
OpenFunction: An Extensible Data Plane Abstraction Protocol
for Platform-independent Software-Defined Middleboxes

Chen Tian† Alex X. Liu†‡ Ali Munir‡ Jie Yang†
†State Key Laboratory for Novel Software Technology, Nanjing University, China

‡Department of Computer Science and Engineering, Michigan State University, USA

Abstract—We propose OpenFunction, an extensible data plane
abstraction protocol for platform-independent software-defined
middleboxes. The main challenge is how to abstract packet
operations, flow states and event generations with elements. The
key decision of OpenFunction is: actions/states/events operations
should be defined in a uniform pattern and independent from
each other. We implemented a working SDM system including
one OpenFunction controller and OpenFunction boxes based on
Netmap, DPDK and FPGA to verify OpenFunction abstraction.

I. INTRODUCTION

Data plane abstraction is central to Software-Defined Net-

working (SDN). Currently SDN data plane abstraction has

only been realized for switches by OpenFlow [1] and its

advanced version P4 [2], but not for middleboxes. A data

communication network has two types of devices, switches and

middleboxes. Switches (including routers in the broader sense)

provide packet forwarding. Middleboxes are used for wide

variety of networking and security purposes such as Network

Address Translation (NAT), Load Balancing (LB), firewalls

(FW), proxies, IPSec gateways (VPN), and network Intrusion

Detection/Prevention Systems (IDS/IPS).

A dataplane abstraction for middleboxes is needed to re-

alize the vision of software-define middleboxes (SDM). S-

DMs provide network operator the ability to dynamically

load/unload various network functions without changing the

network hardware, similar to what OpenFlow/P4 provides

for the switches. For software-define middleboxes (SDMs), a

data plane abstraction should be both platform independent
and fully extensible. Platform independence decouples the

data plane function semantics and the underlying hardware

that realizes the network function. This allows third-party

SDM program’s data plane to execute at any SDM boxes

(i.e., SDM compliant middleboxes) with same semantics but

different performance depending on hardware adequacy. Fully

extensible means that any new middlebox functionality can be

defined by an SDM program abstraction, which is critical to

enable innovation for middleboxes. For example, this enables

design of a new packet encryption algorithm for VPN, define

a new flow state in the data plane for firewall, or subscribe to

an event when a specific condition is trigged for IPS.

In this paper, we propose OpenFunction, an extensible

and platform independent data plane abstraction protocol for

software-defined middleboxes. OpenFunction architecture con-

sists of a logically centralized OpenFunction controller and a

number of OpenFunction boxes distributed around a network,

where every box implements OpenFunction abstraction layer,

Fig. 1. OpenFunction abstraction exposes an extensible set of

FW CP NAT CP LB CP

Management SchedulingOpenFunction
Controller

FW DP 1

OpenFunction Shim Layer

NAT DP 1

OpenFunction Abstraction Layer

SDM Box 1 Hardware Resources

FW DP 2

OpenFunction Shim Layer

LB DP 1

OpenFunction Abstraction Layer

SDM Box 2 Hardware Resources

Fig. 1. Software-Defined Middlebox Architecture

elements to the control plane using the modular style. An

SDM programmer needs not to be aware of the underlying

hardware features of SDM boxes: just define the behaviour

of data plane as a data flow graph of processing elements,

and focus on the application logic of control plane. Under

the hood, OpenFunction defined data plane can be realized by

a platform dependent implementation that fully leverages the

hardware features of the underlying SDM box. To support new

operations, OpenFunction provides a platform-independent

pseudo language for specifying customized elements beyond

those predefined ones; such a platform-independent pseudo

program can be compiled to a platform-dependent element by

the underlying box.

II. OPENFUNCTION BASED SDM ARCHITECTURE

In OpenFunction, a network function (such as NAT, LB, or

FW) is implemented by a Control Plane (CP) process and a

set of Data Plane (DP) processes running on OpenFunction

boxes. The CP and DP processes communicate with each

other using the OpenFunction protocol. The CP process has a

global view (via the controller) and its main role is to manage

and deploy the DP processes according to required middlebox

functionality. It receives events from DP processes, analyses,

makes decisions, and sends commands to DP processes to

enforce its decisions. A DP is modeled as a directed acyclic

graph where each node is an element that implements mid-

dlebox functionality. A DP process has a local view of the

network, it receives commands from CP and its main role

is to process data plane packets accordingly. Based on the

processed traffic, it may generate events for its corresponding

CP process. We call a CP process together with its group

of DP processes a Software-Defined Middlebox (SDM). With

OpenFunction, implementing a middlebox functionality on

the data plane becomes much simpler as it mostly involves

composing a graph of pre-defined elements, possibly with

a few user-defined elements. Thus, SDM developers mostly

2016 IEEE 24th International Conference on Network Protocols (ICNP)
Poster Paper

1
978-1-5090-3281-5/16/$31.00 ©2016 IEEE

focus on designing CP programs, which are often the most

innovative part of their implementation.

OpenFunction data plane abstraction is element oriented,

similar to Click. OpenFunction exposes an extensible set of

elements to the control plane. An element is a self-contained

and functionally independent packet processing unit, such

as decreasing the TTL field. The semantics of an element

is to take a packet as its input, perform some operations,

and either push the packet to the next element or wait for

the next element to pull the packet. Each element object is

an instance of an element class. Three element classes are

actions, states and events. For example, an element may need

to update the flow counter state whenever a packet passes

through this element; another element may send an event to

the control plane. There are two kinds of elements: pre-defined

and user-defined. Pre-defined elements are those supported by

OpenFunction compliant boxes and user-defined elements are

those written by users using a platform-independent pseudo

language. We allow multiple DP processes running on the

same OpenFunction box, similar to router visualization, where

in the same box, different DP processes belongs to different

CP processes for different middlebox functions.

The main challenge is how to abstract packet operations,

flow states and event generations with elements. A data packet

should be abstracted first before any access operation can be

defined over it. There are three types of flow states: per-flow,

multi-flow, or global. For example, an IDS’s data plane might

need to record packet counts of each flow, of flows to each

destination, and of all the pass-through flows simultaneously.

Some operations might depend on the flow states as input: for

example, send an event to control plane when the number of

packets to a destination exceeds a given threshold. Events can

be used in various form according to control plane require-

ments. Apparently, explicitly defining different states/events

for each application scenario separately would result in the

exponential growth of the number of elements and unnecessary

duplicate implementation.

The key design idea of OpenFunction is that action-

s/states/events operations are defined in a uniform pattern and

independent from each other. Also, it separates three kinds

of primitive data plane processing elements: action, state and

event. An action element can modify packet data, but can not

modify a state or issue an event to control plane; a handful

number of state elements are dedicated to update the state

records; several event elements are dedicated to issue events.

OpenFunction protocol treats every state as a record in a

conceptually global key-value store. As a result, states can

be accessed in a uniform way. OpenFunction treats the trigger

condition of each event as a boolean expression, and the event

as a formatted string. As a result, event elements can be

abstracted in the evaluate-format form.

OpenFunction dataplane faces various other challenges.

First, an SDM box may implement different kinds of network

functions simultaneously; as a result different elements may

interact with each other to complete the service chain. Second,

different elements may need to be loaded/unloaded dynamical-

ly to support different network functions’ requirements. Dur-

ing load/unload, the OpenFunction box must not experience

packet drops and hence degrade application performance. We

propose a bufferless in-box service chaining based solution to

address these challenges. OpenFunction box runs a parent pro-

gram that creates the memory and defines the data structures

for child processes. Each element is then started as a child

process that can use the shared memory.
III. PROTOTYPE IMPLEMENTATION

We build a proof-of-concept system to verify the Open-

Function abstractio. We develop OpenFunction boxes based

on Netmap [3], intel DPDK [4], and NetFPGA [5]. We

implement NAT and IPSec gateway as two stateless SDMs on

these platforms. The NAT middlebox performs simple address

translation; the mapping table is stored in its CP process and

the mapping item is send to a DP process when the first

packet of a flow comes in. The IPSec gateway uses ESP tunnel

model with AES-EBC encryption. The CP negotiates with

the remote peer, and sends command to DP processes after

security negotiation.

To evaluate, we use a small topology with five DPDK

middleboxes and generate TCP flows between source and des-

tination. We initiate flows on path 1 and path 2 which initiates

flow rule installation in the switches along the datapath and

calculate datapath setup times. Our evaluation shows that it

takes less than 100 msec to add a new datapath or service

chain in the network. Also, OpenFunction adds less than 20

usec per SDM DP in the service chain.

Lastly, we test the OpenFunction specification performance

for the data plane abstraction of each SDM. For each SDM,

we use same set of OpenFunction specifications. We test with

both small size packets (60 bytes) and large size packets (1400

bytes). Table I shows the throughput performance. For non-

stateful SDMs (NAT and IPSEC), DPDK box achieves higher

throughput than Netmap-based box in almost all the scenarios.

This demonstrates that, even with the same OpenFunction

abstraction implementation, the performance actually relies on

underlying systems.
TABLE I

THROUGHPUT OF OPENFUNCTION MIDDLEBOXES

Netmap DPDK FPGA

NAT Small 0.14 Gbps 1.84 1.64 Gbps
NAT Large 0.20 Gbps 9.96 9.34 Gbps

IPSEC Small 0.02 Gbps 1.2 2.61 Gbps
IPSEC Large 0.17 Gbps 2.8 9.35 Gbps

Acknowledgement
This work is partially supported by the National Science Founda-

tion under Grants CNS-1318563, CNS-1524698, and CNS-1421407,
and the National Natural Science Foundation of China under Grants
61472184, 61321491 and 61602194, and the Jiangsu High-level
Innovation and Entrepreneurship (Shuangchuang) Program.

REFERENCES
[1] Nick et. al. Openflow: Enabling innovation in campus networks. ACM

SIGCOMM CCR, April 2008.
[2] Pat et. al. P4: Programming protocol-independent packet processors. ACM

SIGCOMM CCR, 2014.
[3] Luigi Rizzo. netmap: A novel framework for fast packet i/o. In USENIX

ATC, 2012.
[4] DPDK Intel. Data plane development kit.
[5] Lockwood et. al. Netfpga–an open platform for gigabit-rate network

switching and routing. In IEEE MSE, 2007.

2016 IEEE 24th International Conference on Network Protocols (ICNP)
Poster Paper

2

