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a b s t r a c t

Video-on-Demand (VoD) streaming counts for the largest share of Internet traffic, and com-

monly relies on P2P–CDN hybrid systems. In such hybrid systems, a peer’s upload bandwidth

utilization is critical to P2P mode, thus the bandwidth allocation algorithm is important to

the performance of VoD streaming. The current research either makes impractical assump-

tions, or is inefficient in real scenarios. Meanwhile some industrial practice such as additive-

increase/multiplicative-decrease (AIMD) heuristic, although effective in practice, lacks theo-

retical foundation. This paper develops an optimal bandwidth allocation algorithm for hybrid

VoD streaming. Specifically, we propose a novel Demand Driven Max-Flow Formulation, which

treats each peer’s bandwidth demand as the flow commodity. The proposed distributed Free-

for-All Push–Lift algorithm can solve the formulation in each peer, and is free of any lock, shared

memory and atomic operation. Following the theoretical analysis, we implement the algo-

rithms in real-world VoD streaming systems. Through extensive evaluations we demonstrate

that our approach can provide high-quality bandwidth allocation for hybrid VoD systems.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Motivation Online streaming has been dominating the

Internet traffic [1] and Video-on-Demand (VoD) is the pri-

mary method of content consumption [2,3]. Among VoD ser-

vices, some services such as NetFlix and Hulu rely purely on

Content Distribution Networks (CDNs) while others exploit

Peer-to-Peer (P2P) transport to reduce service cost [4–6]. A

growing trend is however leveraging P2P–CDN hybrid sys-

tems [5–10] for VoD services, where the contents requested

by a user are delivered by either her peers or the CDN . Most

modern P2P streaming networks are operated in such a hy-

brid mode. One representative example is the RTMFP-based

P2P support of Adobe Flash platform [11]. In such hybrid plat-
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forms, it is beneficial to maximize the content distribution

through peers rather than CDN due to CDN hosting costs.

The upload bandwidth utilization of peers is critical for

VoD in P2P mode. Each peer has two roles: uploader and

downloader. The more upload bandwidth a peer could ex-

ploit from its neighboring peers, the more data it could

download from them. For hybrid systems, more downloaded

data from peers translates to fewer video piece missing

events in the P2P mode [12,13], hence reducing data serviced

from CDN servers.

However, the existing approaches are ineffective or in-

adequate in optimizing the upload bandwidth utilization

for peers. Many of the prior research either make imprac-

tical assumptions, or are inefficient in real-world scenarios.

Some works such as [14,15] assume a complete connected

graph, which is not realistic in real P2P systems. Zhao’s

work [16] showed that with a random peer selection and

uniform bandwidth allocation, a system can asymptotically

achieve a close to the optimal streaming rate if each peer
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maintains O(log N) downstream neighbors. For every practi-

cal system, there is an upper bound of the number of neigh-

bors; there are also many scenarios where the uniform rate

allocation certainly cannot work efficiently (see Section 3 for

details). To the best of our knowledge, the common indus-

try practice is based on the additive-increase/multiplicative-

decrease (AIMD) heuristic. Motivated by TCP congestion con-

trol [17], AIMD is a simple allocation protocol in the P2P over-

lay layer [2,18]. Although proved effective in practice, AIMD

lacks theoretical foundations thus is not extensible.

We are motivated to model the bandwidth allocation

problem in hybrid VoD platforms and provide efficient so-

lutions. Central to the upload bandwidth utilization is the

bandwidth allocation algorithm, which decides in each peer

how its bandwidth should be allocated to its neighboring

peers. We aim to design such a bandwidth allocation algo-

rithm that satisfies two important criteria. First of all, a good

algorithm should not leave (much) unused bandwidth. Due

to the pressure of market competition, the video streaming

rates become higher and higher; usually in a video channel,

peers’ aggregated upload bandwidth is either almost equal to

or less than the aggregated steaming bandwidth demand. It

is beneficial to maximize the overall bandwidth utilization.

Second, a good algorithm should allocate to each peer just

enough bandwidth that can support the streaming rate. For a

single peer, if the aggregated allocated bandwidth is less than

the rate, it would download a significant portion of data from

CDN, which needs to be prevented. The allocated bandwidth

should not be (much) larger than the streaming rate either:

each peer is consuming the video at the same rate; a peer ex-

ploiting unnecessary bandwidth is just accumulating its own

buffered data. If the peer quits the channel early or skips the

segment, which are very common [5], all downloaded data

are wasted. In summary, unnecessary bandwidth in one peer

would eventually reduce the download rates of others, which

in turn deteriorates the performance of the whole system. In

designing such an algorithm, we would like to ensure that the

approach is guided by theoretical analysis, and implemented

under practical constraints of real VoD systems.

Challenge In practice it is challenging to design an opti-

mal bandwidth allocation algorithm as explained below.

The first challenge is how to formulate the optimal objec-

tive. To maximize peers’ contribution, a max-flow formula-

tion is the natural choice. The real question is: directly mod-

eling allocated bandwidth between a pair of peers as flow

commodity is intuitive, while not suited for the receiver-

driven nature of streaming systems (see Section 4 for details).

The second challenge is how to solve the optimal formula-

tion. Bandwidth allocation has to be solved in a distributed

manner. Centralized scheduling is not applicable in P2P sys-

tems: the topology of peer connections is inherently dy-

namic, while a centralized control has to re-calculate the

max-flow problem each time a peer joins or leaves the chan-

nel and then has to distribute the results back to every peer.

The third challenge is how to convert the theoretical de-

sign to a practical implementation. The real P2P scenarios have

many requirements: e.g., after agreement of bandwidth allo-

cation between an uploader and a downloader, how to re-

alize it in an uploader? What if the promised bandwidth is

temporarily larger or lower than the actual bandwidth? How

to tolerate topology dynamics?
Contribution We make the following contributions in

this paper to address the challenges:

• We propose a Demand Driven Max-Flow Formulation,

which treats each peer’s bandwidth demand as flow com-

modity. This formulation is friendly to the receiver-driven

nature of streaming systems (Section 4).

• We propose a distributed Free-for-All Push–Lift algorithm

to solve the optimization formulation and overcomes real

distributed system constraints, such as the lack of global

locks, shared memory and atomic operations (Section 5).

• We transform the theoretical design into a practical im-

plementation by meeting real system requirements, such

as piece scheduling and topology dynamics (Section 6).

• We conduct extensive evaluations and demonstrate that

the proposed approach can provide high quality band-

width allocation for hybrid VoD systems. In every sce-

nario, its performance is better than AIMD (Section 7).

The rest of paper is organized as follows. Section 2 dis-

cusses the related work. Section 3 gives the background of

hybrid VoD systems and the bandwidth allocation problem.

Section 8 concludes the paper.

2. Related work

There are two previous studies closely related to our re-

search. Although Yu and Chen model bandwidth allocation in

P2P systems as a max-flow problem, they use a Supply-Driven

formulation [19]. As mentioned in Section 4, Supply-Driven is

not well suited for distributed receiver-driven nature of P2P

systems. Also, their work solves the formulation using a cen-

tralized multi-stage max-flow algorithm. We have pointed

out that centralized scheduling is not applicable in P2P sys-

tems, given that the topology is highly dynamic. Therefore,

Yu’s work of applying centralized computation on a static

graph is impractical for hybrid streaming networks. He et al.

present a systematic study on the throughput maximization

problem in P2P–VoD applications [20]. A fully distributed al-

gorithm is proposed for both buffer–forwarding and hybrid–

forwarding architectures. The basis of their algorithm is

linear programming with Lagrangian duality. However, any

changes in peer’s upload or download bandwidth requires a

new programming execution on the whole graph. It is also

thus impractical for highly dynamic P2P systems.

There are research studies on bandwidth allocation for

multi-tree based overlay networks [21,22], which are related

to P2P based VoD streaming. Our paper focuses on mesh-

based hybrid VoD networks without content bottlenecks. To

our knowledge, this is the first paper that presents a proved

distributed algorithm, and implements a practical design for

such systems. Bradai et al. focus on bandwidth allocation and

the incentive mechanisms for layered video streaming [23];

our paper instead focuses on the widely supported non-

layered VoD systems.

Some research papers also involves bandwidth allocation

but in the scope of live streaming. Wu et al. propose band-

width allocation algorithms to properly provision bandwidth

among multiple live streaming channels [24]. ShadowStream

project directly uses the industry AIMD approach [12,13]. One

of our previous work also deals with topology dynamics such
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Fig. 1. Video buffer at time: (a) t; (b) t + 1.
Fig. 2. Neighboring relationship.
as seek operation and peer nodes join/departure [3]. All these

works are orthogonal to the research in this paper.

Most modern hybrid P2P streaming systems have their

root in BitTorrent-like P2P systems [7,8]. Tit-for-Tat is used

to guide bandwidth allocation in BitTorrent [25]. Qiu and

Srikant develop a fluid model for BitTorrent-like content-

distribution systems [26]. Cl³evenot-Perronninet al. further

improve it to a multiclass fluid model, which models both

heterogeneous peer accesses and multiple differentiated ser-

vice classes [27]. Bandwidth allocation in these BitTorrent-

like systems aims for the completion of download the whole

content. Instead, bandwidth allocation in streaming focuses

on maintain a downloading rate at least equal to the stream-

ing rate.

3. Bandwidth allocation in hybrid VoD systems

3.1. Basics of hybrid VoD streaming

A hybrid streaming network is typically BitTorrent-like.

Video data are encoded to small clips (i.e. , pieces), and for

simplicity of explanation, we assume that each piece con-

tains 1 s of video. Guided by a tracker, peers viewing the same

video form an overlay network to relay video pieces through

the overlay topology. A peer in the channel exchanges piece

bitmaps with its neighbors so that the neighbors can request

video pieces from it. A peer could download pieces from CDN

if it cannot download them from any of its neighbors.

The key data structure maintained by a peer is its video

buffer, which keeps track of pieces to feed a media player.

Fig. 1(a) is an example illustrating the status of a video buffer

at time t. A shaded piece is one that has been downloaded.

We follow a convention that the index of a piece is the time

of that piece in the video.

There are two windows: P2P window and urgent window.

The left most piece of the P2P window is called checkpoint;

the left most piece of urgent window, which is also the next

piece to be delivered to the media player, is called playpoint.

For the example in Fig. 1(a), the checkpoint is 91 and the play-

point is 88.

The windows, checkpoint and playpoint advance syn-

chronously in time domain. Fig. 1(b) shows the video buffer

at the next time t + 1. If the peer is not able to download piece

91 in P2P window before the checkpoint, we say that piece

91 is missing. Subsequently, piece 91 moves into the urgent

window, and the peer would have to download it from the

CDN.
3.2. Bottlenecks analysis

There are two types of bottlenecks that could affect the

bandwidth allocation between a pair of P2P peers: link bot-

tleneck and content bottleneck. Link bottleneck is the path

capacity from an uploader to a downloader. Due to the asym-

metric nature of current access networks [28], usually the

upload bandwidth dominates the link bottleneck. Content

bottleneck is critical in live streaming: an uploader cannot

supply a bandwidth to a downloader that is larger than its re-

ceived bandwidth [29], due to the synchronous content con-

sumption nature.

However, content bottleneck can be removed in VoD by

smart neighboring. The content consumption in VoD is asyn-

chronous. Besides P2P window and urgent window, the video

buffer also keeps some pieces older than the playpoint in

a back buffer, so that the peer can serve other peers that

lag behind in the viewing progress. As shown in Fig. 2, by

neighboring peers that were close in playpoint positions, and

assigning peers with faster playpoints as the uploaders to

slower peers, the system can completely remove the content

bottleneck.

3.3. Bandwidth allocation

Bandwidth allocation is important to peers’s upload

bandwidth utilization. Shown in Fig. 3(a) is an example

topology. We assume that peer A, B and C each has an upload

bandwidth of 20 while B, C and D each has a download de-

mand of 20 (assuming A has finished viewing the video). The

optimal bandwidth allocation is shown in Fig. 3(b), where

no additional CDN capacity is needed. As mentioned above,

the state-of-art research is inefficient in many scenarios.

For example, uniform bandwidth allocation [16] would allo-

cate only half of the required bandwidth to D, as shown in

Fig. 3(c).

As an industry practise, AIMD could utilize available

bandwidth efficiently, but not optimally. The reason is that

AIMD heuristically makes decisions locally; it is hard to con-

verge due to the lack of cooperation among peers. More

specifically, even if all peers are already in optimal alloca-

tion, the heuristic AIMD would unnecessarily probe again.

For example, suppose all peers already converge to the op-

timal state of Fig. 3(a); in the next step, shown in Fig. 3(d),

AIMD would unnecessarily increase the bandwidth by m/n

in links (A → B)/(B → C); as a consequence, the bandwidth in

links (A → C)/(B → D) are reduced too; the whole system goes

back to a suboptimal state and the performance is degraded.
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Fig. 3. Bandwidth allocation example (a) topology (b) optimal (c) uniform (d) AIMD.

Fig. 4. Formulation (a) roles (b) Supply-Driven (c) Demand-Driven.
Low Extra Delay Background Transport (LEDBAT) [30] is

a delay-based congestion control algorithm that can exploit

available bandwidth while limit the increase in delay. It is

used by Apple for software updates and by BitTorrent for

transfers. However, when compete with TCP, it backs off ear-

lier since it is delay-sensitive while traditional TCP is loss-

sensitive. Also, LEDBAT could invite an arm race among P2P

software companies, by setting different target delay val-

ues [31]. To our best knowledge, many P2P streaming com-

panies use AIMD for congestion control, such as PPLIVE [5].

3.4. Multi-rate support

Multi-rate support is necessary to deal with the inherent

heterogeneity among streaming users. For example, a user

inside an ADSL network usually has much lower uplink and

downlink bandwidth compared with another user in an en-

terprise network.

There are two common multi-rate layered coding ap-

proaches: Scalable Video Coding (SVC) [32] and Multiple De-

scription Coding (MDC) [33]. SVC generates from source one

base video layer and several enhancement layers; the base

layer is required for decoding in all receivers; the enhance-

ment layers are optional and can be received to improve

video quality. As a comparison, MDC generates multiple sub-

streams, and each substream can be independently decoded;

the more substreams received, the better the video quality.

Multi-rate coding schemes all have coding overhead: com-

pared with single-rate coding for the same quality, SVC has

an overhead of around 10%, and MDC is around 30% [32,34–

36]. As a result, they are not widely accepted by the industry

yet due to increased consumption of bandwidth.

Another multi-rate approach is Partitioning, which is

non-layered coding and widely used for dynamic stream-

ing [37]. A single source is encoded to several versions

with different qualities and rates; specific receivers are par-

titioned to different groups according to their received ver-

sions; only receivers in the same group can help each other,

as content are different among groups. Apparently, Partition-

ing has no coding overhead. A receiver could switch to an-

other version; the process is equivalent to leave one P2P

swarm and join another. As mentioned above, in this paper

we focus on the non-layered Partitioning scenario; in such

a multi-rate context, our algorithm performs allocation in a
single receiver group. We leave the research in the layered

coding scenarios to future work.

4. Demand-Driven formulation

We formulate the bandwidth allocation problem in this

section. Shown in Fig. 4(a), two roles of a peer are modeled

as separate nodes: the peer name with an underline indi-

cates the downloader role and the name with an overline in-

dicates the uploader role. Such abstraction allows us to pre-

cisely model the operations of a peer.

To maximize peers contribution, a max-flow formulation

is the natural choice. A flow network is a directed graph G =
(V, E) with |V | = n nodes and |E| = m edges; s and t are the

source and sink, respectively. For each edge (u, v), we define

a non-negative capacity value c(u, v). The notation f, called

a flow, on G is a function on the edges that satisfies three

constraints: (1) capacity constraint, the flow along each edge

does not exceed the capacity of this edge; (2) conservation

constraint, at each node u except the source and the sink, the

excess flow e(u), defined as the difference between the incom-

ing and outgoing flows, is equal to zero; (3) anti-symmetry

constraint, f (u, v) = − f (v, u). We also define c f (u, v) as the

residual capacity where c(u, v) − f (u, v), and the residual

graph Gf(V, Ef), where E f = {(u, v)|u∈V, v∈V, c f (u, v) > 0}.

The goal of max-flow is to maximize the value of the flow,

which is the net flow out of the source
∑

V f (s, v).
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Fig. 5. Demand-Driven formulation of the example.
We could model flow commodity as either the allocated

bandwidth from an uploader points to a downloader (Supply-

Driven in Fig. 4(b)), or the requested bandwidth from a down-

loader points to an uploader (Demand-Driven in Fig. 4(c)). Al-

though mathematically they are symmetric formulations, the

choice of the flow commodity model has to take into consid-

eration the realistic application behavior.

A key observation is that in a real-world streaming sys-

tem, a peer needs to dynamically control its requested band-

width. The requested bandwidth usually is closely related

to the buffer vacancy ratio: it should be just enough to sup-

port the streaming rate when the buffer is almost full, and it

should be larger when the buffer is close to empty. That is,

streaming systems have a receiver-driven nature.

A Supply-Driven model is not well suited for distributed

receiver-driven application scenarios like in VoD systems.

When the demand increases in a downloader, it has to poll

every uploader to check whether there is excess flow to push,

and wait for each uploader’s reply. As a comparison, the

downloader could directly start the next round operation in

a Demand-Driven formulation. Therefore, we choose to use

Demand-Driven model in our analysis and optimization.

Shown in Fig. 5 is the Demand-Driven formulation of

the Fig. 3(a) topology. As mentioned above, we could omit

all other bottlenecks along the path except the peer up-

link. There are constraints on the vertices and edges in the

downloader–uploader topology as listed below:

• A virtual source node has outbound edges to every down-

loader; the capacity of each edge is equal to the band-

width demand of each peer.

• Each downloader vertex has outbound edges to uploader

vertices according to the neighboring relationship. The

capacity of each edge is equal to the downloader demand.

• Every uploader vertex has an outbound edge to the virtual

sink node, each of which has a capacity limit equal to the

uploader bandwidth.

5. Distributed algorithms for the max-flow problem

5.1. Choices

There are two main types of solutions to the max-flow

problem: augmenting path [38] and push–relabel [39]. The

augmenting path method is more suitable for sequential im-

plementation and proved to be inefficient by industry prac-

tice. Therefore, we develop our solution to be of push–relabel

type.
A push–relabel algorithm relaxes the capacity constraint

in the execution procedure. It maintains a pre-flow and a

height label in each vertex, and uses push and relabel oper-

ations repeatedly to update the pre-flow and height until a

maximum flow is found. For any vertex u who has excess

flow, either push or relabel operation needs to be applied. The

push operation sends flow from higher vertices to the lower

ones. Suppose h(u) is the current height of u, then push(u,v) is

applicable when h(u) = h(v) + 1 and (u, v)∈E f . When u has

excess flow but h(u)≤h(v) where (u, v)∈E f , relabel operation

is applied to set h(u) = min{h(v) + 1|(u, v)∈E f }.

Most of the existing parallel push–relabel implementa-

tions rely on locks to protect every push and relabel opera-

tion [40,41]. For example, Anderson and Setubal’s global rela-

beling periodically updates the distance labels to be the exact

distance to the sink [41]. Bader’s gap relabeling uses heuris-

tics with considerations of the cache performance [40]. Al-

though locks can protect every push and relabel operation,

they would degrade the performance in large scale parallel

scenarios such as our hybrid streaming networks.

Hong’s lock-free multi-threaded variant serves the basis

of our design [42]. The major modifications to the original

push–relabel are: (1) flow is pushed to the lowest neighbor,

instead of to a neighbor whose height is lower by just 1, and

(2) relabel operation increases the node’s height by 1 based

on its lowest neighbor’s height. Figuratively speaking, the re-

label operation can be renamed as lift.

Both push and lift operations can be divided into two

stages: preparation (check whether an operation is applica-

ble) and fulfill (execute the operation). For vertex u, the im-

plementation defines h(u), e(u), c f (u, v) as the global infor-

mation stored in shared memory. The atomic operation and

shared memory guarantee that global information would be

loaded into per-thread private variables before any stage is

executed, so that the local information in each thread can be

up to date.

Since there are no locks, the two stages could be inter-

leaved, thus two operations can form either a stage-clean

trace, which means two operations’ stages do not have any

overlapping, or a stage-stepping trace, which means two op-

erations’ prepare stages are all executed before their fulfill

stages. Through the discussion on all the interleaved situa-

tions, Hong proved that multiple push or lift operations can

be equivalent to a sequence of non-overlapping traces, each

of which can be defined as either a stage-clean trace or a

stage-stepping trace. He further proved the correctness of his

method by discussing with the two traces.

To distinguish it from other push–relabel methods, we call

Hong’s approach as push–lift method. This method has been

deployed on a CUDA-based CPU–GPU hybrid platform [43].

The following theorem and lemmas have been proved by

previous work [38].

Theorem 1. A flow f is maximum if and only if there is no

augmenting path; that is, t is not reachable from s in Gf.

Lemma 1. For any u ∈ V, h(u) never decreases during the exe-

cution of the algorithm.

Lemma 2. During the execution of the algorithm, for any vertex

that has excess flow, either a relabel or a push operation can be

applied.
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Table 1

Messages and events: U⇒D is from uploader to downloader; D⇒U vice versa.

Message/Event Category Direction Description

MSG_PUSH NRC U⇒D/D⇒U One node pushes flow to its lowest neighbor

MSG_RELABEL NRC U⇒D/D⇒U One node relabels its height and notify to its neighbors

MSG_PIECE_REQ DDC D⇒U Downloader requests pieces from uploader, waiting for response

MSG_PIECE_REPLY DDC U⇒D Uploader replies piece request and pushes pieces to downloader

MSG_PIECE_REJ DDC U⇒D Uploader rejects piece request from downloader, no piece delivered

MSG_PEER_CONN PCC D⇒U Downloader connects to a new neighbor retrieved from the tracker

MSG_PEER_DISCONN PCC U⇒D/D⇒U One node sends disconnection signal to its neighbors

EVT_TRACKER_COMM PCC U/D periodically Each node communicates with tracker and exchanges information

EVT_REFRESH_NEIGHBOR PCC U/D periodically Node check its neighbors and exchange information periodically

EVT_PIECE_SCHEDULE DDC D periodically Downloader schedules target pieces into piece request queue

EVT_BANDWIDTH_UPDATE NRC U/D periodically Updates the supply or demand of peer
However, push-lift approach still requires shared mem-

ory and atomic operations supported from the system. In

distributed P2P-VoD systems, there is neither atomic op-

eration nor shared-memory. Information about bandwidth

allocation is recorded separately in each peer. Partial infor-

mation stored in trackers is outdated soon due to the com-

munication delays and dynamics on content consumption.

The challenge is to develop a practical design, which over-

comes the constraints of real-world distributed system by ex-

ploring the distributed characteristics of peers.

5.2. Achieving atomic-operation-free and shared-memory-free

We propose a Free-for-All Push–Lift algorithm which elim-

inates any centralized mechanisms, such as shared memory

and atomic operations. In the following we use node and ver-

tex interchangeably to describe the vertices in a graph G.

We have defined h(a) as the height of node a. Due to

information dissemination delays, the height of the nodes

may be inconsistent, thus ha(b) is defined as the height of

b is recorded in node a. Note that ha(b) may be outdated

information. We apply push and lift operations as follows:

push(a,b) applies when h(a) > ha(b); lift(a) applies and sets

h(a) = min{ha(neighbors)} + 1. The problem arises to how to

apply push or lift operations because of the uncertain and dy-

namic relationship between h(a) and h(b).

A new operation error-push is added to specifically han-

dle inconsistencies due to communication delays. Assume

push(a, b) is applied by a, but when the message arrives, b

finds that h(a) ≤ h(b) (which is ha(b) < h(a) ≤ h(b)). Then b

will return all the erroneously pushed flow back to a imme-

diately with an error-push operation. Note that error-push(b,

a) acts like push(b, a) but without preparation stage, where

the flow value is the same to the previous push(a, b) opera-

tion, and carries the current height h(b).

The uploader nodes initialize the height of virtual sup-

ply node h(t) = |V | = n. The downloader nodes initialize the

height of the virtual demand node h(s) = 0, and execute pre-

flow during initialization. After the initialization, each node

will enter a main loop to periodically check the excess flow

and receive messages from other nodes. For any node who

has excess flow, either a push or lift operation is applied. We

set that every operation carries the sender’s current height,

and height update ha(b) ← h(b) will be applied if and only if

node a receives a message that carries a higher height h(b).
The proposed Free-for-All Push–Lift algorithm is a dis-

tributed algorithm that is atomic-operation-free and shared-

memory-free. For succinct presentation, we provide the

proof in Appendix A.

6. Theory to implementation

We derive a practical implementation that is built on

our theoretical model and proposed new algorithmic op-

erations in Section 5. In this section, we first describe

the implementation framework, then present the detailed

designs.

6.1. Framework

The proposed framework includes properties of a peer

and communication patterns among peers. Peers data struc-

tures in the framework record peer states while the commu-

nications among peers are described in messages and events

that may alter the states of peers. We start by introducing the

three major components of a peer:

• Control block: It maintains an ID to uniquely identify the

peer in the network, a state flag, a message queue for re-

ceiving and processing messages, and an event queue for

events listening and responding.

• Uploader: A uploader component has two elements. One

is the node information, including node’s height, excess

flow and end-node flow (connection from virtual supply

node). The other is the information of its neighbors, in-

cluding neighbor’s height and pushed flow.

• Downloader: The data structure is similar to that of up-

loader, except that the end-node flow indicates the con-

nection to virtual demand node.

Peer communication in the framework relies on messages

and events. We introduce three sets of information exchang-

ing functions that triggered by messages/events: (1) NRC

(network resource control), bandwidth scheduling among

streaming nodes; (2) DDC (data distribution control), send-

ing and receiving video pieces; (3) PCC (peer connection

control), connecting or disconnecting neighbor peers. The

callback function corresponding to each message or event

belongs to either one of the three key sets. Table 1 lists the

detailed function descriptions and classification of messages

and events.
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6.2. Pieces scheduling

Before a downloader could request pieces from an up-

loader, the bandwidth allocation stage ascertains the band-

width that a node would share to each of its neighbors.

Functions of bandwidth allocation stage belong to the NRC

set. Functions of pieces scheduling stage belong to the DDC

set.

An uploader maintains a piece queue for each down-

loader; a weighted round robin (WRR) scheduling approach

is adopted based on the promised bandwidth. Suppose u

is an uploader for streaming resources with supply capac-

ity supply(u), and node v1, . . . , vn are u’s downloader neigh-

bors, f low(vi) where i = 1, . . . , n is the flow information

recorded in the neighbors’ list, e(u) is the excess flow of

node u. The scheduling works as follows: If e(u) is zero, all

demand from downloader neighbors can be satisfied, and

u will allocate its bandwidth based on the flow informa-

tion f low(vi). Otherwise (which implies e(u) > 0), the to-

tal demand from downloaders exceeds u’s supply capacity,

thus u will allocate its bandwidth based on the flow per-

centage that each downloader neighbor occupies, which is

supply(u) ∗ f low(vi)/
∑n

1 f low(v j).

6.3. Handling peer dynamics

Peer dynamics comes from both topology and peer states:

peers could come and leave, a single peer could adjust its up-

load bandwidth or download bandwidth. Functions of peer

connectivity belong to the PCC set. Connecting execution in-

cludes connection signal, setup of peer connection, initial

information exchange of height and initialization of flow.

Disconnecting execution includes disconnection signaling,

clean-up of peer connection and retrieval of flow.

Streaming peer may use EVT_BANDWIDTH_UPDATE to

update supplies and demands, and this call-back function

belongs to the NRC set. During the execution of bandwidth

allocation stage, we can include the changing demand and

supply bandwidth through simple flow pushing or modify-

ing the end-node flow. For instance, the increasing of supply

bandwidth can be achieved by increasing the uploader node’s

end-node flow.

6.4. Global relabeling heuristic

The global relabeling heuristic could accelerate the con-

vergence, by periodically relabeling the accurate height of

a node to the sink node in the residual graph [39]. Our

approach could also benefit from such a strategy. When

more than one neighbor has the same lowest height, the

active node could push flow to the neighbor that has

the lowest global distance. However, it requires a central

controller to run a breadth first search, and this is im-

practical for distributed systems such as the hybrid VoD

streaming.

We introduce a completely distributed global relabeling

scheme based on the observation that our formulated graph

for any topology all have just 4 levels, which means the dis-

tance between the source and sink is always 3. During the

execution, the flows will be pushed back and forth between
the uploader level and downloader level. This simple and nat-

ural graph structure allows peers to easily record its global

distance to the sink node.

The distributed global relabeling scheme is as follows:

each node has a list that records the information of its neigh-

bors. We add one global distance variable Gi for each neighbor,

which is expected to record the neighbor’s actual distance to

the sink node in the residual graph. Since the graph direction

is always from the downloader to the uploader, the exchange

logic of global distance is different. Suppose n is the number

of neighbors, the global distance of downloader node d is

Gd = min{G1, G2, . . . , Gn} + 1

and the global distance of uploader node u is

Gu =
{

1, c f (u, t) > 0
min{G1, G2, . . . , Gn} + 1, c f (u, t) = 0

6.5. Complexity analysis

The time complexity of our algorithm is O(V2E). In the

worst case, the total number of lift operations is (2 | V |
−1)( | V | −2), which is bounded by O(V2), because the

height of each node can never decreases. The number of

saturating push operations is bounded by O(VE). The num-

ber of non-saturating push operations is bounded by O(V2E)

to make sure there is no excessive flow at termination. So

the overall time complexity will be bounded by O(V2E). The

global relabeling heuristic won’t change the time complex-

ity, but will accelerate the convergence speed by providing

accurate height information of neighbor nodes using our dis-

tributed algorithm, thus the push operations can be reduced

in a practice way.

AIMD does not have a fixed value of time complexity be-

cause it has no stable termination condition. The efficiency of

AIMD can be affected by total bandwidth W, maximum seg-

ment size MSS, network topology and initial bandwidth allo-

cation of each node. To the best of our knowledge, Lahanas

and Tsaoussidis perform analysis for a two-flow AIMD case.

Let β be the backoff parameter, the number of steps converge

to fairness is O(WlogβW) [44].

7. Evaluation

7.1. Methodology

In this section, we evaluate the performance of our

proposed approach in a hybrid VoD system. A dedicated

event-driven emulator is developed based on our previous

work [12]. We focus on one key performance metric: piece

missing ratio, which is the fraction of pieces that not re-

ceived before the P2P mode deadlines. A major factor af-

fecting the piece missing ratio is the supply ratio, which is

the ratio between the total uploader bandwidth capacity

and total streaming bandwidth demand of all participating

peers.

To accurately emulate a real-world VoD system, we use

the following default settings: (1) peers are randomly as-

signed different upload bandwidth; (2) peers can connect

to new neighbors when their buffers are insufficient for

video playback; (3) a tracker is responsible for assigning new
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Fig. 6. Performance comparison with different supply ratios.

Fig. 7. Performance comparison with different scales.
neighbors with surplus upload bandwidth to the demanding

peer; (4) the peer buffer is set to 30 s; and (5) a peer’s band-

width demand is dynamically adjusted based on the vacancy

ratio of its buffer.

Three algorithms are evaluated: the industry practice

(AIMD), the uniform rate allocation algorithm (Uniform Al-

location), and our distributed push–relabel approach (Push–

Relabel). Each scenario runs 10 simulations repeatedly with

different random seeds. Each simulation emulates 1000 s of

a channel. In all scenarios, peers join into swarm pool ran-

domly within 1 s.

7.2. Bandwidth supplies

In this part, we evaluate three approaches under differ-

ent supply ratio. There are 400 peers that gradually join the

channel. Each peer may have 6–10 download neighbors and

the same number of upload neighbors. We evaluate supply

ratio from 0.7 to 1.3 in a 0.05 step.

Insufficient Bandwidth Supply: The result is shown in

Fig. 6(a). The performance of Uniform Allocation is worse

than the other two approaches, consistent with our ex-

pectation. The performance of AIMD and Push–Relabel are

close to each other when supply ratio is very small (e.g.,

0.7) while the performance of Push–Relabel achieves slightly

better performance. We conjecture that Push–Relabel cannot

exercise its full strength under such constrained scenario.

However, with the increase of supply, the performance gap

between these two approaches also increases: when supply

ratio is 1, Push–Relabel has a piece missing ratio close to 0

(0.097%) while AIMD is 5.767%. The experiment log data

confirm our expectation: as a heuristic, it is hard for AIMD

to judge when to stop probe. As a result, the allocation by

AIMD would never be stabilized hence the performance is

affected.

Sufficient Bandwidth Supply: The results are shown in

Fig. 6(b). With the further increase of bandwidth supply, the

performance gap between AIMD and Push–Relabel shrinks

again. When supply ratio increases to 1.3, the AIMD could

also achieve a piece missing ratio less than 1%. The evalua-

tion results show clearly that Push–Relabel performs always

better than AIMD.

We also present the cumulative distribution function

(CDF) of download bandwidth of peers in Fig. 6(c). The set-

ting of supply ratio is 1.05. It is clear that the distribution of
AIMD is uneven. As a comparison, Push–Relabel allocates just

enough bandwidth to almost every peer. This is the main rea-

son that AIMD has higher piece missing ratio than our Push–

Relabel approach.

7.3. Topology scaling

Next, we evaluate the performance of AIMD and Push–

Relabel under different scales of network size. The scales un-

der study include [100–500, 800, 1200, 1600, 2000] peers.

We fixed bandwidth supply ratio to 1.05. The evaluation re-

sults are shown in Fig. 7. An interesting observation is that

with the increase of network scale, the performance of AIMD

also improves. This is consistent with industry practice we

learned: the more peers, the more alternative choices for

new neighbors when AIMD failed to meet the current band-

width demand. While AIMD improves its allocation, the per-

formance of Push–Relabel is always better than AIMD.

7.4. Neighbor connectivity

We then study how the connectivity of neighbors affects

the allocation algorithms. As we vary the average degree of

peers, shown in Fig. 8, the performance gap between AIMD

and Push–Relabel shrinks with the increase of the average
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Fig. 8. Performance comparison with different numbers of neighbors.
degree. With more neighbors, AIMD is more robust to

peer dynamics, hence its performance improves. However,

in reality many systems have degree constraints: e.g., our

practice suggests that RTMFP-based Adobe Flash P2P plat-

form degrades when degree per peer exceeds 6. Therefore,

the proposed Push–Relabel has significant advantages over

AIMD as Push–Relabel performs well independent on peer

connectivity.

8. Conclusion

Video-on-Demand streaming has been dominating the

Internet traffic for a while. P2P–CDN hybrid approaches

are popular for modern VoD systems. Peers’ upload band-

width utilization is critical: more downloaded data from

peers translates to fewer video piece missing, hence re-

ducing data serviced from CDN servers. However, the ex-

isting academic approaches are ineffective or inadequate

in optimizing the upload bandwidth utilization for peers.

The industry practice is a heuristic based on the additive-

increase/multiplicativedecrease (AIMD) from TCP; it lacks

theoretical foundations thus is not extensible. Guided by the-

oretical foundation, this paper develops an optimal band-

width allocation algorithm for hybrid VoD Streaming. We

also convert the theoretical design to a practical implemen-

tation by meeting real system requirements, such as piece

scheduling and topology dynamics. Confirmed by extensive

evaluations, the performance of Free-for-All Push–Lift is bet-

ter than the industry AIMD heuristic.
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Appendix A. Proof

Lemma 3. During the execution of the algorithm, for any a, b ∈
V and (a, b) ∈ E, ha(b) never decreases. And the equation ha(b)

≤ h(b) always holds.

ha(b) indicates the height of b recorded in a, it will never be

updated until a receives a higher height from b, because of

Lemma 1, h(b) never decreases, it is straightforward to see

that ha(b) never decreases and ha(b) ≤ h(b).

Lemma 4. If the algorithm terminates, then h(u)≤h(v) + 1 for

any edge (u, v)∈E f .

The proof enumerates all interleaved execution scenarios

of push and lift operations. The initialization state satisfies the

requirement after a pre-flow operation, now we discuss the

following scenarios possibly happen afterwards.

• lift(a)operation. This operation is executed in its entirety

without interleaving with any other operations. For the

residual edge (a, b) that leaves a, before the lift implied,

we get ha(b) > h(a), since b is one of the neighbors of a,

the new height of a after lift operation will never exceed

ha(b). So we can get h(a)≤ha(b) + 1 after lift(a) operation,

the equation h(a) = ha(b) + 1 is achieved when node b is

the lowest neighbor of a. For the residual edge (c, a) that

enters a, we have hc(a) > h(c) before the lift operation is

applied, and the height of a never decreases since from

Lemma 1, so we obtain h(c)≤hc(a) + 1 afterwards.

Lemma 3 leads to ha(b) ≤ h(b). So, for the first case that

leaves a, h(a)≤ha(b) + 1≤h(b) + 1, for the second case

that enters a, h(c)≤hc(a) + 1≤h(a) + 1.

• push(a,b) operation. This push operation is also executed

in its entirety without interleaved with any other opera-

tions. Note that we must have (a, b) ∈ Ef and h(a) > ha(b)

for push(a,b) to be applicable. Under this scenario, there

are two cases that may occur.

1. The push(a,b) operation is successful. This case im-

plies that h(a) > h(b) and hb(a) is updated to be equal

to the current h(a). Thus we have h(b)≤h(a) + 1. If

this operation removes (a, b) from Ef, the removal

of residual edge also removes the requirement that

h(a)≤h(b) + 1. If push(a,b) does not remove (a, b) from

Ef, which means (a, b) ∈ Ef and (b, a) ∈ Ef. We can ob-

tain h(b)≤h(a) + 1 from above discussion. For the re-

sult of h(a)≤h(b) + 1, we can start iterating from the

initialization state. After pre-flow operation, the state

satisfies Lemma 4, and thus h(a)≤h(b) + 1. Also, we

got h(a) > h(b) from the successful push, so we can get

h(a) = h(b) + 1, and the in-equation h(a)≤h(b) + 1

still holds after the operation push(a,b). This iteration

will continue with the same result under this case.

This will lead to h(a)≤h(b) + 1 at last.

http://dx.doi.org/10.13039/501100004826
http://dx.doi.org/10.13039/501100005632
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2. The push(a,b) operation is an error push. This case im-

plies that h(a) ≤ h(b), so b will push the flow back to

a, hb(a) is also updated to be equal to current h(a). If

the process of error push removes the (b, a) in Ef and

inform a of the latest height of b, the requirement that

h(b)≤h(a) + 1 will also be canceled. We got h(a) ≤
h(b), and obviously h(a)≤h(b) + 1 is satisfied. If (b, a) ∈
Ef exists after the back push operation, h(a)≤h(b) + 1

can be obtained from above discussion. Also, due to

the existence of (b, a) from Ef, we are sure that a at

least pushes to b once successfully. Right after that

successful push(a,b), there is hb(a) > h(b), so even after

b lifts its height, from the discussion of scenario 1, we

can get h(b)≤hb(a) + 1, and because of hb(a) ≤ h(a),

we get h(b)≤h(a) + 1.

• lift(a) and lift(b) interleaved. For this scenario, we may

have four cases to discuss.

1. (a, b) ∈ Ef and (b, a) ∈ Ef. In this case, we must

have h(a) = ha(b) and hb(a) = h(b), or push opera-

tion will be applied. Because of hb(a) ≤ h(a) and ha(b)

≤ h(b), the four formulas give us h(b) ≤ h(a) and

h(a) ≤ h(b), which is h(a) = h(b) = ha(b) = hb(a). If

lift(a) is applied, we can get h(a) ≤ ha(u), where (u,

a) ∈ Ef. So u is exactly b and the min height will be

just ha(b), and lift(a) sets h(a) = ha(b) + 1. Similarly,

lift(b) sets h(b) = hb(a) + 1. So after two lift opera-

tions from a and b, we can still get h(a) = h(b). Thus

h(a)≤h(b) + 1 is maintained for the residual edge (a,

b) and h(b)≤h(a) + 1 is maintained for the residual

edge (b, a).

2. (a, b) ∈ Ef and (b, a) �∈ Ef. In this case, we can

get h(a) < ha(b) from the single direction resid-

ual edge, also we know ha(b) ≤ h(b). lift(a) sets

h(a) = min{ha(v)} + 1 where (a, v)∈E f . This ensures

h(a)≤ha(b) + 1. h(b) even further increases after lift

operation. So h(a)≤h(b) + 1.

3. (a, b) �∈ Ef and (b, a) ∈ Ef. This case is symmetric to case

(b).

4. (a, b) �∈ Ef and (b, a) �∈ Ef. This case implies that there is

no residual edge between a and b, which means the

lift operations of a and b are not constrained by each

other.

• push(a,b) and push(b,c) interleaved. push(a,b) can be ex-

ecuted either before or after push(b,c) in its entirety. So

this scenario can be reduced to scenario 2 with the same

analysis.

• push(a,b) and lift(b) interleaved. We have two cases to

discuss based on the result of push operation.

1. The push(a,b) operation is successful. In this case,

if lift(b) applies first, then lift has nothing to do

with the push(a,b) operation afterwards, and this case

can be reduced to scenario 1 and 2, respectively.

If the push(a.b) operates first, then h(a) > h(b) and

hb(a) updates to h(a). From scenario 1, we can get

h(b)≤hb(a) + 1, thus h(b)≤h(a) + 1.

2. The push(a,b) operation is an error push. Due to the

process of error push, b will send the same flow back

to a. Consequently, push(a,b) actually does not apply,

and this case can be reduced to scenario 1, only lift(b)

applies.
• push(a,b) and lift(a) interleaved. This scenario is impos-

sible. From Lemma 2, either a push or a lift operation can

be applied. These two operations can never apply at the

same time within one node.

• push(a,b) and push(b,a) interleaved. Since h(a) > h(b)

and h(a) < h(b) cannot be satisfied at the same time, it

is easy to see that at least one push will fail. So we discuss

the possible two cases based on the number of error push.

1. One error push. This case implies that h(a) �= h(b). Sup-

pose h(a) > h(b), then push(b,a) is an error push, the

result is equivalent to single push(a,b), so this case can

be reduced to scenario 2. For h(a) < h(b) vice versa.

2. Two error pushes. This case will only happen when

h(a) = h(b). And the result of this case is equivalent

to nothing happens, all the equations before two error

pushes will remain the same afterwards.

• More than two operations interleaved. The discussion

is similar to the above and conclusion is the same, details

are omitted.

Theorem 2. Given graph G, if the algorithm terminates, the cal-

culated flow f is the maximum flow for graph G.

Assume there is a path from s to t, which is marked as

s→u1→ . . .→uk→t where k≤n − 2. According to Lemma 4,

since each edge of this path is in Ef, we have

h(s)≤h(u1) + 1, h(u1)≤h(k) + 1, . . . , h(un−2)≤h(t) + 1

The number of nodes in the path is n − 2 apart from s and t,

so h(s)≤h(t) + n − 1. However, when initializing the source

and sink nodes, we set h(s) = |V | = n and h(t) = 0, and the

height of s or t never changes during the execution. The exis-

tence of the path contradicts the fact that h(s) = h(t) + n, so

there is no path from s to t when the algorithm terminates.

Based on Theorem 1, no path can reach t from s in Gf, so the

flow f is maximum flow for graph G.
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