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ABSTRACT
Container networking is now an important part of cloud virtual-
ization architectures. It provides network access for containers by
connecting both virtual and physical network interfaces. The per-
formance of container networking has multiple dependencies, and
each factor may significantly affect the performance. In this paper,
we perform systematic experiments to study the performance of
container networking technologies. For every measurement result,
we try our best to qualify influencing factors.
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1 INTRODUCTION
Container solutions, such as Docker [6], are now an integral part
of cloud computing. Compared with virtual machine (VM) and hy-
pervisor, container technology provides a lightweight alternative for
virtualization. Container networking provides network access for
containers by connecting both virtual and physical network inter-
faces. Besides providing advanced management and virtualization
features, the networking solutions should provide good performance
such as high throughput and low latency.

The performance of container networking has multiple dependen-
cies, and each factor may significantly affect the performance. There
are different NIC options, e.g., veth and MACVLAN. There are
different bridge options, e.g., Linux bridge and OVS. There exists
various communication topologies, e.g., inside the same host, inside
the same VM, inside the same host but one resides in a VM, and
in different hosts etc. There are various communication patterns,
e.g., TCP v.s. UDP, single flow v.s. multiple flows etc. Further, the
container networking in Windows is quite different from that of in
Linux.

We perform the first systematic measurement to study the perfor-
mance of different container networking technologies. We try our
best to qualify influencing factors and explain the cause of overhead.
There are still some measured results that we cannot fully understand
or have enough confidence of the causes. To avoid misleading the
readers, we use italic sentences for speculative explanations.

In Section 2, we present related work and evaluated container
networking technologies. In Section 3, we first gives the experiment
setup, then present our measurement results. Section 4 summarizes
the paper.
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Figure 1: veth and MACVALN (bridge mode)

2 BACKGROUND
Related Work: Morabito et al. compare various system perfor-
mance metrics between hypervisors and containers [7]. Regards
networking, they use Netperf [5] to evaluate both unidirectional
and request/response data transfer with TCP and UDP protocol-
s. It demonstrates that Docker [6] can achieve almost equal TCP
throughput compared to the native service without virtualization.
However, the UDP throughput of Docker is 42.97% lower than that
of the native service. For request/response transactions, Docker is
19.36%/12.13% lower than the native service with TCP/UDP re-
spectively. In this paper, we demonstrate that the performance gaps
among different container networking options are significant. More
importantly, we try to explain the cause of the performance differ-
ence. We also confirm that UDP is inferior in performance compared
with TCP.

Felter et al. compare MySQL [9] performance on Docker with
two different networking settings: -net=host and NAT [2]. Apparent-
ly, NAT introduces additional overhead. In this paper, we show that
MACVLAN has very little overhead, while veth mode adds signifi-
cant overhead. For Network Function Virtualization [3], Bonafiglia
et al. present measurement of chains of Docker containers [1]. With
Linux bridge connecting containers, the throughput can be as low as
3 Mbps with 8 chained containers. The reason is that a single kernel
thread executes all the operations associated with a packet without
parallelization at all. In this paper, we also demonstrate that network
throughput can be throttled by CPU capacity.
Evaluated Technologies: We measure two NIC modes: veth (virtu-
al ethernet) and MACVLAN (mac-address based virtual lan tagging),
as illustrated in Figure 1. The veth mode creates a pair of devices for
each container, one attached to the container and the other attached
to the host. Network communication in this mode is achieved by
copying MAC frames between the paired devices. We can manage
the veth devices like any other devices on the host. The container
can communicate with host and other containers (on the same host
or not) through a Linux bridge or an OVS bridge.

MACVLAN mode allows the host to configure sub-interfaces,
each with its own unique (randomly generated) MAC address, of
a parent physical Ethernet interface. A VM or container can then
bind to a specific sub-interface to connect directly to the physical
network, using its own MAC and IP addresses. MACVLAN has
four modes: priviate, VEPA, bridge, and passtru mode. Among them,
two modes (VEPA and bridge) allow containers on the same host
to communicate with each other. However, the VEPA mode needs
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Figure 2: Topologies in our performance comparison.

feature support from switches. In this project, we choose bridge
mode of MACVLAN to do the evaluation.

The bridge mode in MACVLAN is much simpler than standard
Linux bridge or OVS and it does not have the overhead of device
pairs. Generally speaking, MACVLAN performance is better than
veth and is a good option for providing egress connection to the
physical network. While, with the help of OVS (which is feature rich
and has wide deployment), veth device pairs can be easily embed-
ded in complex virtual network topologies. So most virtualization
environments (e.g. docker, KVM, XEN) take veth network mode
and OVS as their default choice.

3 EVALUATION
3.1 Setup
Testbed: Our testbed consists of 4 servers connected to a 32-port
100 Gbps Mellanox SN2700 switch. Each server is a DELL Pow-
erEdge R730, equipped with two Intel Xeon E2650 CPU each with
8 cores (i.e., totally 16 cores), 128 GB RAM, a 2 TB disk, and a
Mellanox CX4 dual-port 100 Gbps Ethernet NIC. Two servers run
Ubuntu Server 14.04 with Linux 3.19.0 kernel, and the other two
run Windows Server 2016 Standard Edition.
Container and VM Setup: In Linux, networking mechanisms for
both LXC and Docker containers are supported by the underlying
kernel network stack and isolation mechanisms (i.e., namespaces
and cgroups). Docker official networking user space utilities support
veth mode with Linux bridge (can be easily extended to OVS) and
MACVLAN [4]. As a result, we choose LXC as our test container
for simplicity and believe that our results also apply to Docker
containers. The rootfs running in LXC is also Ubuntu Server 14.04.
We use KVM as the virtual machine hypervisor. Each VM is installed
with the same version of OS and kernel network setup as the host
server. In Windows, we use Docker (version 17.03.0-ee-1) as our
test container running Microsoft NanoServer.
Topology Setup: In our experiment, we have 5 topologies. As
shown in Figure 2, we name each topology after its transmission
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Figure 3: Latency dominates request/re-
sponse speed.
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Figure 4: CHC single flow throughput with
core-binding settings.

No Binding Same numa node Different numa nodes
0

5

10

15

20

25

30

35

40

T
h

ro
ug

hp
ut

(G
bp

s)

 

 

Linux bridge
MACVLAN
OVS
Native host

Figure 5: CHHC single flow throughput
with core-binding settings.

direction. Topology a and b are bare metal installation without VM.
Topology c, d and e are used to evaluate the performance of container-
s inside VMs. Topology a is CHC, where two containers in the same
host communicate with each other. Topology b is CHHC, where two
containers are installed in two hosts separately. Topology c is CVC,
where two containers are installed in the same VM of a host. Note
that all above mentioned topologies are symmetric. Topology d is
CVHC/CHVC, where two containers are installed in the same host,
but only one is inside a VM. As a result, we need to distinguish two
communication directions. Topology e is CVHHC/CHHVC, where
two containers are installed in two hosts separately, and one of them
is inside a VM.
Evaluation Setup: In Linux, we use netperf to test the latency for
TCP with packet size 64B. We use iperf3 to test the throughput for
TCP and pktgen kernel module for UDP. Unless otherwise specified,
the throughput results in this paper are measured with packet size
1500B. Iperf3 tool and pktgen module both can control the message
size and flow number.

To evaluate the impact of NUMA affinity, we collect the results
from 3 cases when an iperf3 receiver is: a) not binding to a specific
CPU node; b) binding to the same NUMA node (as the sender
when in the same host or as the network card when across hosts);
c) binding to a different NUMA node. It worth to note that some of
the packet processing work is done at Linux kernel softirq context
whose scheduling is much more harder to be tuned manually (i.e.,
may depend on the different NIC drivers). In order to guarantee
that our results are meaningful to most Linux users, we let Linux
kernel and NIC driver to do the auto scheduling of interrupts and
softirqs. In Windows, we use NTttcp tool to test the throughput of
TCP. Each data line/bar in following figures is the average result of
10 experiment samples. Each experiment lasts 20 seconds.

3.2 Installation on host
Latency: In order to measure the performance of packet latency, we
use netperf with TCP packet size 64B to log the number of request/re-
sponse interactions per second between two containers. As shown
in Figure 3, for networking options, MACVLAN is the best mode,
followed by veth over OVS and veth over Linux bridge. As men-
tioned above, veth mode used by OVS or Linux bridge is composed
of two paired devices. More processing is needed when packets
pass through this device pair. The OVS mode is better than Linux
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Figure 6: CHC multi flows throughput with networking modes.

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Number of flows

T
h

ro
u

gh
p

ut
(G

b
p

s)

 

 

Linux bridge
MACVLAN
OVS
Native host

Figure 7: CHHC multi flows throughput with networking
modes.

bridge because OVS optimizes the packet forwarding process with
its “fast path” [8]. On average, MACVLAN outperforms OVS/Lin-
ux bridge by 7.93%/31.63% on the same host respectively, and by
3.14%/32.39% across hosts respectively. Besides, MACVLAN is
only less than bare machine by 3.41%.
Single-flow Throughput: We use iperf3 tool to measure the single
flow TCP throughput of two containers. Demonstrated in Figure 4
and Figure 5, MACVLAN in general achieves the best performance.
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Figure 8: Latency performance across all
topologies.
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Figure 9: Single flow throughput with
topologies.
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Figure 10: Multi flows throughput with
topologies.

While with the CHHC topology, MACVLAN and OVS are close
even to bare metal performance without containers (Figure 5).

We also measure the impact to TCP throughput caused by CPU
scheduling and NUMA node affinity. Overall, two iperf3 applica-
tions in the same NUMA node can get better throughput than that
in different NUMA nodes. On the same host, binding to different
NUMA nodes drops the throughput by 77.99% on average com-
pared with binding to the same NUMA node. While across different
hosts, binding the iperf process to the same NUMA node with the
network card can also bring a better performance. Without binding,
the performance is close to manual binding. It is clear that Linux
scheduling does a good job of automatical collocating sender and
receiver processes. In addition, when binding the cores on the same
NUMA node, the jitter is slightly bigger.
Multi-flow Throughput: Figure 6 and Figure 7 shows the through-
put of multiple TCP flows between two containers. We set the maxi-
mum of flows to the CPU core numbers, e.g., the bare metal has 16
CPU cores and the virtual machine has 8 cores. We do not consider
NUMA affinity in this experiment because we notice that for flow
number bigger than 2, we always get better result if we let Linux to
do auto scheduling.

On the same host, the throughput for MACVLAN is nearly pro-
portional to the flow numbers. The OVS mode outperforms the Linux
bridge by 3.43%. We observed that when the flow number is above 6,
the throughput for OVS and Linux bridge tend to stabilize at around
100 Gbps, far lower than the memory speed. We blame this to the
intrinsic overhead since the underlying device for OVS and Linux
bridge mode is veth. Veth needs additional kernel threads compared
to MACVLAN. This increases the average per-packet processing
time due to lock contention in network stack and also the complexity
of CPU/NUMA scheduling. We observed that in veth mode, even
with 16 flows, only about 70% of the total CPU resources can be used
which we consider as an indication of un-balanced CPU contention.
We leave the kernel source code level analysis for this phenomenon
as our future work.

Across two hosts, MACVLAN outperforms OVS and Linux
bridge and is very close to the bare metal throughput. The through-
put for MACVLAN get its maximum value when the flow number
arrives 10, then remains unchanged since it is already close to NIC
capacity. When the flow number is 6, OVS and Linux bridge again

achieve the maximum speed. With the increasing number of flows,
the throughput for Linux bridge and OVS gradually decline.

3.3 Installation on VM
Note that despite the superior performance of MACVLAN, OVS is
more prevalent in real deployment due to its rich features. For the
rest of evaluations, we use veth over OVS as the main networking
fabric.
Latency: We focus on the network delay of different topologies.
As depicted in Figure 8, counter-intuitively, the CVC topology gets
the best performance and even outperforms CHC by 25.24%. We
observed that with the CVC topology, the VM can always auto-
schedule the iperf3 sender and receiver to the same NUMA node
(we will discuss this later in the multi-flow part). Therefore, CVC’s
performance is superior than CHC’s. But from results in Figure 10,
we can see that if we bind iperf3 sender and receiver in the same
NUMA node, the CHC performance is superior than CVC’s.

The CVHC/CHVC and CVHHC/CHHVC topologies are much
lower in performance. CVHC/CHVC reduce the performance by
60.45% compared with the CHC topology. CVHHC/CHHVC reduce
the performance by 56.37% compared with the CHHC topology. It
is clear that the virtual machine layer introduces significant overhead
for per-packet processing. The forward and reverse directions are
almost the same because the interaction manner of netperf is TCP
ping-pong manner, and the packet will go through both the forward
and the reverse software stacks.
Single-flow Throughput: The single flow bandwidth of differen-
t topologies are demonstrated in Figure 9. The CVC has the best
performance because of the VM CPU scheduling. The CVHC and
CHVC have different throughput because TCP send and receive
kernel paths have different overhead (the same are CVHHC v.s.
CHHVC). The communications in the same host generally have
better performance than those across the hosts. If we do not bind the
process to NUMA node, the throughput with CVHC is lower than
that with CVHHC. We think that, due to the design in Linux network
stack, with CVHHC more CPU cores can take part in packet pro-
cessing. We observed about 40% more CPU consumption (counting
both sender and receiver) with CVHHC than that with CVHC.
Multi-flow Throughput: Figure 10 demonstrates the throughput
of multiple TCP flows of different topologies. It is clear that in-
side a VM, the CPU core scheduling scales. As we expected, the
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Figure 11: Throughput of single flow (UD-
P).
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Figure 12: Throughput of multiple flows
(UDP) with CHC topology.
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Figure 13: Throughput of multiple flows
(UDP) with CHHC topology.
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Figure 14: Throughput of single flows with different topologies
(UDP).

throughput with CVC topology is superior than that with CHC be-
cause of the auto NUMA scheduling of KVM. We notice that with
CHC topology, when flow number increase to 8, if all processes
are free to be scheduled to different NUMA nodes, the throughput
deteriorates significantly. However, if we bind all sender receiver
pairs to the same NUMA node, the throughput with CHC topology
is significantly higher than that with other topologies.

To our surprise, we found that with topolgies of CHVC, CVHC
and CHHVC the throughput does not scale with the number of the
flows, while with CVHHC topology the performance is much better.
We believe there is some kind of performance bottleneck underneath.
We left the analysis of this as our future work.

3.4 UDP
We use Linux kernel module pktgen to do the experiments for UDP.
We control the send rate to ensure the loss rate is less than 3%. We
can not get the result for CHC in MACVLAN mode because pktgen
directly feeds the packets to the device driver API so is above the
MACVLAN bridge layer. Since pktgen sends packets directly to
the discard port, no user space program (on both send/receive sides)
is involved during these tests. So the results in this section can be
considered as pure Linux network stack performance values. The
results are shown in Figure 11, 12, 13, 14 and 15.

There are four major observations. Firstly, all major results from
TCP still holds. For example, MACVLAN has the best performance,
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Figure 15: Throughput of multiple flows with different topolo-
gies (UDP).

throughput with CHVC, CVHC and CHHVC does not scale. Sec-
ondly, the throughput of UDP is significantly lower than that of TCP.
It is expected because Linux network stack have receive offloading
(i.e. GRO [10]) support for TCP which can significantly reduces
the per-packet processing time. If we disable GRO in Linux kernel,
the throughput of TCP drops significantly to the same level as UDP.
Thirdly, due to the overall low performance, the impact of VM is
negligible, which is shown in Figure 14 and 15,. Fourthly, for mul-
tiple flows, the MACVLAN mode significantly outperforms native
host with CHHC topology. This is out of our expectation. We leave
the code level analysis for this phenomenon as our future work.

3.5 Packet size
We perform some experiments to find out how packet size influ-
ences the throughput. Figure 16 and 17 demonstrates the throughput
performance of single flow of TCP and UDP with different packet
size. To our surprise, we find that Mellanox NIC has fixed maximum
single flow Packet-Per-Second (PPS) rate for all packet sizes. So for
communications across the hosts, their throughput is proportional to
the packet size. However, TCP on the same machine’s throughput
is stable when the packet size is increasing, that’s because the GRO
for TCP on the same host can merge small packets into large ones
with zero memory copy.
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Figure 16: TCP single flow throughput versus packet sizes.
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Figure 17: UDP single flow throughput versus packet sizes.
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Figure 18: TCP single flow throughput (Windows).

3.6 Windows
We measure some topology on the same host to verify Windows’s
container networking performance. As depicted in Figure 18, the
highest throughput of CHVC is only 6.1 Gbps. The jitter of the
CHVC is huge. The communication in the same NUMA node is
slightly better than that across different NUMA nodes. Windows’s
throughput is much lower than that of Linux. It is hard, if not com-
pletely impossible, to tune Windows parameters as it is not open-
sourced. It is hard to explain why the communication with CHVC
topology significantly outperforms that with other topologies without
digging deep into the windows network stack implementation. So we
left it as our future work.

4 CONCLUSIONS
In summary, our main results are listed as follows:

∙ Although dominate the real deployment, veth based network-
ing (used with OVS or Linux bridge) is inferior in perfor-
mance compared with MACVLAN. The overhead of veth
limits the overall throughput of a system to under 130 Gbps
even with 16 CPU cores with the CHC topology.

∙ Generally speaking, core binding can improve the perfor-
mance when flow number is small (no bigger than 1/4 of the
CPU core number of a single NUMA node).

∙ Install containers inside VMs introduces in around 50% per-
formance loss and may cause severe scalability problem for
multiple flows.

∙ Containers in the same VM might have even better perfor-
mance than in the same bare metal host because of the auto
NUMA scheduling.

∙ TCP throughput between the containers in the same host is
almost irrelevant to packet size.

∙ UDP throughput is significantly lower than that of TCP.
∙ Windows performance is significantly lower than that of Lin-

ux.
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