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Abstract— Traffic condition monitoring is important to nowa-
days metropolitan. A recent trend is to exploit the prevalence of
Global Positioning System (GPS) embedded in public vehicles.
The collected data forms a two dimensional traffic condition
matrix (TCM), i.e., time slot and road segment. The problem
is that the TCM directly obtained from the probed data is
incomplete. Traffic estimation can complete the TCM by filling
the missing entries. We find that in practice it is challenging
to reliably estimate a TCM. First, The distribution of probed
data is uneven among road segments. Second, most entries
of probed data are unreliable since they are the average
of only a few reports. Our approach is Weighted Spatio-
Temporal Compressive Sensing. Demonstrated by extensive
large scale computational experiments, the estimation error of
our approach reduces to just half of the baseline approach.

I. INTRODUCTION

Traffic condition monitoring is important to nowadays
metropolitan. The ultimate goal is to determine the traffic
condition of every road segment at every time. Road in-
frastructure planning, traffic management, road engineering
and personal route planning all can be benefit from accurate
traffic monitoring. Traditional approaches, such as inductive
loop detectors [1] and video cameras [2], are unscalable. Due
to their large infrastructure deployment and operational cost,
their coverage is limited to main roads only.

A recent trend of traffic monitoring is to exploit the
prevalence of Global Positioning System (GPS) embedded
in public vehicles (i.e.,taxis and buses) [3], [4], [5], [6],
[7]. Driving along a road, each vehicle periodically sends its
location and condition updates via a cellular data connection
to a data center. The probed data collected in a fixed
timeslot length (e.g., 15 minutes) are aggregated; usually
the average value of speed updates is used as the metric of
the traffic condition for a road segment at that timeslot [8].
Let each timeslot serves as a row and each road segment
serves as a column, the collected probed data forms a two
dimensional traffic condition matrix (TCM). The advantages
of using these public vehicles are: (1) large coverage of
metropolitan roads given their operational nature, and (2)
low deployment/operational cost given that a GPS receiver
is already a standard equipment in most public vehicles.

The problem is that the TCM directly obtained from the
probed data is incomplete for any reasonable timeslot length
value (i.e., minutes instead of hours or days). There are

two reasons for value vacancies. First, probe vehicles drive
according to their own wills; it should not be expected that
there would have at least one taxi in each New York road
segment at 5 AM. Second, there are serious impediments to
reliable large scale TCM data collection: GPS signals can be
blocked by urban skyscrapers or tunnels; wireless connection
could be lost; data centers could fail etc.

Traffic estimation can complete the TCM by filling the
missing entries. Leveraging the presence of certain types
of structures and redundancy in collected data, algorithms
such as KNN [9] and Compressive Sensing [10], [11] could
interpolate the matrix.

A compressive-sensing based estimation algorithm, by
Zhu et al. [6], has been proposed recently. We apply this
simple baseline approach to our dataset, which consists of
realtime updates from over 14,000 taxis traveling 6,217 road
segments in Shenzhen, China. Initially, it seems that good
results can be obtained. However, after looking deep into the
resulted matrix, we find that in practice it is very challenging
to reliably estimate a TCM.

First, The distribution of probed data is extremely uneven
among road segments. Throughout a day, some main roads
always have condition updates (i.e., busy segments); while
many auxiliary roads are always close to 0 update (i.e., idle
segments). It is intuitive that the missing values of busy
segments, if any, could be easily interpolated. While given
the already overly sparse samples, it should be extremely
hard to accurately estimate missing values of idle segments.

There are two important implications: (1) idle segments
should be the focus of traffic estimation, given they are
more likely to generate large errors; (2) average error over
all segments is a misleading metric. The baseline approach
claims to achieve a 20% average error even when 80% entries
are missing. However we find that with their approach, the
error of busy segments are very low (as expected), while
the error of idle segments are far more higher. After taking
average, this defect could be easily ignored.

Second, most entries of probed data are unreliable. Either
with just 1 or with 100 updates in a timeslot, the entry would
be considered valid. It is clear that the reliability difference
between 1 and 100 samples is huge. Ruey et al. proved that
at least 10 samples per timeslot are needed to get a reliable
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speed measurement [8]. However, this bar is too high for
majority of the probed data. As shown in Section III, even
with 30 minutes timeslot, only 50% entries are reliable; this
number reduces to 38% with 15 minutes timeslot.

There are also two important implications: (1) unreliable
probed data could be a poison to the quality of traffic estima-
tion, given these values are used when interpolating related
empty entries; (2) there is no ground truth for error evaluation
of many entries. Many times we find that the estimated
value looks intuitively “more reasonable” compared with the
probed value, which usually is averaged from just several
updates. The consequence is that the estimation error values
of such entries might be unnecessarily exaggerated.

The target of this paper is a practical solution for urban
traffic estimation via unevenly-distributed and unreliable
probed vehicle data. The contributions of this paper include:

• By analyzing a large dataset of real probed data from
over 14,000 taxis in a metropolitan with 6,217 road seg-
ments, we proved that the distribution of probed value
are uneven in both spatial and temporal dimensions;
we also proved that most entries of probed data are
unreliable (Section III).

• We fully analyze Zhu’s baseline approach; it has been
shown that due to unevenly-distributed data, idle seg-
ments are more likely to generate large errors hence
average error is a misleading metric; we also demon-
strate that unreliable probed vehicle data could degrade
the quality of estimation. (Section IV).

• Our approach is Weighted Spatio-Temporal Compres-
sive Sensing. We exploit the hidden spatio-temporal
relationship in the TCM to improve the estimation
quality of idle segments. We use weighted average
between historical and probed data together to improve
the reliability of the input values, hence reduce the
impact of poisonous data to the interpolation process
(Section V).

• Demonstrated by extensive experiments, the estimation
error of our approach for idle segments is less than 40%
of the baseline approach; the overall estimation error
reduces to around half (Section VI).

II. BACK GROUND

A. Traffic Condition Matrix Estimation

A Traffic Condition Matrix (TCM) is a non-negative
matrix X that describes the speed of traffic (e.g., kilometer
per hour) per road segment per timeslot. A road segment
is between two neighboring road intersections. In practice
the speed is typically measured over some timeslot length,
and the entry value reported is an average. The length of a
timeslot is determined by road condition dynamics, normally
in minutes. The TCM can be thought of as a two-dimensional
array X ∈ R

m × R
n (where there are m timeslots and n

segments present). The columns of X represent the road
segments at different times, while the rows represent the time
evolution of the matrix.

Let D ∈ R
m ×R

n contains the direct available probed
values and M is a m×n matrix given by

M(i, j) =

{
0, if D(i, j) is missing

1,otherwise
(1)

and .∗ denotes an element-wise product (i.e., A = B. ∗C
means A(i, j) = B(i, j)C(i, j)). Then there is a set of linear
constraints on the TCM

M.∗X = D (2)

.
The purpose of traffic estimation is seeking an estimated

matrix X̂ that satisfies the conditions imposed by Equation 2.
Normally, there are not enough information to unambigu-
ously determine X̂ ; TCM estimation is an under-constrained
linear-inverse problem.

The objective is to minimize the estimation error. The error
can be measured by using the Normalized Mean Absolute
Error (NMAE) metric

NMAE =
∑i∈m ∑ j∈n |X(i, j)− X̂(i, j)|

∑i∈m ∑ j∈n |X(i, j)| . (3)

Note that NMAE could be larger than 1, if the error value
is large enough.

B. Probed Dataset

Our probed dataset consists of realtime updates from over
14,000 taxis traveling 6,217 road segments in Shenzhen,
China. Besides longitude, latitude and time-stamp readings
observed by the GPS receiver, the embedded device also
captures speed and heading measurements. Each taxi updates
30 seconds in average, together there are around 4 GB data
per day and over 100 GB per month.

The road segment paradigm of Shenzhen is directional.
The reported location and heading information of each
update is matched against the library to find a matching
segment. Finally, an entry is obtained by averaging the
updates within a specific timeslot. Usually, we take one full
day as a TCM.

For such a large dataset, the process should be parallel. We
set up a Hadoop cluster over 12 nodes with 192 cores and
192 GB memory in total. By developing several MapReduce
paradigms, the preprocessing of one month data costs just a
few hours.

C. Interpolation Algorithms

There are a number of approaches that have been proposed
for matrix completion recently.

Seasonal ARIMA (SARIMA): SARIMA is a straight-
forward time series analysis model for univariate traffic
condition data [12]. The foundation of this method rests
on the Wold decomposition theorem and the observations
that discrete interval traffic condition data implies a hidden
periodical characteristics in temporal dimension. Hence, his-
torical traffic data for a specific road can be used to estimate
missing values both in the past and the future.
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TABLE I

TCM INTEGRITY AND RELIABILITY

5 minutes 15 mins 30 mins 60 mins
Updates> 0 56.33% 70.78% 78.41% 84.66%
Updates≥ 10 19.59% 38.09% 50.00% 61.44%

K-nearest neighbors algorithm (KNN): KNN is a classic
local interpolation algorithm using information of nearest
neighbours to interpolate [9]. For a missing data, KNN
searches for its K-nearest neighbours and calculates es-
timation by a weighted average. KNN intends to utilize
correlations between near neighbours, for example temporal
and spatial correlation in TCM.

Compressive Sensing: Compressive Sensing is a relatively
new signal processing technique for data compression and
signal reconstruction [10]. The main idea is that if the objects
we observed are compressible in a fixed structure, then we
can reconstruct and recover these observations with only a
small number of measurements. In TCM, spatial correlation
between roads and temporal periodic characteristics of traffic
flow can be used as prior knowledge for interpolating missing
values.

III. PROBED DATASET ANALYSIS

We demonstrate the distribution characteristics of our
TCM by analyzing the probed data of 24 hours on July 09,
2013. Let integrity denotes the fraction of timeslots for a
road segment that there exists at least one vehicle update.
Four granularities (i.e., 5 minutes, 15 minutes, 30 minutes
and 60 minutes) are analyzed; the default granularity is set
to 15 minutes.

A. Sparsity of TCM

Table I first row shows the whole matrix integrity under
four time granularities. It is intuitive that with the growth of
timeslot length, the integrity increases too. With the typical
15 minutes granularity, over 70% entries have update values.
While with 60 minutes, nearly 85% entries have values. To
sum up, our TCM is incomplete, but not extremely sparse.

Zhu’s measured TCM is more sparse than ours: with 2,000
probe vehicles running on 5,812 road segments and update
at a 15 minutes timeslot granularity, the TCM integrity is
less than 25% [6]. The reason is that the number of our
probe vehicles is more than 7 times of their system, while the
number of covered segments is comparable. The advantage of
our dataset is that more data could be used in the evaluation
to demonstrate the performance of approaches.

B. Unevenly-Distributed Data

First we study the uneven distribution from a spatial
perspective. Figure 1(a) shows the CDFs of all roads under
different timeslot granularities. Even with 60 minutes gran-
ularity, there are still around 10% segments whose integrity
is less than 20%; it implies that some auxiliary roads are
extremely idle. With a typical 15 minutes granularity, half of
all segments have an integrity larger than 90%: these roads
are not necessary busy; it just suggests that there are enough
number of taxis probing the roads.

TABLE II

GROUND TRUTH OF ENTRIES

timeslot 1 2 3 4 5

Update Count 11 5 4 3 12
X value 42 37 13 22 37
X̂ value 41 33 29 39 33
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Fig. 2. Number of Updates per Entry

Next we study the uneven distribution from a temporary
perspective. Shown in Figure 1(b), with 15 minutes granu-
larity, there is no timeslot whose integrity is less than 50%.
And for around 10% timeslots, their integrities are larger
than 75%. It is also interesting that even with 5 minutes
granularity, there is no timeslot whose integrity less than
30%. Obviously that the increase in the number of probe
vehicles significantly reduce the level of sparsity.

Finally we demonstrate spatio-temporal integrity differ-
ence together in Figure 1(c). Two sets of segments are shown
with 5 and 15 minutes granularity: one is busy set, another
is idle set. The average integrity of all segments is also
presented. Clearly, the traffic trough is around 5 AM. It is
also clear that busy segments rarely have missing entries.
Even at the trough with 5 minutes granularity, their average
integrity value is above 90%. As a comparison, idle segment
is very sparse throughout the day: mostly the integrity is just
around 20%.

C. Reliability of Probed Data

In this part we analyze the reliability of those probed
data. Intuitively speaking, the reliability difference between
1 and 100 updates should be huge. We present an update
log of a typical segment in Table II. In 5 consecutive
timeslots, the segment get valid updates: the updates count
and the averaged value are shown in the first and second
row respectively. Apparently, the values of timeslot 3 looks
suspicious compared with its neighboring entries; it might
because that timeslot 3 is derived from only 4 updates.

Ruey et al. proved that at least 10 samples per timeslot
are needed to get a reliable speed measurement [8]. However,
this bar is too high for majority of the probed data. Shown
in the second row of Table I, even with 30 minutes timeslot,
only 50% values are reliable; this number reduces to 38%
with 15 minutes timeslot.

To make it more clear, we plot the PDF of the numbers
of updates under different timeslot granularities in Figure 2.
Only entries with updates number between 0 and 15 are plot-
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Fig. 1. (a) CDF of integrity over roads (b) CDF of integrity over timeslots (c) spatial-temporal integrity

ted. With the increase of numbers, the probability decreases.
Many entries have a value between 2 and 4. The line slope
becomes stable after number 10; we do observe some entries
have over 100 updates.

IV. LESSONS LEARNED

A. Baseline Algorithm

We present an approach proposed by Zhu et al. [6] as the
baseline algorithm for analysis. By analyzing the probed data
in Shanghai, they proved the hidden low rank structures of
TCM.

The idea is that the estimated matrix X̂ should be reason-
ably close to the measurement D; it should have a low rank
since TCM is compressible. Thus this algorithm solves the
following minimization problem:

minimize rank(X̂)

subject to M.∗ X̂ = D.
(4)

Rank minimization problem has a non-convex objective
and it is difficult to solve. They use a SVD-like factorization
to rewrite as X̂ =UΣV T = LRT . Thus Equation (4) turns into
a new form of:

minimize ||L||2F + ||RT ||2F
subject to M.∗ (LRT ) = D.

(5)

And the solution is to just find matrix L and R that minimize
the summation of their Frobenius norms

minimize ||M(LRT )−D||2F +λ(||L||2F + ||R||2F). (6)

Here regularization parameter λ is a tunable tradeoff variable
between an estimated precision and the goal of achieving low
rank.

For evaluation, they choose 221 road segments in Shanghai
downtown area, whose TCM is almost full; let’s denote this
directly observed matrix as Dorig. The evaluation procedure
is: by randomly drop part of the probed values from Dorig,
a new partial TCM Dpart is get. Let D = Dpart , they get the
estimated X̂ by solve formulation (6). Let Ddropped = Dorig−
Dpart , the entries in Ddropped are treated as the ground truth
for evaluation purpose: the estimation quality is measured
by the average error of all entries in Ddropped compared with
their interpolated values in X̂ . We call this method “dropped
for evaluation”. Their result seems promising: even when the

total integrity of the matrix is reduced to 20%, the average
estimation error is no more than 20%.

We apply the baseline approach to the same dataset of 24
hours on July 09, 2013; the time granularity is 15 mins. The
resulted NMAE is similar: it is around 23% when when the
TCM integrity is reduced to 20%. However, after looking
deep into the resulted matrix, we find that in practice it is
very challenging to reliably estimate a TCM.

B. Impact of Unevenly-distributed Data

As mentioned above, idle segments should be the focus of
traffic estimation. Shown in Figure 3(a), the error distribution
of the baseline approach is uneven: the error of some roads
are extremely high, some are extremely low, while others are
in between.

We classify segments based on their whole day integrity
to 20 categories in a 0.05 granularity. Each NMAE value of
a segment category is plotted in Figure 3(b). The real fact is
that the error of busy segments are very low, while the error
of idle segments are far more higher. After taking average,
this defect could be easily ignored.

People may wonder how could the baseline approach
achieves the 20% average error. It is still because of the
unevenly-distributed data: most entries belong to those high
integrity roads, hence most values randomly dropped for later
comparison belong to high integrity roads. This situation is
demonstrated in Figure 3(c): x-axis is the index of Ddropped

entries sorted by their segment integrity; over 60% entries
are from roads whose integrity higher than 90%; these entries
have low errors; although there are extremely high errors in
the range of 0 to 30% integrity, the significantly outnumbered
high integrity entries successfully push the average error to
a low value such as 20%.

To sum up, average error is a misleading metric. We define
a new metric named Integrity-Categorized Normalized Mean
Absolute Error (IC-NMAE): the mean of the NMAE results
of multiple segment integrity categories.

C. Impact of Unreliable Probed Value

First of all, unreliable probed data could be a poison to
the quality of traffic estimation. In traffic estimation, input
data are used to interpolate related empty entries; if they
are unreliable, the results are unreliable. A naive solution to
improve data reliability could be a threshold of the number
of updates: only average speed entries generated from larger
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enough updates are admitted to the estimation algorithm. We
repeat the baseline approach to our dataset with different
threshold settings: 0, 5 and 10. The NMAE values of segment
integrity categories are presented in Figure 4: the higher the
threshold, the lower the error.

The trick here is that: the higher the threshold, the more
reliable the remained values, hence the more reliable the
value in Ddropped for evaluation. That is the main reason
for good results in Figure 4. while from a global point
of view, the higher the threshold, the more probed data
dropped. Those drooped values, although not that reliable,
still contains useful information; remove them completely
out of the process actually hurts the whole system. Shown
in Figure 5, the overall error actually increases together with
the threshold.

The second implication is that, there is no ground truth for
error evaluation of many entries. Many times we found that
the estimated value is intuitively more correct compared with
the removed probed value, which usually is averaged from
just several updates. Shown in Table II third row, after an
evaluation, the X̂ value of timeslot 3 looks more reasonable
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Fig. 6. Magnitude of Singular Values

than that in D. The consequence is that the estimation error
values of such entries might be unnecessarily exaggerated.

This conjecture is consistent with the implementation
gap between Zhu’s dataset and our dataset. Note that their
evaluation chooses road segments in Shanghai downtown
area; their entries in Ddropped , for evaluation, intuitively
should be more reasonable than ours.

V. WEIGHTED SPATIO-TEMPORAL COMPRESSIVE

SENSING

A. Low Rank Analysis

To analyze the low rank characteristics of our TCM, we
present the magnitude of TCM singular value in Figure 6.
There are two dataset, one is the TCM of July, 9, 2013,
the other is a TCM averaged from the historical data of the
last two months. The advantage of the latter one is complete
(100% integrity), and we denote it as

−→
X .

The results from both one day data and historical
−→
X

confirm that major energy concentrated in the first several
components. In the following approach, we take rank 2 as
the low rank approximation of X .
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B. Spatial-Temporal Factors to Help Idle Segments

Besides the global low-rank structure, we know that there
are additional spatio-temporal relationships between TCM
rows and columns. As mentioned above, given the already
sparse samples, it is extremely hard to accurately estimate
the missing values of idle segments. We introduce the spatio-
temporal factors to help the estimation of idle segments,
similar to a previous work in Internet traffic estimation [11].

Let S be the spatial constraint matrix. We need to find
which columns (segments) are close to each other. We
choose S based on the similarity between columns. For each
column of

−→
X , the K most similar columns are chosen; a

linear regression finds the set of weights ω(k); then we set
S(i, i) = 1 and S(i, jk) = −ω(k). The spatial approximation
is to minimize ||(LRT )ST ||2F .

Let T be the temporal constraint matrix. We let T =
Toeplitz(0,1,−1), which is a Toeplitz matrix with central
diagonal given by ones, and the first upper diagonal given
by negative ones. It reflect the intuition that adjacent points in
time domain are often similar. The temporal approximation
is to minimize ||T (LRT )||2F .

With all these factors, we solve the following

minimize ||M(LRT )−D||2F +λ(||L||2F + ||R||2F)
+λs||(LRT )ST ||2F +λt ||T (LRT )||2F .

(7)

λs and λt are magnitude adjusting parameters. We choose to
use λs = 0.1

√
λ and λt =

√
λ respectively.

C. Weighted Average to Alleviate Impact from Unreliable
Values

To remove the impact of poisonous data to the inter-
polation process, we use weighted combination between
historical

−→
X and probed data D together to improve the

reliability of the input values.
Let the new weighted TCM be D′. We take 10 updates

as a threshold and trust the values above that; otherwise, a
weighted average replaces the original observed entry. Let
Dnum denote the number of updates per entry in D, the
algorithm is Note that all empty entries are replaced by

Algorithm 1: Weighted Average

1: if Dnum(i, j)≥ 10 then
2: D′(i, j) = D(i, j);
3: else
4: D′(i, j) =

((10−Dnum(i, j))∗−→X (i, j)+Dnum(i, j)∗D(i, j))/10
5: end if

values from
−→
X ; D′ is a complete TCM.

D. Overall Process

Our Weighted Spatio-Temporal Compressive Sensing pro-
cess takes the following steps

1) Preliminary Interpolation We use Algorithm 1 to
make an initial estimation matrix D′ from D and

−→
X ;

Algorithm 2: Restore Algorithm

1: if Dnum(i, j)≥ 0 then
2: X̂(i, j) = D(i, j);
3: end if
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Fig. 7. Estimate error for each Integrity Category

2) Estimation We let D′ replace D in Formulation (7),
and starts the estimation process to get X̂ .

3) Restore After estimation, the replaced value are re-
stored according to Algorithm 2.

VI. EVALUATION

A. Settings

The main dataset we use is still July 09, 2013. We also
evaluate performance in other dates and the results are
similar. The three approaches been evaluated are Baseline
(Zhu’s compressive sensing), Spatio-Temporal (only spatio-
temporal factors) and Weighted Spatio-Temporal (spatio-
temporal factors and weighted input). After training, we set
λ to 0.001, 0.01 and 0.1 for 15 minutes, 30 minutes and 60
minutes respectively. The granularity of segment integrity
increases to 0.1 for better presentation.

We borrow the idea of “dropped for evaluation”. To avoid
the same pitfall of biased evaluation (as that in the baseline
approach), all segments are used in our experiments. Still
denote the directly observed matrix as Dorig. The evaluation
procedure is: by randomly drop part of the probed values
from Dorig, a new partial TCM Dpart is get. Let D =
Dpart , here Weighted Spatio-Temporal will follow the process
defined in Section V; there is no change to the other two
algorithms. After experiments, let Ddropped = Dorig −Dpart ,
the estimation quality is measured by the average error of all
entries in Ddropped compared with their interpolated values
in X̂ .

B. Initial Comparison

Figure 7 shows a comparison of algorithms for matrix
integrity 20% at time granularity 15 minutes. Compared with
Baseline, Spatio-Temporal significantly reduces the error for
low integrity categories. With the introduce of weighted input
adjustment, the estimation error is further reduced at every
category.

To make it more clear, we present the IC-NMAE Metric
is Table III. As mentioned above, most exceptional results
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Fig. 8. Estimate Error vs. Integrity (a) All (b) Low and vs. (c) Time granularity

TABLE III

IC-NMAE METRIC

Integrity Category High Low All
Baseline 0.59 2.62 1.33

Spatio-Temporal 0.61 1.56 0.95
Weighted Spatio-Temporal 0.56 1.04 0.73

appear in range 0 to 0.3 integrity. We further divide segment
integrity categories to High (0.3-1) and Low (0-0.3) groups.
It is interesting that Spatio-Temporal actually increase errors
a little bit for the High group; we haven’t figure out the
reason and will leave this to future work. However, its
errors for Low group is less than 60% of that of Baseline.
Weighted Spatio-Temporal is even superior: its errors for Low
group is less than 40% of that of Baseline. Even for High
group, Weighted Spatio-Temporal successfully reduces errors
by more than 5%. Overall, our approach reduces errors to
nearly half of Zhu’s baseline approach (0.73 v.s. 1.33).

People may notice that the average error of Low group
is still as high as 1.04 even for Weighted Spatio-Temporal:
there are a little portion of exceptional error entries, which
push the average value higher; however, they could be easily
filtered in the post-processing phase; we leave the reasoning
of such exceptional entries to future work.

C. Impact of Integrity

In this part we evaluate the algorithm performance under
different geiven TCM integrities. The timeslot is set to 15
minutes, and 4 matrix integrities are evaluated: 0.2, 0.3, 0.4
and 0.5.

The overall NMAE values of each algorithm are shown
in Figure 8(a). With the increase of matrix integrity, the
errors of Baseline and Spatio-Temporal decrease too; while
Weighted Spatio-Temporal always maintain at low error level.
The same is the Low group estimation quality shown in
Figure 8(b). It is possible that our approach has hit a perfor-
mance bottleneck: there are randomness in traffic condition.

D. Impact of Time Granularity

We also evaluate our approach under different time gran-
ularities: 15, 30 and 60 minutes. The increase in the timeslot
length leads to more updates in a single timeslot, we expect
the error would decrease.

Figure 8(c) presents the results. Consistent with our anal-
ysis, the performance of Baseline increases. While Spatio-
Temporal and Weighted Spatio-Temporal maintain stable. It

TABLE IV

IC-NMAE METRIC FOR HYPOTHETIC GROUND TRUTH

Integrity Category High Low All
Baseline 0.20 1.42 0.65

Spatio-Temporal 0.24 0.78 0.44
Weighted Spatio-Temporal 0.17 0.28 0.20

might because the temporal factor in these two approaches
already considers the information from neighboring times.

E. Hypothetic Ground Truth

In this part we want to continue the discussion of “ground
truth”. As mentioned above, the estimation quality is mea-
sured by the error of all entries in Ddropped = Dorig −Dpart

compared with their interpolated values in X̂ . If the conjec-
ture is correct, Ddropped is not a reliable ground truth.

By applying Algorithm 1 to Ddropped , a “Hypothetic
Ground Truth” D′

dropped is got. We redo the experiments in
Section VI-B against this “Hypothetic Ground Truth” and
the results are shown in Table IV.

It is interesting that compared with Table III, every number
is better. However we still consider this D′

dropped as Hypo-
thetic; we leave the dilemma of how to find a better ground
truth for evaluation purpose to our future work.

VII. RELATED WORK

A. Traffic Monitoring with Probe data
A growing number of vehicles and smartphones now

embed GPS sensors. Probe data from such devices as well
as WiFi and GSM sensors has become ubiquitous. It raises
increasing interest in monitoring traffic condition through
such location information.

Ferman et al. builds an architecture of real-time traf-
fic monitoring system and they develop a simple analyti-
cal/statistical model to test the feasibility of this system [13].
They identify the difference between traffic monitoring on
freeways and surface roads that the latter requires higher
rate of penetration.

Yoon et al. propose a method that can characterize traffic
patterns and can identify traffic states for a specific road
segment [14]. Also they reveal underlying road condition is
consistent from analysis on abundant data.

Fabritiis et al. present a large-scale working application
using real-time floating car data to deliver real-time traffic
speed information in Italy [15]. For online short-term traffic
prediction, they design two algorithms based on Pattern
Matching and Artificial Neural Network respectively, to
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utilize spatial and temporal average speed information in
traffic forecasting.

Thiagarajan et al. propose VTrack [16] to measure and
locate travel delay. Instead of GPS, they use less power-
consumption sensors such as GSM and WiFi to estimate
both user’s trajectory and travel time. VTrack uses a hidden
Markov model-based map matching scheme and travel time
estimation method to identify probable routes.

These previous researches seldom have concerns on in-
sufficient samples when comparing limited probe vehicles
to immense urban road networks, while our work intends
to provide an ubiquitously available traffic information with
high coverage of urban cities.

B. Traffic Estimation via Sparse Data

Some studies have been devoted to methodologies of
traffic estimation using sparse probe data.

Williams et al. [12] present the theoretical basis for
modeling univariate traffic condition data for road segment
and use Seasonal ARIMA process for time-series traffic
estimation. They reveal traffic condition hides a consistent
weekly pattern and they assume one-week lag is the first
seasonal difference. However, they share few concerns on
sparsity inside the traffic condition and they base their
research on freeway traffic, while our works focus on sparse
urban traffic.

Zhang et al. [11] introduce compressive sensing technique
into internet traffic estimation which is a similar case to urban
traffic condition estimations. They examine spatio-temporal
structure in network traffic and propose a hybrid algorithm
incorporating global spatio-temporal properties and local
interpolation and perform experiments over various network
traffic matrix with different characteristics.

Zhu et al. [7] adapt a compressive sensing approach to
urban traffic estimation with probe vehicles. They reveal
hidden structure under urban traffic probe data with principal
component analysis (PCA) and singular value decomposition
(SVD) and then recover the sparse traffic matrix with com-
pressive sensing which is described as the baseline algorithm
in this paper.

We proceed deeper data analysis than previous research
and reveal uneven distribution and unreliability inside probe
data and analyze the impact of them. Also we prove that
average error as an evaluation on previous methodologies
can be a misleading metric due to characteristics of urban
road network. Further, we present our method which incor-
porating spatio-temporal information of urban traffic matrix
and unbias historical information.

VIII. CONCLUSION

Our approach exploit the hidden spatio-temporal relation-
ship in the TCM, use weighted average between historical
and probed data together to improve the reliability of the
input values. Demonstrated by extensive experiments, the
estimation error of our approach is around half of a baseline
approach.
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