machine slot-time
spent on networking. Some coflows are more parallel than
others in terms of the number of reducers. Some flows
that have low priority when scheduling with the coflow
semantics, now can have higher priority when scheduling
with the macroflow semantics. Such opportunities of
priority inversion are common in our analyzed trace:
with the SCF scheduling, all 1-to-N job’s flows are lower
in priority than flows of at least 40% M-to-1 jobs, since
their coflows are larger in footprint. If scheduling at the
macroflow-level, as shown in Table 1, as high as 80% 1-
to-N jobs’ flows can be prioritized, since their macroflows
are smaller in footprint. There are also opportunities
for M-to-N jobs. For example, one M-to-N shuffle is
5% larger than another shuffle, but it has 10× more
reducers. Prioritizing this shuffle has a large chance of
saving computing slot-time.

2.4 Scheduling Policies
SMF: We propose the Smallest-Macroflow-First (SMF)
heuristics that greedily schedules a macroflow based
on its network footprint. SMF is inspired by Shortest-
Job-First (SJF). It is reported that Smallest-Effective-
Bottleneck-First (SEBF) and Minimum-Allocation-for-
Desired-Duration (MADD) heuristics, which greedily
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schedule based on network bottleneck’s completion
time, might be marginally better than a smallest-size
based solution [6]. However, they require heavy weight
centralized scheduling and end-host rate control, which
does not meet our design goals.

SAMF: The SMF approach might interleave macroflows
from different jobs, since the correlations among
macroflows in the same coflow are ignored. This might
result in the increase of tail latency for jobs with
multiple reducers. Correspondingly, we propose the
Smallest-Average-Macroflow-First (SAMF) heuristics
that greedily schedules all macroflows of a coflow
together, based on its all contained macroflow’s average
footprint.
Discussion: Unlike Hadoop shuffle, there could exist
scenarios where the size of each flow is unknown or
not available to the scheduling system, i.e., the non-
clairvoyant scenarios [3, 4]. Here we can follow the Least-
Attained-Service (LAS) rule, instead of the SJF rule.

3 PRIORITY DISCRETIZATION
The scheduling results are the relative priority among
macroflows. However, existing commodity switches in
datacenters usually have only 4-8 priority queues. In this
section, we consider the problem of assigning a given
set of macroflows to a handful of priority queues so that
their average MCT is minimized.

3.1 Formulation
To make the formulation trackable, we also assume
that there is only one bottleneck in the network [3];
macroflows with the higher priority are transferred first;
macroflows with the same priority have an equal share
of the bottleneck. Without lost of generality, we assume
that the capacity of the bottleneck is one. Suppose there
are 𝑛 macroflows and their size are given as 𝑑𝑖, 𝑖 = 1 . . . 𝑛;
flows are sorted by their size, i.e., 𝑑1 ≤ 𝑑2 . . . ≤ 𝑑𝑛.
In general, if we have 𝑛 different priorities, the SMF
scheduling will have the smallest MCT.

Consider a simple sample with 𝑛 = 4 macroflows with
size of 𝑑1 = 1, 𝑑2 = 2, 𝑑3 = 3, and 𝑑4 = 4. Consider the
case that we assign a higher priority to macroflow 1 and
2, and denote the assignment as (12)(34). In this case,
macroflow 1 and 2 will be transmitted first and each of
them has an equal transmission rate of 0.5. At time 2,
macroflow 1 will finish transmission so the completion
time for macroflow 1 is 𝑓1 = 2. After macroflow 1
finished, macroflow 2 will occupy the full capacity of
the bottleneck and transmit with a rate of 1. At time 3,
macroflow 2 will finish transmission and macroflow 3 and
4 starts. Similarly, macroflow 3 and 4 get equal share
rate of 0.5 and macroflow 3 finishes at time 9. Therefore,
the average MCT for this priority assignment is 6, as

Table 2: MCT for different priority assignment
Assignment 𝑓1 𝑓2 𝑓3 𝑓4 Average MCT

(1)(234) 1 7 9 10 6.75
(12)(34) 2 3 9 10 6
(123)(4) 3 5 6 10 6

shown in the second row of Table 2. We observe from
Table 2 that different priority assignment gives different
average MCT.
We can calculate the completion time for a given

macroflow as follows.
Lemma 3.1. The completion time for a macroflow 𝑖

with size of 𝑑𝑖 and priority 𝑘 is equal to

𝑓𝑖 =

𝑖∑︁
𝑗=1

𝑑𝑗 + (𝑛𝑘 − 𝑖)𝑑𝑖, (1)

where 𝑛𝑘 is the total number of macroflows that have
the priority smaller or equal to 𝑘.

Proof. Consider the time that macroflow 𝑖 finishes.
At that time, all macroflows with higher priority than 𝑘
should have already finished. Furthermore, macroflows
with the same priority of 𝑘 and a smaller size than
macroflow 𝑖 should also have finished as they at least get
the same share of the bottleneck capacity as macroflow 𝑖.
Now consider the macroflows with the same priority of
𝑘 and a larger size than macroflow 𝑖. These macroflows
have an equal share of the bottleneck as macroflow 𝑖.
So, each of these macroflows transmits data of 𝑑𝑖 when
macroflow 𝑖 finishes transmission. As there are 𝑛𝑘 − 𝑖
such macroflows, the total amount of data they have
transmitted is (𝑛𝑘 − 𝑖)𝑑𝑖. If we plus the amount of data
of macroflows that has a smaller or equal size than

macroflow 𝑖, which is
∑︀𝑖

𝑗=1 𝑑𝑗 , we can get the completion

time of macroflow 𝑖 as in Eq.(1). �

From Lemma 3.1, it is easy to get the following results.

Corollary 3.1. Changing the priority of a
macroflow that has smaller size than macroflow 𝑖 does
not change the completion time of macroflow 𝑖.

The average MCT of 𝑁 macroflows with 𝐾 different
priorities can be given by:

Theorem 3.1. For a coflow with 𝑁 macroflows with
sorted size of 𝑑𝑖, 𝑖 = 1 . . . 𝑁 , the total MCT is given by:

𝑀𝐶𝑇 =

𝑁∑︁
𝑖=1

(𝑁 − 2𝑖+ 1)𝑑𝑖 +
𝐾∑︁

𝑘=1

⎛⎝𝑛𝑘

𝑛𝑘∑︁
𝑖=𝑛𝑘−1+1

𝑑𝑖

⎞⎠ (2)

Proof. The total MCT is
∑︀𝑁

𝑖=1 𝑓𝑖. From Eq.(1), we
can see 𝑑𝑖 appears in the first term in the completion
time of macroflows with index equal or larger than 𝑖.
As there are (𝑁 − 𝑖 + 1) macroflows with index equal
or larger than 𝑖, 𝑑𝑖 appears in the first term of Eq.(1)
for (𝑁 − 𝑖+ 1) times. We can see that 𝑑𝑖 appears in the
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second term of Eq.(1) for (𝑛𝑘 − 𝑖) times. Summing the
two cases, we can get the result in Eq.(2). �

3.2 Algorithm for SMF
Theorem 3.1 gives important hints for minimizing MCT.
The first term in Eq.(2) is independent to the priority
assignment. So, we only need to focus on the second
term, which expands to:

𝑛1𝑑1 + 𝑛1𝑑2 + . . .+ 𝑛2𝑑𝑛1+1 + 𝑛2𝑑𝑛1+2 + . . . (3)

To minimize this term, we can first assign all macroflows
to the lowest priority, i.e., priority 𝐾. We then scan the
macroflows to see if we can raise the priority of some
macroflow. Note that we always move the macroflow with
the smallest size in priority 𝑘, i.e., macroflow 𝑛𝑘−1+1, to
the higher priority level 𝑘 − 1. Therefore, before moving
macroflow 𝑛𝑘−1 + 1 to a higher priority, the summation
of second term in Eq.(2) is:

𝑛1𝑑1 + . . .+ 𝑛𝑘−1𝑑𝑛𝑘−2+1 + 𝑛𝑘−1𝑑𝑛𝑘−2+2+

. . .+ 𝑛𝑘𝑑𝑛𝑘−1+1 + . . . (4)

Note that by Corollary 3.1, macroflows with size larger
than the moving macroflow will not be effected, so we can
safely ignore the terms containing 𝑑𝑗 with 𝑗 > 𝑛𝑘−1 + 1.
When we move macroflow 𝑛𝑘−1 + 1 to priority 𝑘 − 1,
we can see the number of 𝑛𝑘−1 is increased to 𝑛𝑘−1 + 1,
while 𝑛𝑘 is not changed. So the summation in Eq.(4)
changes to:

𝑛1𝑑1 + . . .+ (𝑛𝑘−1 + 1)𝑑𝑛𝑘−2+1 + (𝑛𝑘−1 + 1)𝑑𝑛𝑘−2+2+

. . .+ (𝑛𝑘−1 + 1)𝑑𝑛𝑘−1+1 + . . . (5)

Comparing Eq.(4) and Eq.(5), we can see the total MCT
is changed by:

𝑛𝑘−1∑︁
𝑖=𝑛𝑘−2+1

𝑑𝑖 − (𝑛𝑘 − 𝑛𝑘−1 − 1)𝑑𝑛𝑘−1+1 (6)

From Eq.(6), we observe that promoting macroflow
𝑛𝑘−1 +1 from priority 𝑘 to priority 𝑘− 1 has two effects.
The first term in Eq.(6) is an increase in the MCT of
macroflows already in the 𝑘 − 1 priority. This means
by add a new macroflow to priority 𝑘 − 1, the total
MCT increase in the existing macroflows increases by
the amount that equals the sum of all macroflows in
that priority. The second term in Eq.(6) is an decrease
in the MCT of the promoted macroflow, which is equal
to (𝑛𝑘 − 𝑛𝑘−1 − 1)𝑑𝑛𝑘−1+1, i.e., timing the size of the
promoted macroflow by the number of macroflows in the
original priority minus one. Therefore, if we have:

(𝑛𝑘 − 𝑛𝑘−1 − 1)𝑑𝑛𝑘−1+1 >

𝑛𝑘−1∑︁
𝑖=𝑛𝑘−2+1

𝑑𝑖, (7)

promoting the given macroflow will result in a net
decrease in the total MCT.

We use Algorithm 1 to find priority assignment for a
given set of macroflows. Our algorithm first assigns all
macroflows to the lowest priority and then iteratively
moves small macroflows to higher priority when they
satisfy the condition in Eq.(7). Note that after promoting

Algorithm 1: Priority Assignment
Input: The sorted size of macroflows, 𝑑𝑖, 𝑖 = 1 . . . 𝑁 ;

Number of priority levels, 𝐾.

Output: Priority of each macroflow
1 Assign all macroflows to the lowest priority 𝐾.

2 while Priority assignment changed in previous iteration do

3 for k=2 to K do

4 Find the first (smallest) macroflow 𝑖 in priority level
𝑘.

5 if (𝑛𝑘 − 𝑛𝑘−1 − 1)𝑑𝑛𝑘−1+1 >
∑︀𝑛𝑘−1

𝑖=𝑛𝑘−2+1 𝑑𝑖 then

6 Move marcoflow 𝑖 to priority level 𝑘 − 1.

7 Update 𝑛𝑘 and 𝑛𝑘−1.

a macroflow into a higher priority level, the condition in
Eq.(7) is always satisfied even if we change the priority
of other macroflows. This is because the number of
macroflows in priority level 𝑘 − 1 can only decrease,
so that the penalty of moving macroflow 𝑖 into level 𝑘−1
only reduces. Furthermore, the number of macroflows
in priority level 𝑘 can only increase afterwards, so that
the gain of moving macroflow 𝑖 into level 𝑘 − 1 only
increases. Therefore, once we move a macroflow into a
higher priority level, we never need to move it back. As
we have 𝐾 priority levels and 𝑁 macroflows and each
macroflow can be changed by at most 𝐾 − 1 times, our
algorithm will converge in 𝑁(𝐾 − 1) iterations. Noting
that we need to check at most 𝐾 − 1 times to choose a
macroflow and adjust its priority in each iteration, the
upper bound of the time complexity of our assignment
algorithm is 𝑂(𝑁𝐾2).
As an illustration, let’s revisit our example with

two priority levels. Consider the case that we assign
macroflow 1 and 2 to the higher priority. We have
𝑛1 = 2 and 𝑛2 = 4. We can verify Eq.(1), e.g., 𝑓2 =
𝑑1 + 𝑑2 + (2− 2) * 𝑑2 = 3. We can also see that the total
MCT is (4−2+1)𝑑1+(4−4+1)𝑑2+(4−6+1)𝑑3+(4−8+
1)𝑑4+2𝑑1+2𝑑2+4𝑑3+4𝑑4 = 5𝑑1+3𝑑2+3𝑑3+1𝑑4 = 24. If
we move macroflow 3 to priority 1, the existing priority 1
macroflows (macroflow 1 and 2) will have a total increase
in the MCT of 1 + 2 = 3. And the macroflow 3’s MCT
will be decreased by (𝑛2−𝑛1−1)𝑑3 = 𝑑3 = 3. So, moving
macroflow 3 will not change the total MCT as expected.

Adaptation for other algorithms: To make SAMF
and SCF also supported by commodity switches, we
extend the above algorithm for them respectively (i.e., D-
SAMF and D-SCF). The same algorithm can be applied
to SCF directly by raising the network granularity from
macroflow level to coflow level. For SAMF, suppose
there are 𝑚 coflows and their average macroflow size are
given as 𝑑𝑖, 𝑖 = 1 . . .𝑚 sorted by ascending order i.e.,
𝑑1 ≤ 𝑑2 . . . ≤ 𝑑𝑚; there are 𝑘𝑖, 𝑖 = 1 . . .𝑚 macroflows
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(c) A counter-example

Figure 2: Simulation results.

in the coflows respectively. We expand the coflow list
to a pseudo macroflow list by adding 𝑑𝑖 for 𝑘𝑖 times in
the list. After that, our algorithm can be applied to the
pseudo macroflow list to find the boundary.

4 EVALUATION
4.1 Methodology
We evaluate our algorithms by performing a replay of the
collected Facebook log [4, 6] with a flow-level simulator.
We assume there are 30 hosts connected to a switch via a
1Gbps link, while the computation resource in each host
is limited. Note that link bandwidth does not matter,
because details of transport protocols are abstracted in a
flow-level simulator. Currently, our algorithm only aims
at MapReduce-like frameworks, thus we generate jobs
following the MapReduce job patterns. The Facebook
log contains only the shuffle information of a job, thus we
generate mappers according to shuffle size to guarantee
that the time spent on map-phase and reduce-phase is
comparable. Without loss of generality, here we assume
mappers contain computation phase only, and reducers
contain no extra computation phase. In addition, we
assume only when all mappers in a job finish could
shuffle starts.
We choose the average JCT and the average MCT

as metrics for evaluation, and compare our algorithm
with coflow-based scheduling algorithm. Results show
that our algorithm performs better when the system is
heavily-loaded thus computation resource is lacking. In
other scenarios, perhaps we may use coflow abstraction
directly.

4.2 Simulation Results
We evaluate our algorithms with both infinite (i.e., suffi-
ciently large) and limited priority levels in heavily-loaded
scenarios, and results are shown in Fig. 2(a) and 2(b),
respectively. We use prefix D to mark the later case in
figures. Macroflow-based scheduling algorithms perform
better than coflow-based algorithm; the average JCT
and MCT are decreased by up to 39.43% and 20.36%,
respectively. Performance of SAMF lies between SMF

and SCF, which indicates that, under this scenario, the
JCT-decreasing caused by saving computation resource
is larger than JCT-increasing caused by interleaving
coflows. In addition, the same conclusion can also be
obtained from the fact that the average JCT and the
average MCT is highly-correlated, which demonstrates
that saving computation resource does lead to a smaller
JCT. As a result, macroflow abstraction can be a trade-
off in a (temporarily) heavily-loaded system.
Meanwhile, we noticed that macroflow abstraction

performs worse than coflow abstraction when the sys-
tem load is not high. Comparing with aforementioned
scenario, we evaluate our algorithms with 1.5× more
computation resource in each host, and reduce the traffic
load by 30%, and results can be found in Fig. 2(c). It is
clear that when there is no need to saving computation
resource, using coflow abstraction directly appears to be
a better choice.

5 CONCLUSION
Network researchers used to optimize network metrics
while ignore occupied machine slot-time spent on data
transmission, which may lead to inferior job completion
time. In this paper, We propose a networking abstraction
Macroflow and study the inter-macroflow scheduling
problem. Trace-driven simulations demonstrate that our
algorithms can significantly reduce the average JCT for
jobs.
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