
Ordered Momentum for Asynchronous SGD

Chang-Wei Shi Yi-Rui Yang Wu-Jun Li∗
National Key Laboratory for Novel Software Technology,

School of Computer Science, Nanjing University, Nanjing, China
{shicw, yangyr}@smail.nju.edu.cn, liwujun@nju.edu.cn

Abstract

Distributed learning is essential for training large-scale deep models. Asynchronous
SGD (ASGD) and its variants are commonly used distributed learning methods,
particularly in scenarios where the computing capabilities of workers in the cluster
are heterogeneous. Momentum has been acknowledged for its benefits in both opti-
mization and generalization in deep model training. However, existing works have
found that naively incorporating momentum into ASGD can impede the conver-
gence. In this paper, we propose a novel method called ordered momentum (OrMo)
for ASGD. In OrMo, momentum is incorporated into ASGD by organizing the
gradients in order based on their iteration indexes. We theoretically prove the
convergence of OrMo with both constant and delay-adaptive learning rates for
non-convex problems. To the best of our knowledge, this is the first work to estab-
lish the convergence analysis of ASGD with momentum without dependence on
the maximum delay. Empirical results demonstrate that OrMo can achieve better
convergence performance compared with ASGD and other asynchronous methods
with momentum.

1 Introduction

Many machine learning problems can be formulated as optimization problems of the following form:

min
w∈Rd

F (w) = Eξ∼D [f(w; ξ)] , (1)

where w denotes the model parameter, d is the dimension of the parameter, D represents the
distribution of the training instances and f(w; ξ) denotes the loss on the training instance ξ.

Stochastic gradient descent (SGD) [28] and its variants [6, 12] are widely employed to solve the
problem in (1). At each iteration, SGD uses one stochastic gradient or a mini-batch of stochastic
gradients as an estimate of the full gradient to update the model parameter. In practice, momentum [26,
36, 24, 33] is often incorporated into SGD as a crucial technique for faster convergence and better
generalization performance. Many popular machine learning libraries, such as TensorFlow [1] and
PyTorch [25], include SGD with momentum (SGDm) as one of the optimizers.

Due to the rapid increase in the sizes of both models and datasets in recent years, a single machine is
often insufficient to complete the training task of machine learning models within a reasonable time.
Distributed learning [42, 37] aims to distribute the computations across multiple machines (workers)
to accelerate the training process. Because of its necessity for training large-scale machine learning
models, distributed learning has become a hot research topic in recent years. Existing distributed
learning methods can be categorized into two main types: synchronous distributed learning (SDL)
methods [19, 35, 29, 38, 44, 39] and asynchronous distributed learning (ADL) methods [2, 27, 8, 47,
17, 43]. In SDL methods, faster workers that have completed the computation must wait idly for

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

the other slower workers in each communication round. Hence, the speed of SDL methods is often
hindered by slow workers. In contrast, faster workers do not necessarily wait idly for the other slower
workers in ADL methods, because ADL methods require aggregating information from only one
worker or a subset of workers in each communication round. Representative ADL methods include
asynchronous SGD (ASGD) and its variants [2, 8, 46, 30, 49, 48, 7, 3, 31, 22, 13]. In ASGD, once
a worker finishes its gradient computation, the parameter (typically on the server) is immediately
updated using this gradient through an SGD step, without waiting for other workers.

Momentum has been acknowledged for its benefits in both optimization and generalization in deep
model training [33]. In SDL methods, momentum is extensively utilized across various domains,
including decentralized algorithms [18, 45], communication compression algorithms [19, 29, 38, 40,
34, 41], infrequent communication algorithms [44, 39, 40], and federated learning algorithms [21, 32].
However, in ADL methods, some works [23, 9] have found that naively incorporating momentum
into ASGD may decrease the convergence rate or even result in divergence. To tackle this challenge,
some more sophisticated methods have been proposed to incorporate momentum into ASGD. The
works in [23, 9] recommend tuning the momentum coefficient to enhance convergence performance
when naively incorporating momentum into ASGD. The work in [9] proposes shifted momentum,
which maintains local momentum on each worker. Inspired by Nesterov’s accelerated gradient, the
work in [4] proposes SMEGA2, which leverages the momentum to estimate the future parameter.
However, the process of tuning the momentum coefficient in [23, 9] is time-consuming and yields
limited improvement in practice. Although shifted momentum and SMEGA2 can achieve better
empirical convergence performance than the method which naively incorporates momentum into
ASGD, both of them lack theoretical convergence analysis.

In this paper, we propose a novel method, called ordered momentum (OrMo), for asynchronous SGD.
The main contributions of this paper are outlined as follows:

• OrMo incorporates momentum into ASGD by organizing the gradients in order based on
their iteration indexes.

• We theoretically prove the convergence of OrMo with both constant and delay-adaptive
learning rates for non-convex problems. To the best of our knowledge, this is the first work
to establish the convergence analysis for ASGD with momentum without dependence on the
maximum delay.

• Empirical results demonstrate that OrMo can achieve better convergence performance
compared with ASGD and other asynchronous methods with momentum.

2 Preliminary

In this paper, we use ∥ · ∥ to denote the L2 norm. For a positive integer n, we use [n] to denote the set
{0, 1, 2, . . . , n− 1}. ∇f(w; ξ) denotes the stochastic gradient computed over the training instance ξ
and model parameter w. In this paper, we focus on the widely used Parameter Server framework [15],
where the server is responsible for storing and updating the model parameter and the workers are
responsible for sampling training instances and computing stochastic gradients. For simplicity, we
assume that each worker samples one training instance for gradient computation each time. The
analysis of mini-batch sampling on each worker follows a similar approach.

One of the most representative methods for distributing SGD across multiple workers is Synchronous
SGD (SSGD) [20, 10]. Distributed SGD (DSGD), as presented in Algorithm 1, unifies SSGD
and ASGD within a single framework [13]. The waiting set C in Algorithm 1 is a collection of
workers (indexes) that are awaiting the server to send the latest parameter. The only difference
between SSGD and ASGD is the communication scheduler associated with the waiting set. SSGD
corresponds to DSGD with a synchronous communication scheduler, while ASGD corresponds to
DSGD with an asynchronous communication scheduler. We use gkt

ite(kt,t)
to denote the stochastic

gradient ∇f(wite(kt,t); ξ
kt), where kt is the index of the worker whose gradient participates in the

parameter update at iteration t and ξkt denotes a training instance sampled on worker kt. The function
ite(k, t) denotes the iteration index of the latest parameter sent to worker k before iteration t, where
k ∈ [K] and t ∈ [T]. The delay of the gradient gkt

ite(kt,t)
is defined as τt = t − ite(kt, t). When

K = 1, DSGD degenerates to vanilla SGD, i.e., ite(kt, t) ≡ t.

2

Algorithm 1 Distributed SGD

1: Server:
2: Input: number of workers K, number of iterations T , learning rate η;
3: Initialization: initial parameter w0, waiting set C = ∅;
4: Send the initial parameter w0 to all workers;
5: for t = 0 to T − 1 do
6: Receive a stochastic gradient gkt

ite(kt,t)
from some worker kt;

7: Update the parameter wt+1 = wt − ηgkt

ite(kt,t)
;

8: Add the worker kt to the waiting set C = C ∪ {kt};
9: Execute the communication scheduler:

Option I: (Synchronous) only when all the workers are in the waiting set, i.e., C = [K], send
the parameter wt+1 to the workers in C and set C to ∅;
Option II: (Asynchronous) once the waiting set is not empty, i.e., C ̸= ∅, immediately send the
parameter wt+1 to the worker in C and set C to ∅;

10: end for
11: Notify all workers to stop;
12: Worker k : (k ∈ [K])
13: repeat
14: Wait until receiving the parameter w from the server;
15: Randomly sample ξk ∼ D and then compute the stochastic gradient gk = ∇f(w; ξk);
16: Send the stochastic gradient gk to the server;
17: until receive server’s notification to stop

In ASGD, the latest parameter wt+1 will be immediately sent back to the worker after the server
updates the parameter at each iteration. The function ite(k, t) in ASGD can be formulated as follows:

ite(k, t) =

0 t = 0, k ∈ [K],

t t > 0, k = kt−1,

ite(k, t− 1) t > 0, k ̸= kt−1,

where k ∈ [K], t ∈ [T].

In SSGD, there is a barrier in the synchronous communication scheduler since the latest parameter
wt+1 will be sent back to the workers only when all the workers are in the waiting set. The function
ite(k, t) in SSGD can be formulated as ite(k, t) = ⌊ t

K ⌋K, where k ∈ [K], t ∈ [T] and ⌊·⌋ is the
floor function.

Remark 1. In existing works [10, 22], SSGD is often presented in the form of mini-batch SGD:

w̃s+1 = w̃s −
η̃

K

∑
k∈[K]

∇f(w̃s; ξ
k), (2)

where s ∈ [S] and S denotes the number of iterations. Here, all workers aggregate their stochastic
gradients to obtain the mini-batch gradient 1

K

∑
k∈[K] ∇f(w̃s; ξ

k), which is then used to update
the parameter. To unify SSGD and ASGD into a single framework in Algorithm 1, we reformulate
SSGD in the form of mini-batch SGD in (2). Specifically, one update using a mini-batch gradient
computed over K training instances in (2) is split into K updates, each using a stochastic gradient
over a single training instance. Letting η = η̃

K , T = KS and w0 = w̃0, the sequence {wsK}s∈[S]

in SSGD in Algorithm 1 matches {w̃s}s∈[S] in (2).

3 Ordered Momentum

In this section, we first propose a new reformulation of SSGD with momentum, which inspires the
design of ordered momentum (OrMo) for ASGD. Then, we present the details of OrMo, including
the algorithm and convergence analysis.

3

3.1 Reformulation of SSGD with Momentum

The widely used SGD with momentum (SGDm) [26] can be expressed as follows:

w̃s+1 = w̃s − βũs −
η̃

|Bs|
∑
ξ∈Bs

∇f (w̃s; ξ) , (3)

ũs+1 = βũs +
η̃

|Bs|
∑
ξ∈Bs

∇f (w̃s; ξ) , (4)

where ũ0 = 0, β ∈ [0, 1), s ∈ [S] and S denotes the number of iterations. β is the momentum
coefficient. ũs represents the Polyak’s momentum. 1

|Bs|
∑

ξ∈Bs
∇f (w̃s; ξ) denotes the stochastic

gradient computed over the sampled training instance set Bs, which contains either a single training
instance or a mini-batch of training instances sampled from D. (3) denotes the parameter update step
and (4) denotes the momentum update step. When β = 0, SGDm degenerates to (mini-batch) SGD.

Since SSGD can be presented in the form of mini-batch SGD as depicted in Remark 1, it’s straight-
forward to implement SSGD with momentum (SSGDm) as follows:

w̃s+1 = w̃s − βũs −
η̃

K

∑
k∈[K]

∇f(w̃s; ξ
k),

ũs+1 = βũs +
η̃

K

∑
k∈[K]

∇f(w̃s; ξ
k),

(5)

where ũ0 = 0, β ∈ [0, 1), s ∈ [S] and S denotes the number of iterations. Here, the server aggregates
the stochastic gradients from all the workers to obtain the mini-batch gradient 1

K

∑
k∈[K] ∇f(w̃s; ξ

k),
which is then used to update both the parameter and the momentum in (5).

To gain insights from SSGDm on incorporating momentum into ASGD, we reformulate SSGDm in
(5) to fit into the framework of Algorithm 1. Similar to the reformulation in Remark 1, the updates
using a mini-batch gradient computed over K training instances in (5) are split into K updates, each
using a stochastic gradient over a single training instance. The corresponding implementation details
of SSGDm are presented in Algorithm 3 in Appendix B. In this way, the update rules of SSGDm in
(5) can be reformulated as follows:

wt+ 1
2
=

{
wt − βut K | t,
wt K ∤ t,

ut+ 1
2
=

{
βut K | t,
ut K ∤ t,

wt+1 = wt+ 1
2
− ηgkt

⌊ t
K ⌋K ,

ut+1 = ut+ 1
2
+ ηgkt

⌊ t
K ⌋K ,

(6)

where u0 = 0,gkt

⌊ t
K ⌋K = ∇f(w⌊ t

K ⌋K ; ξkt) and t ∈ [T]. We give the following proposition about
the relationship between the sequences in (5) and those in (6). The proof details can be found in
Appendix C.1.1.

Proposition 1. Letting η = η̃
K , T = KS and w0 = w̃0, the sequences {wsK}s∈[S] and {usK}s∈[S]

in (6) are equivalent to {w̃s}s∈[S] and {ũs}s∈[S] in (5), respectively.

We investigate how the momentum term ut+1 evolves during the iterations in (6). For t ≥ K and
t ∈ [T], ut+1 can be formulated as:

ut+1 =

⌊ t
K ⌋−1∑
i=0

β⌊ t
K ⌋−i ×

∑
k∈[K]

ηgk
iK

+ β0 ×
t∑

j=⌊ t
K ⌋K

ηg
kj

⌊ t
K ⌋K ,

where the superscript of the scalar β indicates the exponent. For t < K, ut+1 = β0 ×
∑t

j=0 ηg
kj

0 .
Figure 1 shows u10 as an example when K = 4. We define {ηg0

iK , ηg1
iK , · · · , ηgK−1

iK } as the i-th

4

𝜂𝒈0
0

𝜂𝒈0
1

𝜂𝒈0
2

𝜂𝒈0
3

𝛽2× +

𝜂𝒈4
0

𝜂𝒈4
1

𝜂𝒈4
2

𝜂𝒈4
3

𝛽1× +

𝜂𝒈8
0

𝜂𝒈8
1

𝜂𝒈8
2

𝜂𝒈8
3

𝛽0×

Figure 1: An example of the momentum term u10 in SSGDm when K = 4. The gradi-
ents shown in red indicate those having not arrived at the server. In this case, u10 = β2 ×(
ηg0

0 + ηg1
0 + ηg2

0 + ηg3
0

)
+ β1 ×

(
ηg0

4 + ηg1
4 + ηg2

4 + ηg3
4

)
+ β0 ×

(
ηg0

8 + ηg3
8

)
.

(scaled) gradient group, which contains K gradients scaled by the learning rate η. The order of the
gradient groups is based on the iteration indexes of their corresponding gradients. Though some
gradients may be missing because they have not yet arrived at the server, the momentum is a weighted
sum of the gradients from the first several gradient groups. Hence, the momentum in SSGDm is
referred to as an ordered momentum. Specifically, the gradients in the i-th gradient group are weighted
by β⌊ t

K ⌋−i in the momentum ut+1, where i ∈ [⌊ t
K ⌋ + 1]. We refer to the gradient group whose

gradients are weighted by β0 as the latest gradient group, which contains the latest gradients. For
ut+1 in SSGDm, the latest gradient group corresponds to the ⌊ t

K ⌋-th gradient group.

Due to the barrier in the synchronous communication scheduler in SSGDm as presented in Algo-
rithm 3, the gradients in SSGDm consistently arrive at the server in the order of their iteration
indexes. The arriving gradient always belongs to the latest gradient group at each iteration. Thus,
maintaining such an ordered momentum in SSGDm is straightforward. As shown in line 13 of
Algorithm 3, the scaled gradient ηgkt

ite(kt,t)
is always added to the momentum with a weight of β0 at

each iteration. However, for ASGD, since the gradients arrive at the server out of order, it’s not trivial
to incorporate such an ordered momentum. To address this problem, we propose a solution in the
following subsection.

3.2 OrMo for ASGD

In this subsection, we introduce our novel method called ordered momentum (OrMo) for ASGD, and
present it in Algorithm 2.

Firstly, we define the (scaled) gradient groups in OrMo for ASGD. Due to the differences in the
communication scheduler, the iteration indexes of the parameters used to compute the gradients in
ASGD differ from those in SSGD (SSGDm). Specifically, the sequence of gradients computed in
SSGD (SSGDm) can be formulated as:

g0
0,g

1
0, · · · ,gK−1

0 ,g0
K ,g1

K , · · · ,gK−1
K ,g0

2K ,g1
2K , · · · ,gK−1

2K , · · · . (7)

In contrast, the sequence of gradients computed in ASGD is given by:

g0
0,g

1
0, · · · ,gK−1

0 ,gk0
1 ,gk1

2 , · · · ,gkK−1

K ,gkK

K+1,g
kK+1

K+2 , · · · ,g
k2K−1

2K , · · · . (8)

Thus, the i-th (scaled) gradient group in OrMo for ASGD is defined as:{
ηg

k(i−1)K

(i−1)K+1, ηg
k(i−1)K+1

(i−1)K+2, · · · , ηg
kiK−1

iK

}
,

where i ≥ 1. The 0-th (scaled) gradient group in OrMo is {ηg0
0, ηg

1
0, · · · , ηgK−1

0 }. Despite the
difference in the gradients’ iteration indexes, each gradient group in OrMo for ASGD also contains
K gradients scaled by the learning rate η, similar to that in SSGDm as discussed in Subsection 3.1.

We use It+1 to denote the index of the latest gradient group of ut+1 in OrMo. The iteration index
of the latest gradient in ut+1 can be t at most. Since the gradient with iteration index t belongs
to the ⌈ t

K ⌉-th gradient group, the latest gradient group for ut+1 should be the ⌈ t
K ⌉-th gradient

group, i.e., It+1 ≡ ⌈ t
K ⌉,∀t ∈ [T]. ut+1 is the weighted sum of the gradients from the first It+1 + 1

gradient groups, where some gradients may be missing because they have not yet arrived at the server.
The gradients in the i-th gradient group are weighted by β⌈ t

K ⌉−i in the momentum ut+1, where
i ∈ [It+1 + 1] and the superscript of the scalar β indicates the exponent. Figure 2 shows an example
of u10 in OrMo when K = 4.

For the t-th iteration in OrMo, the server performs the following operations:

5

Algorithm 2 OrMo

1: Server:
2: Input: number of workers K, number of iterations T , learning rate η, momentum coefficient

β ∈ [0, 1);
3: Initialization: initial parameter w0, momentum u0 = 0, index of the latest gradient group

I0 = 0, waiting set C = ∅;
4: Send the initial parameter w0 and its iteration index 0 to all workers;
5: for t = 0 to T − 1 do
6: if the waiting set C is empty and ⌈ t

K ⌉ > It then
7: wt+ 1

2
= wt − βut, ut+ 1

2
= βut, It+1 = It + 1;

8: else
9: wt+ 1

2
= wt, ut+ 1

2
= ut, It+1 = It;

10: end if
11: Receive a stochastic gradient gkt

ite(kt,t)
and its iteration index ite(kt, t) from some worker kt

and then calculate ⌈ ite(kt,t)
K ⌉ (i.e., the index of the gradient group that gkt

ite(kt,t)
belongs to);

12: Update the momentum ut+1 = ut+ 1
2
+ βIt+1−⌈ ite(kt,t)

K ⌉ ×
(
ηgkt

ite(kt,t)

)
;

13: Update the parameter wt+1 = wt+ 1
2
− 1−βIt+1−⌈ ite(kt,t)

K
⌉+1

1−β ×
(
ηgkt

ite(kt,t)

)
;

14: Add the worker kt to the waiting set C = C ∪ {kt};
15: Execute the asynchronous communication scheduler: once the waiting set is not empty, i.e.,

C ̸= ∅, immediately send the parameter wt+1 and its iteration index t+ 1 to the worker in C
and set C to ∅;

16: end for
17: Notify all workers to stop;
18: Worker k : (k ∈ [K])
19: repeat
20: Wait until receiving the parameter wt′ and its iteration index t′ from the server;
21: Randomly sample ξk ∼ D and then compute the stochastic gradient gk

t′ = ∇f(wt′ ; ξ
k);

22: Send the stochastic gradient gk
t′ and its iteration index t′ to the server;

23: until receive server’s notification to stop

𝜂𝒈0
0

𝜂𝒈0
1

𝜂𝒈0
2

𝜂𝒈0
3

𝛽3× +

𝜂𝒈1
𝑘0

𝜂𝒈2
𝑘1

𝜂𝒈3
𝑘2

𝜂𝒈4
𝑘3

𝛽2× +

𝜂𝒈5
𝑘4

𝜂𝒈6
𝑘5

𝜂𝒈7
𝑘6

𝜂𝒈8
𝑘7

𝛽1× +

𝜂𝒈9
𝑘8

𝜂𝒈10
𝑘9

𝜂𝒈11
𝑘10

𝜂𝒈12
𝑘11

𝛽0×

Figure 2: An example of the momentum term u10 in OrMo when K = 4. The gradients shown in red
indicate those having not arrived at the server. In this case, u10 = β3 ×

(
ηg0

0 + ηg1
0 + ηg2

0 + ηg3
0

)
+

β2 ×
(
ηgk0

1 + ηgk1
2 + ηgk2

3

)
+ β1 ×

(
ηgk5

6 + ηgk7
8

)
+ β0 ×

(
ηgk8

9

)
.

• If the parameter with iteration index t that satisfies ⌈ t
K ⌉ > It has been sent to some

worker, update the parameter using the momentum and multiply the momentum with β:
wt+ 1

2
= wt − βut,ut+ 1

2
= βut, It+1 = It + 1.

In this way, the momentum changes the index of its latest gradient group to ⌈ t
K ⌉ and gets

ready to accommodate the new gradient with iteration index t.

• Receive a stochastic gradient gkt

ite(kt,t)
and its iteration index ite(kt, t) from some worker kt

and calculate ⌈ ite(kt,t)
K ⌉, which is the index of the gradient group that gkt

ite(kt,t)
belongs to.

• Update the momentum: ut+1 = ut+ 1
2
+ βIt+1−⌈ ite(kt,t)

K ⌉ ×
(
ηgkt

ite(kt,t)

)
.

Since the weight of the scaled gradients from the latest gradient group in the momentum is β0,
the weight of the gradients from the ⌈ ite(kt,t)

K ⌉-th gradient group should be βIt+1−⌈ ite(kt,t)
K ⌉.

6

OrMo updates the momentum by adding the scaled gradient ηgkt

ite(kt,t)
into the momentum

with a weight of βIt+1−⌈ ite(kt,t)
K ⌉.

• Update the parameter: wt+1 = wt+ 1
2
− 1−βIt+1−⌈ ite(kt,t)

K
⌉+1

1−β ×
(
ηgkt

ite(kt,t)

)
.

The update rule of the parameter in OrMo is motivated by that in SSGDm, as presented in
Algorithm 3. In SSGDm, the scaled gradient ηgkt

ite(kt,t)
is always added to the momentum

with a weight of β0. At the current iteration, this scaled gradient updates the parameter with
a coefficient −β0. In subsequent iterations, this scaled gradient in the momentum updates
the parameter with the coefficients −β,−β2,−β3, · · · . By the time this scaled gradient
is weighted by βIt+1−⌈ ite(kt,t)

K ⌉ in the momentum of SSGDm, it has already updated the

parameter for It+1 −⌈ ite(kt,t)
K ⌉+1 steps, with a total coefficient −

∑It+1−⌈ ite(kt,t)
K ⌉

j=0 βj . In
OrMo, for the scaled gradient ηgkt

ite(kt,t)
which is added to the momentum with a weight of

βIt+1−⌈ ite(kt,t)
K ⌉, we compensate for the missed It+1 − ⌈ ite(kt,t)

K ⌉+ 1 steps compared with

SSGDm and update the parameter with the coefficient − 1−βIt+1−⌈ ite(kt,t)
K

⌉+1

1−β at the current
iteration. The design of the parameter update rule is crucial for the derivation of Lemma 2,
which is further supported by the ablation study in Appendix A.3.

• Add the worker kt to the waiting set C = C ∪ {kt} and execute the asynchronous communi-
cation scheduler.

Remark 2. Compared to ASGD, the additional communication overhead introduced by the iteration
index in OrMo is negligible since the iteration index is only a scalar.
Remark 3. When the momentum coefficient β is set to 0, OrMo degenerates to ASGD in Algorithm 1.
If the asynchronous communication scheduler in line 15 of Algorithm 2 is replaced by a synchronous
communication scheduler: only when all the workers are in the waiting set, i.e., C = [K], send the
parameter wt+1 and the iteration index t+ 1 to the workers in C and set C to ∅, OrMo degenerates
to SSGDm in Algorithm 3.

3.3 Convergence Analysis

In this section, we prove the convergence of OrMo in Algorithm 2 for non-convex problems. We only
present the main results here. The proof details can be found in Appendix C.

We make the following assumptions, which are widely used in distributed learning [47, 43, 41, 22].
Assumption 1. For any stochastic gradient ∇f(w; ξ), we assume that it satisfies:

Eξ∼D [∇f(w; ξ)] = ∇F (w),Eξ∼D∥∇f(w; ξ)−∇F (w)∥2 ≤ σ2,∀w ∈ Rd.

Assumption 2. For any stochastic gradient ∇f(w; ξ), we assume that it satisfies:

Eξ∼D∥∇f(w; ξ)∥2 ≤ G2,∀w ∈ Rd.

Assumption 3. F (w) is L-smooth (L > 0):

F (w) ≤ F (w′) +∇F (w′)T (w −w′) +
L

2
∥w −w′∥2,∀w,w′ ∈ Rd.

Assumption 4. The objective function F (w) is lower bounded by F ∗: F (w) ≥ F ∗,∀w ∈ Rd.

Firstly, we define the auxiliary sequence {ût}t≥1 for the momentum: û1 =
∑

k∈[K] ηg
k
0 , and

ût+1 =

{
βût + ηg

kt−1

t K | (t− 1),

ût + ηg
kt−1

t K ∤ (t− 1),

for t ≥ 1.
Lemma 1. For any t ≥ 0, the gap between ut+1 and ût+1 can be formulated as follows:

ût+1 − ut+1 =
∑

k∈[K],k ̸=kt

β⌈ t
K ⌉−⌈ ite(k,t)

K ⌉ηgk
ite(k,t). (9)

7

Then, we define the auxiliary sequence {ŵt}t≥1 for the parameter: ŵ1 = w0 −
∑

k∈[K] ηg
k
0 , and

ŵt+1 =

{
ŵt − βût − ηg

kt−1

t K | (t− 1),

ŵt − ηg
kt−1

t K ∤ (t− 1),

for t ≥ 1.
Lemma 2. For any t ≥ 0, the gap between wt+1 and ŵt+1 can be formulated as follows:

ŵt+1 −wt+1 = −
∑

k∈[K],k ̸=kt

1− β⌈ t
K ⌉−⌈ ite(k,t)

K ⌉+1

1− β
ηgk

ite(k,t). (10)

Then, we define another auxiliary sequence {ŷt}t≥1: ŷ1 = ŵ1−βw0

1−β , and ŷt+1 = ŷt − η
1−βg

kt−1

t ,

for t ≥ 1.
Lemma 3. For any t ≥ 1, the gap between ŷt and ŵt can be formulated as follows:

ŷt − ŵt = − β

1− β
ût. (11)

Theorem 1. With Assumptions 1, 2, 3 and 4, letting η = min{ 1−β
2KL ,

(1−β)∆
1
2

(LT)
1
2 σ

, (1−β)
5
3 ∆

1
3

(LKG)
2
3 T

1
3
}, Algo-

rithm 2 has the following convergence rate:

1

T

T∑
t=1

E∥∇F (wt)∥2 ≤ O

(√
Lσ2

T
+

(
KLG

T

) 2
3

+
KL

T

)
,

where ∆ = F (w0)− F ∗ and T ≥ K.

Many works [46, 30, 7, 13, 22] consider delay-adaptive methods for ASGD. The key insight of these
methods is to penalize the gradients with large delays and reduce their contribution to the parameter
update. OrMo is orthogonal to these delay-adaptive methods. Concretely, we can replace the constant
learning rate η in Algorithm 2 with a delay-adaptive learning rate ηt, which is dependent on the delay
of the gradient τt. Inspired by [13], we adopt the following delay-adaptive learning rate ηt:

ηt =

η τt ≤ 2K,

min{η, 1

4Lτt
} τt > 2K.

The convergence of OrMo with the above delay-adaptive learning rate (called OrMo-DA) is guaran-
teed by Theorem 2.

Theorem 2. With Assumptions 1, 3 and 4, letting η = min{ (1−β)2

8KL ,
√

(1−β)3∆
TLσ2 }, OrMo-DA has the

following convergence rate:

E ∥∇F (w̄T)∥2 ≤ O

(√
Lσ2

T
+

KL

T

)
,

where ∆ = F (w0) − F ∗ and w̄T is randomly chosen from {w0,w1, · · · ,wT−1} according to a
probability distribution which is related to the delay-adaptive learning rates.

The proof details can be found in Appendix C.3. Compared with Theorem 1, Theorem 2 removes the
dependence on Assumption 2 (bounded gradient) and provides a better convergence bound.
Remark 4. We focus on the scenario where the training instances across all workers are independent
and identically distributed (i.i.d.) from D. This scenario commonly appears in the data-center setup
for distributed training [5], where all workers have access to the full training dataset. Our analysis
for the i.i.d. scenario can also provide insights into the analysis in a non-i.i.d. scenario [22], which
will be studied in future work.
Remark 5. Most existing theoretical analyses of ASGD [16, 49, 3, 20] rely on the maximum delay

τmax (e.g., O(
√

Lσ2

T + τmaxL
T) in [20]), where τmax = maxt∈[T] τt. However, since ASGD can

still perform well even when the maximum delay is extremely large (τmax ≫ K) in practice, these
theoretical analyses don’t accurately reflect the true behavior of ASGD. The most closely related
works to this work are [13, 22], which analyze ASGD without relying on the maximum delay. But the
works in [13, 22] do not consider momentum. To the best of our knowledge, this is the first work to
establish the convergence guarantee of ASGD with momentum without relying on the maximum delay.

8

Table 1: Empirical results of different methods on CIFAR10 dataset.

Number of Workers 16 (hom.) 64 (hom.) 16 (het.) 64 (het.)
Methods Training Loss Test Accuracy Training Loss Test Accuracy Training Loss Test Accuracy Training Loss Test Accuracy

ASGD 0.06 ± 0.00 89.77 ± 0.11 0.40 ± 0.02 83.14 ± 0.55 0.06 ± 0.00 89.73 ± 0.19 0.38 ± 0.01 83.94 ± 0.21
naive ASGDm 0.20 ± 0.07 88.15 ± 1.70 0.44 ± 0.06 82.39 ± 1.79 0.58 ± 0.86 73.23 ± 31.61 0.78 ± 0.77 68.75 ± 29.51

shifted momentum 0.08 ± 0.01 90.23 ± 0.27 0.38 ± 0.00 83.72 ± 0.29 0.10 ± 0.02 89.95 ± 0.32 0.37 ± 0.01 83.99 ± 0.23
SMEGA2 0.05 ± 0.01 90.60 ± 0.42 0.23 ± 0.04 86.82 ± 0.69 0.04 ± 0.01 90.88 ± 0.25 0.22 ± 0.07 86.89 ± 1.42

OrMo 0.04 ± 0.01 90.95 ± 0.27 0.15 ± 0.02 88.03 ± 0.28 0.04 ± 0.00 91.01 ± 0.10 0.16 ± 0.03 87.76 ± 0.57
OrMo-DA 0.03 ± 0.01 91.17 ± 0.18 0.16 ± 0.02 88.03 ± 0.33 0.03 ± 0.01 91.28 ± 0.37 0.15 ± 0.02 88.08 ± 0.38

Table 2: Empirical results of different methods on CIFAR100 dataset.

Number of Workers 16 (hom.) 64 (hom.) 16 (het.) 64 (het.)
Methods Training Loss Test Accuracy Training Loss Test Accuracy Training Loss Test Accuracy Training Loss Test Accuracy

ASGD 0.51 ± 0.01 66.16 ± 0.36 0.96 ± 0.03 61.61 ± 0.59 0.51 ± 0.01 65.94 ± 0.39 0.95 ± 0.03 61.74 ± 0.30
naive ASGDm 0.54 ± 0.01 65.46 ± 0.20 1.03 ± 0.05 59.96 ± 0.90 0.53 ± 0.00 65.69 ± 0.42 0.97 ± 0.06 61.13 ± 1.02

shifted momentum 0.47 ± 0.01 66.37 ± 0.14 0.82 ± 0.01 63.55 ± 0.32 0.47 ± 0.00 66.28 ± 0.14 0.82 ± 0.04 63.28 ± 0.66
SMEGA2 0.41 ± 0.00 67.32 ± 0.22 0.69 ± 0.00 64.16 ± 0.12 0.40 ± 0.01 67.29 ± 0.16 0.68 ± 0.02 64.12 ± 0.53

OrMo 0.41 ± 0.01 67.56 ± 0.34 0.56 ± 0.00 65.48 ± 0.17 0.40 ± 0.01 67.71 ± 0.33 0.58 ± 0.02 65.43 ± 0.35
OrMo-DA 0.40 ± 0.00 67.72 ± 0.21 0.56 ± 0.01 65.79 ± 0.12 0.04 ± 0.00 67.82 ± 0.20 0.57 ± 0.01 65.82 ± 0.30

4 Experiments

In this section, we evaluate the performance of OrMo, OrMo-DA and other baseline methods. All
the experiments are implemented based on the Parameter Server framework [15]. Our distributed
platform is conducted with Docker. Each Docker container corresponds to either a server or a worker.
All the methods are implemented with PyTorch 1.3.

The baseline methods include ASGD, naive ASGDm which naively incorporates momentum into
ASGD [23], shifted momentum [9] and SMEGA2 [4]. The details of naive ASGDm are shown in
Algorithm 4. In OrMo-DA, for a gradient with a large delay satisfying τt > 2K, its corresponding
learning rate will be multiplied by 1

τt
. We evaluate these methods by training ResNet20 model [11]

on CIFAR10 and CIFAR100 datasets [14]. The number of workers is set to 16 and 64. The batch size
on each worker is set to 64. The momentum coefficient is set to 0.9. Each experiment is repeated 5
times. The experiments are conducted under two settings:

• Setting I [homogeneous (hom.)]: each worker has similar computing capabilities, which
ensures comparable average time for gradient computations.

• Setting II [heterogeneous (het.)]: some workers (1
16 of all) are designated as slow workers,

with an average computation time that is 10 times longer than that of the others.

For the CIFAR10 dataset, the weight decay is set to 0.0001 and the model is trained with 160
epochs. The learning rate is multiplied by 0.1 at the 80-th and 120-th epoch, as suggested in [11].
The experiments for the CIFAR10 dataset are conducted on NVIDIA RTX 2080 Ti GPUs. For the
CIFAR100 dataset, the weight decay is set to 0.0005 and the model is trained with 200 epochs. The
learning rate is multiplied by 0.2 at the 60-th, 120-th and 160-th epoch, as suggested in [40]. The
experiments for the CIFAR100 dataset are conducted on NVIDIA V100 GPUs.

Table 1 and Table 2 show the empirical results of different methods. Figure 3 and Figure 4 show the
test accuracy curves of different methods. We also present the test accuracy curves of SSGDm for
reference in Figure 3 and Figure 4. Training loss curves can be found in Appendix A.1. Compared
with other asynchronous methods, OrMo and OrMo-DA can achieve better training loss and test
accuracy. As shown in Figure 3, naive ASGDm occasionally fails to converge under Setting II. We
can find that naively incorporating momentum into ASGD will impede its convergence. Due to the
existence of slow workers, the maximum delay under Setting II is far greater than that under Setting I.
For example, when training on the CIFAR10 dataset with K = 64, the maximum delay under Setting
II is about 30000, while it’s around 300 under Setting I. OrMo and OrMo-DA perform well under
both settings, which aligns with our theoretical results without dependence on the maximum delay.

Figure 5 presents the training curves of OrMo and SSGDm with respect to wall-clock time. As
shown in Figure 5(b), OrMo can be 8 times faster than SSGDm under Setting II since the training
speed of SSGDm is hindered by slow workers. In contrast, slow workers have a limited impact
on OrMo’s training speed. Even under Setting I where each worker possesses similar computing

9

0 20 40 60 80 100 120 140 160
Epochs

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(a) K = 16 (hom.)

0 20 40 60 80 100 120 140 160
Epochs

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(b) K = 64 (hom.)

0 20 40 60 80 100 120 140 160
Epochs

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(c) K = 16 (het.)

0 20 40 60 80 100 120 140 160
Epochs

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(d) K = 64 (het.)

Figure 3: Test accuracy curves on CIFAR10 with different numbers of workers.

0 25 50 75 100 125 150 175 200
Epochs

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(a) K = 16 (hom.)

0 25 50 75 100 125 150 175 200
Epochs

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(b) K = 64 (hom.)

0 25 50 75 100 125 150 175 200
Epochs

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(c) K = 16 (het.)

0 25 50 75 100 125 150 175 200
Epochs

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(d) K = 64 (het.)

Figure 4: Test accuracy curves on CIFAR100 with different numbers of workers.

0 100 200 300 400 500 600
Wall-Clock Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 L
os

s

SSGDm
OrMo

0 100 200 300 400 500 600
Wall-Clock Time (s)

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

SSGDm
OrMo

(a) homogeneous

0 250 500 750 1000 1250 1500 1750 2000
Wall-Clock Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 L
os

s

SSGDm
OrMo

0 250 500 750 1000 1250 1500 1750 2000
Wall-Clock Time (s)

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

SSGDm
OrMo

(b) heterogeneous

Figure 5: Training curves with respect to wall-clock time on CIFAR10 when K = 16.

capability, OrMo can still be more than twice as fast as SSGDm, as shown in Figure 5(a). This
advantage arises because the computation time of each worker varies within a certain range even
under the homogeneous setting and some workers must wait for others to finish gradient computations
in SSGDm.

5 Conclusion

In this paper, we propose a novel method named ordered momentum (OrMo) for asynchronous SGD.
We theoretically prove the convergence of OrMo with both constant and delay-adaptive learning
rates for non-convex problems. To the best of our knowledge, this is the first work to establish
the convergence analysis of ASGD with momentum without dependence on the maximum delay.
Empirical results demonstrate that OrMo can achieve state-of-the-art performance.

Acknowledgment

This work is supported by National Key R&D Program of China (No. 2020YFA0713900), NSFC
Project (No. 12326615), Major Key Project of Pengcheng Laboratory (No. PCL2024A06) and Key
R&D Project of Jiangsu Province (No. BE2023652).

10

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system
for large-scale machine learning. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation, pages 265–283, 2016.

[2] Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. In Advances in
Neural Information Processing Systems, pages 873–881, 2011.

[3] Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic
gradient descent with delayed updates. In Proceedings of the International Conference on
Algorithmic Learning Theory, pages 111–132, 2020.

[4] Refael Cohen, Ido Hakimi, and Assaf Schuster. SMEGA2: distributed asynchronous deep
neural network training with a single momentum buffer. In Proceedings of the International
Conference on Parallel Processing, pages 1–10, 2022.

[5] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z.
Mao, Marc’Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang, and Andrew Y. Ng.
Large scale distributed deep networks. In Advances in Neural Information Processing Systems,
pages 1232–1240, 2012.

[6] Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2014.

[7] Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya Nagpurkar. Slow
and stale gradients can win the race: Error-runtime trade-offs in distributed SGD. In Proceedings
of the International Conference on Artificial Intelligence and Statistics, pages 803–812, 2018.

[8] Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-
batch algorithm for regularized stochastic optimization. IEEE Transactions on Automatic
Control, 61(12):3740–3754, 2016.

[9] Niv Giladi, Mor Shpigel Nacson, Elad Hoffer, and Daniel Soudry. At stability’s edge: How
to adjust hyperparameters to preserve minima selection in asynchronous training of neural
networks? In Proceedings of the International Conference on Learning Representations, 2020.

[10] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[12] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, pages 315–323, 2013.

[13] Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. Sharper convergence guarantees for
asynchronous SGD for distributed and federated learning. In Advances in Neural Information
Processing Systems, pages 17202–17215, 2022.

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, 2009.

[15] Mu Li, David G. Andersen, Alexander J. Smola, and Kai Yu. Communication efficient dis-
tributed machine learning with the parameter server. In Advances in Neural Information
Processing Systems, pages 19–27, 2014.

11

[16] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient
for nonconvex optimization. In Advances in Neural Information Processing Systems, pages
2737–2745, 2015.

[17] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic
gradient descent. In Proceedings of the International Conference on Machine Learning, pages
3043–3052, 2018.

[18] Tao Lin, Sai Praneeth Karimireddy, Sebastian U. Stich, and Martin Jaggi. Quasi-global
momentum: Accelerating decentralized deep learning on heterogeneous data. In Proceedings of
the International Conference on Machine Learning, pages 6654–6665, 2021.

[19] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reduc-
ing the communication bandwidth for distributed training. In Proceedings of the International
Conference on Learning Representations, 2018.

[20] Ji Liu and Ce Zhang. Distributed learning systems with first-order methods. Foundations and
Trends® in Databases, 9(1):1–100, 2020.

[21] Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. Accelerating federated learning via momen-
tum gradient descent. IEEE Transactions on Parallel and Distributed Systems, 31(8):1754–1766,
2020.

[22] Konstantin Mishchenko, Francis R. Bach, Mathieu Even, and Blake E. Woodworth. Asyn-
chronous SGD beats minibatch SGD under arbitrary delays. In Advances in Neural Information
Processing Systems, pages 420–433, 2022.

[23] Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and Christopher Ré. Asynchrony begets momen-
tum, with an application to deep learning. In Proceedings of the Annual Allerton Conference on
Communication, Control, and Computing, pages 997–1004, 2016.

[24] Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Springer Science
& Business Media, 2013.

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
pages 8024–8035, 2019.

[26] Boris Polyak. Some methods of speeding up the convergence of iteration methods. Ussr
Computational Mathematics and Mathematical Physics, 4:1–17, 12 1964.

[27] Benjamin Recht, Christopher Ré, Stephen J. Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in Neural Information
Processing Systems, pages 693–701, 2011.

[28] Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathemati-
cal Statistics, 22:400–407, 1951.

[29] Chang-Wei Shi, Shen-Yi Zhao, Yin-Peng Xie, Hao Gao, and Wu-Jun Li. Global momentum
compression for sparse communication in distributed learning. arXiv preprint arXiv:1905.12948,
2019.

[30] Suvrit Sra, Adams Wei Yu, Mu Li, and Alex Smola. Adadelay: Delay adaptive distributed
stochastic optimization. In Proceedings of the International Conference on Artificial Intelligence
and Statistics, pages 957–965, 2016.

[31] Sebastian U. Stich, Amirkeivan Mohtashami, and Martin Jaggi. Critical parameters for scalable
distributed learning with large batches and asynchronous updates. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, pages 4042–4050, 2021.

12

[32] Jianhui Sun, Xidong Wu, Heng Huang, and Aidong Zhang. On the role of server momentum
in federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
15164–15172, 2024.

[33] Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of
initialization and momentum in deep learning. In Proceedings of the International Conference
on Machine Learning, pages 1139–1147, 2013.

[34] Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru
Lian, Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale
training with adam’s convergence speed. In Proceedings of the International Conference on
Machine Learning, pages 10118–10129, 2021.

[35] Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression
for decentralized training. In Advances in Neural Information Processing Systems, pages
7663–7673, 2018.

[36] Paul Tseng. An incremental gradient(-projection) method with momentum term and adaptive
stepsize rule. SIAM Journal on Optimization, 8(2):506–531, 1998.

[37] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and
Jan S Rellermeyer. A survey on distributed machine learning. ACM Computing Surveys,
53(2):1–33, 2020.

[38] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradi-
ent compression for distributed optimization. In Advances in Neural Information Processing
Systems, pages 14236–14245, 2019.

[39] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael G. Rabbat. Slowmo: Improv-
ing communication-efficient distributed SGD with slow momentum. In Proceedings of the
International Conference on Learning Representations, 2020.

[40] Cong Xie, Shuai Zheng, Oluwasanmi Koyejo, Indranil Gupta, Mu Li, and Haibin Lin. CSER:
Communication-efficient SGD with error reset. In Advances in Neural Information Processing
Systems, pages 12593–12603, 2020.

[41] An Xu and Heng Huang. Detached error feedback for distributed SGD with random sparsifica-
tion. In Proceedings of the International Conference on Machine Learning, pages 24550–24575,
2022.

[42] Tao Yang, Xinlei Yi, Junfeng Wu, Ye Yuan, Di Wu, Ziyang Meng, Yiguang Hong, Hong Wang,
Zongli Lin, and Karl H Johansson. A survey of distributed optimization. Annual Reviews in
Control, 47:278–305, 2019.

[43] Yi-Rui Yang and Wu-Jun Li. BASGD: buffered asynchronous SGD for byzantine learning. In
Proceedings of the International Conference on Machine Learning, pages 11751–11761, 2021.

[44] Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient
momentum SGD for distributed non-convex optimization. In Proceedings of the International
Conference on Machine Learning, pages 7184–7193, 2019.

[45] Kun Yuan, Yiming Chen, Xinmeng Huang, Yingya Zhang, Pan Pan, Yinghui Xu, and Wotao
Yin. Decentlam: Decentralized momentum sgd for large-batch deep training. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 3029–3039, 2021.

[46] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. Staleness-aware async-sgd for distributed
deep learning. In Proceedings of the International Joint Conference on Artificial Intelligence,
pages 2350–2356, 2016.

[47] Shen-Yi Zhao and Wu-Jun Li. Fast asynchronous parallel stochastic gradient descent: A lock-
free approach with convergence guarantee. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 2379–2385, 2016.

13

[48] Shen-Yi Zhao, Gong-Duo Zhang, and Wu-Jun Li. Lock-free optimization for non-convex
problems. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 2935–2941,
2017.

[49] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhiming Ma, and Tie-Yan
Liu. Asynchronous stochastic gradient descent with delay compensation. In Proceedings of the
International Conference on Machine Learning, pages 4120–4129, 2017.

14

0 20 40 60 80 100 120 140 160
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 L
os

s

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(a) K = 16 (hom.)

0 20 40 60 80 100 120 140 160
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 L
os

s

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(b) K = 64 (hom.)

0 20 40 60 80 100 120 140 160
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 L
os

s

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(c) K = 16 (het.)

0 20 40 60 80 100 120 140 160
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 L
os

s

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(d) K = 64 (het.)

Figure 6: Training loss curves of different methods on CIFAR10 dataset with different numbers of
workers.

0 25 50 75 100 125 150 175 200
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(a) K = 16 (hom.)

0 25 50 75 100 125 150 175 200
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(b) K = 64 (hom.)

0 25 50 75 100 125 150 175 200
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(c) K = 16 (het.)

0 25 50 75 100 125 150 175 200
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

SSGDm
ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(d) K = 64 (het.)

Figure 7: Training loss curves of different methods on CIFAR100 dataset with different numbers of
workers.

Table 3: Empirical results of naive ASGDm with different β when training ResNet20 on CIFAR10
dataset.

Number of workers 16 (hom.) 64 (hom.) 16 (het.) 64 (het.)
Algorithm (β) Training Loss Test Accuracy Training Loss Test Accuracy Training Loss Test Accuracy Training Loss Test Accuracy

naive ASGDm (0.1) 0.06 ± 0.01 89.85 ± 0.24 0.38 ± 0.01 83.93 ± 0.25 0.06 ± 0.00 89.95 ± 0.19 0.38 ± 0.01 83.76 ± 0.34
naive ASGDm (0.3) 0.06 ± 0.00 89.91 ± 0.20 0.36 ± 0.02 84.23 ± 0.49 0.05 ± 0.01 90.26 ± 0.05 0.35 ± 0.02 84.43 ± 0.22
naive ASGDm (0.6) 0.07 ± 0.00 90.39 ± 0.24 0.38 ± 0.02 83.87 ± 0.28 0.06 ± 0.01 90.56 ± 0.13 0.37 ± 0.02 84.07 ± 0.38
naive ASGDm (0.9) 0.20 ± 0.07 88.15 ± 1.70 0.44 ± 0.06 82.39 ± 1.79 0.58 ± 0.86 73.23 ± 31.61 0.78 ± 0.77 68.75 ± 29.51

OrMo (0.9) 0.04 ± 0.01 90.95 ± 0.27 0.15 ± 0.02 88.03 ± 0.28 0.04 ± 0.00 91.01 ± 0.10 0.16 ± 0.03 87.76 ± 0.57

A More Experimental Results

A.1 Loss Curves

Figure 6 and Figure 7 show the training loss curves of ResNet20 model.

A.2 Tuning β for Naive ASGDm

Following the suggestion in [23, 9], we conduct experiments to tune the momentum coefficient β
for naive ASGDm and present the results when training ResNet20 on CIFAR10 in Table 3. While
tuning the momentum coefficient can enhance the performance of naive ASGDm, hyperparameter
tuning is quite time-consuming and costly. In contrast, OrMo achieves better performance using the
commonly used momentum value of 0.9, without requiring extensive tuning.

A.3 Ablation Study

An ablation study is also conducted to justify the parameter update rule in line 13 of Algorithm 2. We
replace the update rule in line 13 of Algorithm 2 with a vanilla SGD step, wt+1 = wt+ 1

2
−ηgkt

ite(kt,t)
,

and name it OrMo (vanilla SGD step). The comparison between the experimental results of OrMo
and OrMo (vanilla SGD step) are presented in Table 4 and Figure 8.

15

Table 4: Empirical results of OrMo and OrMo (vanilla SGD step) when training ResNet20 on
CIFAR10 dataset.

Number of Workers 16 (hom.) 64 (hom.) 16 (het.) 64 (het.)
Methods Training Loss Test Accuracy Training Loss Test Accuracy Training Loss Test Accuracy Training Loss Test Accuracy

OrMo (vanilla SGD step) 0.07 ± 0.02 90.32 ± 0.45 0.27 ± 0.07 86.08 ± 1.33 0.07 ± 0.01 90.23 ± 0.32 0.27 ± 0.07 86.10 ± 1.71
OrMo 0.04 ± 0.01 90.95 ± 0.27 0.15 ± 0.02 88.03 ± 0.28 0.04 ± 0.00 91.01 ± 0.10 0.16 ± 0.03 87.76 ± 0.57

0 20 40 60 80 100 120 140 160
Epochs

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

OrMo (vanilla SGD step)
OrMo

(a) K = 16 (hom.)

0 20 40 60 80 100 120 140 160
Epochs

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

OrMo (vanilla SGD step)
OrMo

(b) K = 64 (hom.)

0 20 40 60 80 100 120 140 160
Epochs

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

OrMo (vanilla SGD step)
OrMo

(c) K = 16 (het.)

0 20 40 60 80 100 120 140 160
Epochs

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

OrMo (vanilla SGD step)
OrMo

(d) K = 64 (het.)

Figure 8: Test accuracy curves when training ResNet20 model on CIFAR10 dataset with different
numbers of worker number.

Table 5: Test accuracy of different methods when training ResNet18 on CIFAR10 dataset.

homogeneous heterogeneous
ASGD 91.45 91.52

naive ASGDm 93.74 93.10
shifted momentum 94.02 94.20

SMEGA2 93.72 93.36
OrMo 94.32 94.26

OrMo-DA 94.50 94.03

0 20 40 60 80 100 120 140 160
Epochs

50

55

60

65

70

75

80

85

90

95

Te
st

 A
cc

ur
ac

y

ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(a) homogeneous

0 20 40 60 80 100 120 140 160
Epochs

50

55

60

65

70

75

80

85

90

95

Te
st

 A
cc

ur
ac

y

ASGD
naive ASGDm
shifted momentum
SMEGA2

OrMo
OrMo-DA

(b) heterogeneous

Figure 9: Test accuracy curves when training ResNet18 model on CIFAR10 dataset.

A.4 Experimental Results on ResNet18 Model

Table 5 and Figure 9 show the performance of different methods when training the ResNet18 model
on the CIFAR10 dataset. The number of workers is set to 8. In the homogeneous setting, each worker
has similar computing capabilities. In the heterogeneous setting, one worker is designated as the slow
worker, whose average computation time is 10 times longer than that of the others.

B Algorithm Details

Algorithm 3 and Algorithm 4 show the details of SSGDm and naive ASGDm.

16

Algorithm 3 SSGDm

1: Server:
2: Input: number of workers K, number of iterations T , learning rate η, momentum coefficient

β ∈ [0, 1);
3: Initialization: initial parameter w0, momentum u0 = 0, waiting set C = ∅;
4: Send the initial parameter w0 to all workers;
5: for t = 0 to T − 1 do
6: if the waiting set C is empty then
7: wt+ 1

2
= wt − βut, ut+ 1

2
= βut;

8: else
9: wt+ 1

2
= wt, ut+ 1

2
= ut;

10: end if
11: Receive a stochastic gradient gkt

ite(kt,t)
from some worker kt;

12: Update the parameter wt+1 = wt+ 1
2
− ηgkt

ite(kt,t)
;

13: Update the momentum ut+1 = ut+ 1
2
+ ηgkt

ite(kt,t)
;

14: Add the worker kt to the waiting set C = C ∪ {kt};
15: Execute the synchronous communication scheduler: only when all the workers are in the

waiting set, i.e., C = [K], send the parameter wt+1 to the workers in C and set C to ∅;
16: end for
17: Notify all workers to stop;
18: Worker k : (k ∈ [K])
19: repeat
20: Wait until receiving the parameter w from the server;
21: Randomly sample ξk ∼ D and then compute the stochastic gradient gk = ∇f(w; ξk);
22: Send the stochastic gradient gk to the server;
23: until receive server’s notification to stop

Algorithm 4 naive ASGDm

1: Server:
2: Input: number of workers K, number of iterations T , learning rate η, momentum coefficient

β ∈ [0, 1);
3: Initialization: initial parameter w0, momentum u0 = 0, waiting set C = ∅;
4: Send the initial parameter w0 to all workers;
5: for t = 0 to T − 1 do
6: Receive a stochastic gradient gkt

ite(kt,t)
from some worker kt;

7: Update the momentum ut+1 = βut + ηgkt

ite(kt,t)

8: Update the parameter wt+1 = wt − ut+1

9: Add the worker kt to the waiting set C = C ∪ {kt};
10: Execute the asynchronous communication scheduler: once the waiting set is not empty, i.e.,

C ̸= ∅, immediately send the parameter wt+1 to the worker in C and set C to ∅;
11: end for
12: Notify all workers to stop;
13: Worker k : (k ∈ [K])
14: repeat
15: Wait until receiving the parameter w from the server;
16: Randomly sample ξk ∼ D and then compute the stochastic gradient gk = ∇f(w; ξk);
17: Send the stochastic gradient gk to the server;
18: until receive server’s notification to stop

17

C Proof Details

C.1 Reformulation of SSGDm

C.1.1 Proof of Proposition 1

Proof. It’s easy to verify that {kt, kt+1, · · · , kt+K−1} = [K] in (6), where K | t.
Base case: for s = 0, w̃0 = w0 and ũ0 = u0.

Inductive hypothesis: for some arbitrary integer s′ ≥ 0, assume that w̃s′ = ws′K , ũs′ = us′K .

Inductive step:

ũs′+1 = βũs′ +
η̃

K

∑
k∈[K]

∇f(w̃s′ ; ξ
k) = βus′K + η

∑
k∈[K]

∇f(ws′K ; ξk) = u(s′+1)K ,

w̃s′+1 = w̃s′ − βũs′ −
η̃

K

∑
k∈[K]

∇f(w̃s′ ; ξ
k) = ws′K − βus′K − η

∑
k∈[K]

∇f(ws′K ; ξk)

= w(s′+1)K .

We can conclude that w̃s = wsK and ũs = usK for any s ∈ [S].

C.2 OrMo

C.2.1 Proof of Lemma 1

Lemma 1 can be viewed as a special case of Lemma 5, and its proof is completed by substituting
each delay-adaptive learning rate η̂k,t in the proof of Lemma 5 with η for all k ∈ [K] and t ∈ [T].

C.2.2 Proof of Lemma 2

Lemma 2 can be viewed as a special case of Lemma 6, and its proof is completed by substituting
each delay-adaptive learning rate η̂k,t in the proof of Lemma 6 with η for all k ∈ [K] and t ∈ [T].

C.2.3 Proof of Lemma 3

Lemma 3 can be viewed as a special case of Lemma 7, and its proof is completed by substituting
each delay-adaptive learning rate η̂k,t in the proof of Lemma 7 with η for all k ∈ [K] and t ∈ [T].

Lemma 4. With Assumption 2, the gap between ŷt and ŵt can be bounded:

E∥ŷt − ŵt∥2 ≤ β2η2K2G2

(1− β)4
,∀t ≥ 1. (12)

Proof. For any t ≥ 1, ût can be formulated as follows:

ût = β⌊ t+K−2
K ⌋

 ∑
k∈[K]

ηgk
0

+

⌊ t+K−2
K ⌋∑

s=1

β⌊ t+K−2
K ⌋−s

min{sK,t−1}∑
j=(s−1)K+1

ηg
kj−1

j

 .

∥ŷt − ŵt∥2 =
β2

(1− β)2
∥ût∥2

=
β2

(1− β)2

∥∥∥∥∥∥β⌊ t+K−2
K ⌋

 ∑
k∈[K]

ηgk
0

+

⌊ t+K−2
K ⌋∑

s=1

β⌊ t+K−2
K ⌋−s

min{sK,t−1}∑
j=(s−1)K+1

ηg
kj−1

j

∥∥∥∥∥∥
2

18

Let qt =
∑

k∈[K] β
⌊ t+K−2

K ⌋ +
∑⌊ t+K−2

K ⌋
s=1

∑min{sK,t−1}
j=(s−1)K+1 β

⌊ t+K−2
K ⌋−s, then we have

∥ŷt − ŵt∥2 =
β2

(1− β)2

∥∥∥∥∥∥β⌊ t+K−2
K ⌋

 ∑
k∈[K]

ηgk
0

+

⌊ t+K−2
K ⌋∑

s=1

β⌊ t+K−2
K ⌋−s

min{sK,t−1}∑
j=(s−1)K+1

ηg
kj−1

j

∥∥∥∥∥∥
2

=
β2q2t

(1− β)2

∥∥∥∥∥∥
∑

k∈[K]

β⌊ t+K−2
K ⌋

qt
ηgk

0 +

⌊ t+K−2
K ⌋∑

s=1

min{sK,t−1}∑
j=(s−1)K+1

β⌊ t+K−2
K ⌋−s

qt
ηg

kj−1

j

∥∥∥∥∥∥
2

≤ β2qt
(1− β)2

 ∑
k∈[K]

β⌊ t+K−2
K ⌋ ∥∥ηgk

0

∥∥2 + ⌊ t+K−2
K ⌋∑

s=1

min{sK,t−1}∑
j=(s−1)K+1

β⌊ t+K−2
K ⌋−s

∥∥∥ηgkj−1

j

∥∥∥2
 .

E∥ŷt − ŵt∥2 ≤ β2qt
(1− β)2

 ∑
k∈[K]

β⌊ t+K−2
K ⌋E∥ηgk

0∥2 +
⌊ t+K−2

K ⌋∑
s=1

min{sK,t−1}∑
j=(s−1)K+1

β⌊ t+K−2
K ⌋−sE∥ηgkj−1

j ∥2

≤ β2η2G2qt
(1− β)2

 ∑
k∈[K]

β⌊ t+K−2
K ⌋ +

⌊ t+K−2
K ⌋∑

s=1

min{sK,t−1}∑
j=(s−1)K+1

β⌊ t+K−2
K ⌋−s

=

β2η2G2q2t
(1− β)2

≤ β2η2K2G2

(1− β)4

C.2.4 Proof of Theorem 1

Proof.

EF (ŷt+1) ≤ F (ŷt)−
η

1− β
⟨∇F (ŷt),Eg

kt−1

t ⟩+ Lη2

2(1− β)2
E∥gkt−1

t ∥2

≤ F (ŷt)−
η

1− β
⟨∇F (ŷt),∇F (wt)⟩+

Lη2

2(1− β)2
E∥gkt−1

t −∇F (wt)∥2

+
Lη2

2(1− β)2
∥∇F (wt)∥2

≤ F (ŷt)−
η

1− β
⟨∇F (ŷt),∇F (wt)⟩+

Lη2σ2

2(1− β)2
+

Lη2

2(1− β)2
∥∇F (wt)∥2

−⟨∇F (ŷt),∇F (wt)⟩ = −⟨∇F (ŷt)−∇F (wt) +∇F (wt),∇F (wt)⟩
= −⟨∇F (ŷt)−∇F (wt),∇F (wt)⟩ − ∥∇F (wt)∥2

≤ 1

2
∥∇F (ŷt)−∇F (wt)∥2 +

1

2
∥∇F (wt)∥2 − ∥∇F (wt)∥2

≤ L2

2
∥ŷt −wt∥2 −

1

2
∥∇F (wt)∥2

E∥ŷt −wt∥2 ≤ 2E∥ŷt − ŵt∥2 + 2E∥ŵt −wt∥2 ≤ 2β2η2K2G2

(1− β)4
+

2η2K2G2

(1− β)2
≤ 2η2K2G2

(1− β)4

EF (ŷt+1) ≤ EF (ŷt)−
η

1− β
E⟨∇F (ŷt),∇F (wt)⟩+

Lη2σ2

2(1− β)2
+

Lη2

2(1− β)2
E∥∇F (wt)∥2

≤ EF (ŷt) +
ηL2

2(1− β)
E∥ŷt −wt∥2 +

(
Lη2

2(1− β)2
− η

2(1− β)

)
E∥∇F (wt)∥2 +

Lη2σ2

2(1− β)2

η≤ 1−β
2KL

≤ EF (ŷt) +
ηL2

2(1− β)
E∥ŷt −wt∥2 −

η

4(1− β)
E∥∇F (wt)∥2 +

Lη2σ2

2(1− β)2

≤ EF (ŷt)−
η

4(1− β)
E∥∇F (wt)∥2 +

Lη2σ2

2(1− β)2
+

η3K2G2L2

(1− β)5

19

Summing up the above equation from t = 1 to t = T , we can get that

1

T

T∑
t=1

E∥∇F (wt)∥2 ≤ 4(1− β) [EF (ŷ1)− F ∗]

Tη
+

2Lησ2

1− β
+

4η2K2G2L2

(1− β)4
.

Since ŷ1 −w0 = 1
1−β (ŵ1 −w0) = − η

1−β

∑
k∈[K] g

k
0 , we have

EF (ŷ1) ≤ F (w0)−
η

1− β
E⟨∇F (w0),

∑
k∈[K]

gk
0⟩+

Lη2

2(1− β)2
E

∥∥∥∥∥∥
∑

k∈[K]

gk
0

∥∥∥∥∥∥
2

≤ F (w0)−
Kη

1− β
∥∇F (w0)∥2 +

Lη2

2(1− β)2
E

∥∥∥∥∥∥
∑

k∈[K]

gk
0

∥∥∥∥∥∥
2

≤ F (w0)−
Kη

1− β
∥∇F (w0)∥2 +

Lη2

2(1− β)2
E

∥∥∥∥∥∥
∑

k∈[K]

gk
0 −K∇F (w0) +K∇F (w0)

∥∥∥∥∥∥
2

≤ F (w0) +

(
LK2η2

2(1− β)2
− Kη

1− β

)
∥∇F (w0)∥2 +

KLσ2η2

2(1− β)2

≤ F (w0) +
KLσ2η2

2(1− β)2
.

The last inequality above holds because η ≤ 1−β
2KL .

Combining the above equations, we can get that

1

T

T∑
t=1

E ∥∇F (wt)∥2 ≤ 4(1− β) [F (w0)− F ∗]

Tη
+

2Lησ2

1− β
+

2LKσ2η

(1− β)T
+

4η2L2K2G2

(1− β)4

T≥K

≤ 4(1− β) [F (w0)− F ∗]

Tη
+

4Lησ2

1− β
+

4η2L2K2G2

(1− β)4
.

Let η = min{ 1−β
2KL ,

(1−β)[F (w0)−F∗]
1
2

(LT)
1
2 σ

, (1−β)
5
3 [F (w0)−F∗]

1
3

(LKG)
2
3 T

1
3

}, then we can get that

1

T

T∑
t=1

E∥∇F (wt)∥2 ≤ O

(√
Lσ2

T
+

(
KLG

T

) 2
3

+
KL

T

)
.

C.3 OrMo with Delay-Adaptive Learning Rate

C.3.1 Algorithm

The details of OrMo with delay-adaptive learning rate (OrMo-DA) are presented in Algorithm 5.

C.3.2 Notation

For a positive integer n, [n] = {0, 1, 2, · · · , n− 1}. [0] is defined as ∅.

The function ite(k, t) denotes the iteration index of the latest parameter sent to worker k before
iteration t, which can be formulated as

ite(k, t) =

0 t = 0, k ∈ [K],

t t > 0, k = kt−1,

ite(k, t− 1) t > 0, k ̸= kt−1,

where k ∈ [K], t ∈ [T + 1].

20

Algorithm 5 OrMo-DA

1: Server:
2: Input: number of workers K, number of iterations T , momentum coefficient β ∈ [0, 1);
3: Initialization: initial parameter w0, momentum u0 = 0, index of the latest gradient group

I0 = 0, waiting set C = ∅;
4: Send the initial parameter w0 and its iteration index 0 to all workers;
5: for t = 0 to T − 1 do
6: if the waiting set C is empty and ⌈ t

K ⌉ > It then
7: wt+ 1

2
= wt − βut, ut+ 1

2
= βut, It+1 = It + 1;

8: else
9: wt+ 1

2
= wt, ut+ 1

2
= ut, It+1 = It;

10: end if
11: Receive a stochastic gradient gkt

ite(kt,t)
and its iteration index ite(kt, t) from some worker kt

and then calculate ⌈ ite(kt,t)
K ⌉ (i.e., the index of the gradient group that gkt

ite(kt,t)
belongs to);

12: Update the momentum ut+1 = ut+ 1
2
+ βIt+1−⌈ ite(kt,t)

K ⌉ ×
(
ηtg

kt

ite(kt,t)

)
;

13: Update the parameter wt+1 = wt+ 1
2
− 1−βIt+1−⌈ ite(kt,t)

K
⌉+1

1−β ×
(
ηtg

kt

ite(kt,t)

)
;

14: Add the worker kt to the waiting set C = C ∪ {kt};
15: Execute the asynchronous communication scheduler: once the waiting set is not empty, i.e.,

C ̸= ∅, immediately send the parameter wt+1 and its iteration index t+ 1 to the worker in C
and set C to ∅;

16: end for
17: Notify all workers to stop;
18: Worker k : (k ∈ [K])
19: repeat
20: Wait until receiving the parameter wt′ and its iteration index t′ from the server;
21: Randomly sample ξk ∼ D and then compute the stochastic gradient gk

t′ = ∇f(wt′ ; ξ
k);

22: Send the stochastic gradient gk
t′ and its iteration index t′ to the server;

23: until receive server’s notification to stop

ηt is the learning rate at iteration t and satisfies that

ηt =

η τt ≤ 2K,

min{η, 1

4Lτt
} τt > 2K,

where t ∈ [T].

The function next(k, t) denotes the index of the next iteration that the gradient from worker k will
participate in the parameter update after iteration t (including iteration t), which can be formulated as

next(k, t) =

{
min{j ≥ t : kj = k} ∃j ∈ [T] \ [t] , kj = k,

T ∀j ∈ [T] \ [t] , kj ̸= k,

where k ∈ [K], t ∈ [T]. It’s easy to verify that ite(k, next(k, t)) = ite(k, t), next(k, ite(k, t)) =
next(k, t), where k ∈ [K], t ∈ [T].

We define τ̂k,t = t− ite(k, t), where k ∈ [K] and t ∈ [T + 1]. τ̂k,t denotes the current delay of the
gradient gk

ite(k,t) at iteration t, which is the number of iterations that have happened since ite(k, t).
It’s easy to verify that τ̂kt,t = t− ite(kt, t) = τt, where t ∈ [T].

We also define an auxiliary sequence η̂k,t for the adaptive learning rates. η̂k,t denotes the learning
rate corresponding to the gradient gk

ite(k,t).

η̂k,t =

η τ̂k,next(k,t) ≤ 2K,

min{η, 1

4Lτ̂k,next(k,t)
} τ̂k,next(k,t) > 2K,

21

where k ∈ [K] and t ∈ [T]. Since next(k, t) = next(k, ite(k, t)), we can have that η̂k,t = η̂k,ite(k,t),
where k ∈ [K], t ∈ [T].

If next(k, t) ∈ [T], τ̂k,next(k,t) = τ̂knext(k,t),next(k,t) = τnext(k,t) and then we have that

η̂k,t = ηnext(k,t) =

η τnext(k,t) ≤ 2K,

min{η, 1

4Lτnext(k,t)
} τnext(k,t) > 2K.

It’s easy to verify that η̂kt,t = ηnext(kt,t) = ηt, where t ∈ [T].

If next(k, t) = T ,

η̂k,t =

η τ̂k,T ≤ 2K,

min{η, 1

4Lτ̂k,T
} τ̂k,T > 2K.

C.3.3 Convergence Analysis for OrMo-DA

Firstly, we define one auxiliary sequence {ût}t≥1 for the momentum: û1 =
∑

k∈[K] η̂k,0g
k
0 , and

ût+1 =

{
βût + η̂kt−1,tg

kt−1

t K | (t− 1) ,

ût + η̂kt−1,tg
kt−1

t K ∤ (t− 1) ,
(13)

for t ≥ 1.

Lemma 5. For any t ≥ 0, the gap between ut+1 and ût+1 can be formulated as follows:

ût+1 − ut+1 =
∑

k∈[K],k ̸=kt

β⌈ t
K ⌉−⌈ ite(k,t)

K ⌉η̂k,ite(k,t)g
k
ite(k,t). (14)

Proof. Base case: for t = 0, û1 =
∑

k∈[K] η̂k,0g
k
0 ,u1 = η̂k0,0g

k0
0 , then we have

û1 − u1 =
∑

k∈[K],k ̸=k0

β⌈ 0
K ⌉−⌈ 0

K ⌉η̂k,0g
k
0

=
∑

k∈[K],k ̸=k0

β⌈ 0
K ⌉−⌈ ite(k,0)

K ⌉η̂k,ite(k,0)g
k
ite(k,0).

Inductive hypothesis: for some arbitrary integer t′ − 1 ≥ 0, assume that (14) is true for t = t′ − 1.

Inductive step: We will prove that (14) is true for t = t′. Firstly, we divide our discussion into two
cases based on whether t′ − 1 is divisible by K and prove that

ût′+1 − ut′+1 =
∑

k∈[K],k ̸=kt′−1

β⌈ t′
K ⌉−⌈ ite(k,t′)

K ⌉η̂k,ite(k,t′)g
k
ite(k,t′) + η̂kt′−1,t

′g
kt′−1

t′

− β⌈ t′
K ⌉−⌈

ite(k
t′ ,t

′)
K ⌉η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′).

22

Case 1: K | (t′ − 1)

ût′+1 = βût′ + η̂kt′−1,t
′g

kt′−1

t′ ,

ut′+1 = βut′ + β⌈ t′
K ⌉−⌈

ite(k
t′ ,t

′)
K ⌉η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′),

ût′+1 − ut′+1 = β(ût′ − ut′) + η̂kt′−1,t
′g

kt′−1

t′ − β⌈ t′
K ⌉−⌈

ite(k
t′ ,t

′)
K ⌉η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′)

=
∑

k∈[K],k ̸=kt′−1

β⌈ t′−1
K ⌉+1−⌈ ite(k,t′−1)

K ⌉η̂k,ite(k,t′−1)g
k
ite(k,t′−1)

+ η̂kt′−1,t
′g

kt′−1

t′ − β⌈ t′
K ⌉−⌈

ite(k
t′ ,t

′)
K ⌉η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′)

=
∑

k∈[K],k ̸=kt′−1

β⌈ t′
K ⌉−⌈ ite(k,t′−1)

K ⌉η̂k,ite(k,t′−1)g
k
ite(k,t′−1)

+ η̂kt′−1,t
′g

kt′−1

t′ − β⌈ t′
K ⌉−⌈

ite(k
t′ ,t

′)
K ⌉η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′).

The second equation above holds because ⌈ t′

K ⌉ > ⌈ t′−1
K ⌉ = It′ when K | (t′ − 1), It′+1 = ⌈ t′

K ⌉ and
η̂kt′ ,ite(kt′ ,t

′) = ηnext(kt′ ,ite(kt′ ,t
′)) = ηt′ . The last equation above holds because ⌈ t′

K ⌉ = ⌈ t′−1
K ⌉+1.

Case 2: K ∤ (t′ − 1)

ût′+1 = ût′ + η̂kt′−1,t
′g

kt′−1

t′ ,

ut′+1 = ut′ + β⌈ t′
K ⌉−⌈

ite(k
t′ ,t

′)
K ⌉η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′),

ût′+1 − ut′+1 = (ût′ − ut′) + η̂kt′−1,t
′g

kt′−1

t′ − β⌈ t′
K ⌉−⌈

ite(k
t′ ,t

′)
K ⌉η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′)

=
∑

k∈[K],k ̸=kt′−1

β⌈ t′−1
K ⌉−⌈ ite(k,t′−1)

K ⌉η̂k,ite(k,t′−1)g
k
ite(k,t′−1)

+ η̂kt′−1,t
′g

kt′−1

t′ − β⌈ t′
K ⌉−⌈

ite(k
t′ ,t

′)
K ⌉η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′)

=
∑

k∈[K],k ̸=kt′−1

β⌈ t′
K ⌉−⌈ ite(k,t′−1)

K ⌉η̂k,ite(k,t′−1)g
k
ite(k,t′−1)

+ η̂kt′−1,t
′g

kt′−1

t′ − β⌈ t′
K ⌉−⌈

ite(k
t′ ,t

′)
K ⌉η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′).

The last equation above holds because ⌈ t′

K ⌉ = ⌈ t′−1
K ⌉.

Since ite(k, t′) = ite(k, t′ − 1),∀k ̸= kt′−1, we can get the following equation for both cases above:

ût′+1 − ut′+1 =
∑

k∈[K],k ̸=kt′−1

β⌈ t′
K ⌉−⌈ ite(k,t′)

K ⌉η̂k,ite(k,t′)g
k
ite(k,t′) + η̂kt′−1,t

′g
kt′−1

t′

− β⌈ t′
K ⌉−⌈

ite(k
t′ ,t

′)
K ⌉η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′).

If kt′ = kt′−1, then we have ite(kt′ , t
′) = t′ and

ût′+1 − ut′+1 =
∑

k∈[K],k ̸=kt′

β⌈ t′
K ⌉−⌈ ite(k,t′)

K ⌉η̂k,ite(k,t′)g
k
ite(k,t′).

23

If kt′ ̸= kt′−1, then we have

ût′+1 − ut′+1 =
∑

k∈[K],k ̸=kt′−1

β⌈ t′
K ⌉−⌈ ite(k,t′)

K ⌉η̂k,ite(k,t′)g
k
ite(k,t′) + η̂kt′−1,t

′g
kt′−1

t′

− β⌈ t′
K ⌉−⌈

ite(k
t′ ,t

′)
K ⌉η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′)

=
∑

k∈[K],k ̸=kt′−1,k ̸=kt′

β⌈ t′
K ⌉−⌈ ite(k,t′)

K ⌉η̂k,ite(k,t′)g
k
ite(k,t′) + η̂kt′−1,t

′g
kt′−1

t′

=
∑

k∈[K],k ̸=kt′−1,k ̸=kt′

β⌈ t′
K ⌉−⌈ ite(k,t′)

K ⌉η̂k,ite(k,t′)g
k
ite(k,t′)

+ β⌈ t′
K ⌉−⌈

ite(k
t′−1

,t′)
K ⌉η̂kt′−1,ite(kt′−1,t

′)g
kt′−1

ite(kt′−1,t
′)

=
∑

k∈[K],k ̸=kt′

β⌈ t′
K ⌉−⌈ ite(k,t′)

K ⌉η̂k,ite(k,t′)g
k
ite(k,t′).

We can conclude that ût+1 − ut+1 =
∑

k∈[K],k ̸=kt
β⌈ t

K ⌉−⌈ ite(k,t)
K ⌉η̂k,ite(k,t)g

k
ite(k,t) is true for any

t ≥ 0.

Then, we define one auxiliary sequence {ŵt}t≥1 for the parameter: ŵ1 = w0−
∑

k∈[K] η̂k,0g
k
0 , and

ŵt+1 =

{
ŵt − βût − η̂kt−1,tg

kt−1

t K | (t− 1),

ŵt − η̂kt−1,tg
kt−1

t K ∤ (t− 1),

for t ≥ 1.

Lemma 6. For any t ≥ 0, the gap between wt+1 and ŵt+1 can be formulated as follows:

ŵt+1 −wt+1 = −
∑

k∈[K],k ̸=kt

1− β⌈ t
K ⌉−⌈ ite(k,t)

K ⌉+1

1− β
η̂k,ite(k,t)g

k
ite(k,t). (15)

Proof. Base case: for t = 0, ŵ1 = w0 −
∑

k∈[K] η̂k,0g
k
0 ,w1 = w0 − η̂k0,0g

k0
0 , then we have

ŵ1 −w1 = −
∑

k∈[K],k ̸=k0

1− β⌈ 0
K ⌉−⌈ ite(k,0)

K ⌉+1

1− β
η̂k,ite(k,0)g

k
ite(k,0).

Inductive hypothesis: for some arbitrary integer t′ − 1 ≥ 0, assume that (15) is true for t = t′ − 1.

Inductive step: We will prove that (15) is true for t = t′. Firstly, we divide our discussion into two
cases based on whether t′ − 1 is divisible by K and prove that

ŵt′+1 −wt′+1 = −
∑

k∈[K],k ̸=kt′−1

1− β⌈ t′
K ⌉−⌈ ite(k,t′)

K ⌉+1

1− β
η̂k,ite(k,t′)g

k
ite(k,t′) − η̂kt′−1,t

′g
kt′−1

t′

+
1− β⌈ t′

K ⌉−⌈
ite(k

t′ ,t
′)

K ⌉+1

1− β
η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′).

24

Case 1: K | (t′ − 1)

ŵt′+1 = ŵt′ − βût′ − η̂kt′−1,t
′g

kt′−1

t′ ,

wt′+1 = wt′ − βut′ −
1− β⌈ t′

K ⌉−⌈
ite(k

t′ ,t
′)

K ⌉+1

1− β
η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′),

ŵt′+1 −wt′+1 = ŵt′ −wt′ − β (ût′ − ut′)− η̂kt′−1,t
′g

kt′−1

t′

+
1− β⌈ t′

K ⌉−⌈
ite(k

t′ ,t
′)

K ⌉+1

1− β
η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′)

= −
∑

k∈[K],k ̸=kt′−1

1− β⌈ t′−1
K ⌉−⌈ ite(k,t′−1)

K ⌉+1

1− β
η̂k,ite(k,t′−1)g

k
ite(k,t′−1)

−
∑

k∈[K],k ̸=kt′−1

β⌈ t′−1
K ⌉−⌈ ite(k,t′−1)

K ⌉+1η̂k,ite(k,t′−1)g
k
ite(k,t′−1)

−

η̂kt′−1,t
′g

kt′−1

t′ − 1− β⌈ t′
K ⌉−⌈

ite(k
t′ ,t

′)
K ⌉+1

1− β
η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′)

= −

∑
k∈[K],k ̸=kt′−1

1− β⌈ t′−1
K ⌉−⌈ ite(k,t′−1)

K ⌉+2

1− β
η̂k,ite(k,t′−1)g

k
ite(k,t′−1)

− η̂kt′−1,t
′g

kt′−1

t′ +
1− β⌈ t′

K ⌉−⌈
ite(k

t′ ,t
′)

K ⌉+1

1− β
η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′)

= −
∑

k∈[K],k ̸=kt′−1

1− β⌈ t′
K ⌉−⌈ ite(k,t′−1)

K ⌉+1

1− β
η̂k,ite(k,t′−1)g

k
ite(k,t′−1)

− η̂kt′−1,t
′g

kt′−1

t′ +
1− β⌈ t′

K ⌉−⌈
ite(k

t′ ,t
′)

K ⌉+1

1− β
η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′).

The last equation above holds because ⌈ t′

K ⌉ = ⌈ t′−1
K ⌉+ 1.

Case 2: K ∤ (t′ − 1)

ŵt′+1 = ŵt′ − η̂kt′−1,t
′g

kt′−1

t′ ,

wt′+1 = wt′ −
1− β⌈ t′

K ⌉−⌈
ite(k

t′ ,t
′)

K ⌉+1

1− β
η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′),

ŵt′+1 −wt′+1 = ŵt′ −wt′ −

η̂kt′−1,t
′g

kt′−1

t′ − 1− β⌈ t′
K ⌉−⌈

ite(k
t′ ,t

′)
K ⌉+1

1− β
η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′)

= −

∑
k∈[K],k ̸=kt′−1

1− β⌈ t′−1
K ⌉−⌈ ite(k,t′−1)

K ⌉+1

1− β
η̂k,ite(k,t′−1)g

k
ite(k,t′−1)

− η̂kt′−1,t
′g

kt′−1

t′ +
1− β⌈ t′

K ⌉−⌈
ite(k

t′ ,t
′)

K ⌉+1

1− β
η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′)

= −
∑

k∈[K],k ̸=kt′−1

1− β⌈ t′
K ⌉−⌈ ite(k,t′−1)

K ⌉+1

1− β
η̂k,ite(k,t′−1)g

k
ite(k,t′−1)

− η̂kt′−1,t
′g

kt′−1

t′ +
1− β⌈ t′

K ⌉−⌈
ite(k

t′ ,t
′)

K ⌉+1

1− β
η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′).

25

The last equation above holds because ⌈ t′

K ⌉ = ⌈ t′−1
K ⌉.

Since ite(k, t′) = ite(k, t′ − 1),∀k ̸= kt′−1, we can get the following equation for both cases above:

ŵt′+1 −wt′+1 = −
∑

k∈[K],k ̸=kt′−1

1− β⌈ t′
K ⌉−⌈ ite(k,t′)

K ⌉+1

1− β
η̂k,ite(k,t′)g

k
ite(k,t′) − η̂kt′−1,t

′g
kt′−1

t′

+
1− β⌈ t′

K ⌉−⌈
ite(k

t′ ,t
′)

K ⌉+1

1− β
η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′).

If kt′ = kt′−1, then we have ite(kt′ , t
′) = t′ and

ŵt′+1 −wt′+1 = −
∑

k∈[K],k ̸=kt′

1− β⌈ t′
K ⌉−⌈ ite(k,t′)

K ⌉+1

1− β
η̂k,ite(k,t′)g

k
ite(k,t′).

If kt′ ̸= kt′−1, then we have

ŵt′+1 −wt′+1 = −
∑

k∈[K],k ̸=kt′−1

1− β⌈ t′
K ⌉−⌈ ite(k,t′)

K ⌉+1

1− β
η̂k,ite(k,t′)g

k
ite(k,t′) − η̂kt′−1,t

′g
kt′−1

t′

+
1− β⌈ t′

K ⌉−⌈
ite(k

t′ ,t
′)

K ⌉+1

1− β
η̂kt′ ,ite(kt′ ,t

′)g
kt′
ite(kt′ ,t

′)

= −
∑

k∈[K],k ̸=kt′−1,k ̸=kt′

1− β⌈ t′
K ⌉−⌈ ite(k,t′)

K ⌉+1

1− β
η̂k,ite(k,t′)g

k
ite(k,t′) − η̂kt′−1,t

′g
kt′−1

t′

= −
∑

k∈[K],k ̸=kt′

1− β⌈ t′
K ⌉−⌈ ite(k,t′)

K ⌉+1

1− β
η̂k,ite(k,t′)g

k
ite(k,t′)

We can conclude that ŵt+1 −wt+1 = −
∑

k∈[K],k ̸=kt

1−β⌈ t
K

⌉−⌈ ite(k,t)
K

⌉+1

1−β η̂k,ite(k,t)g
k
ite(k,t) is true

for any t ≥ 0.

Then, we define another auxiliary sequence {ŷt}t≥1: ŷ1 = w0 − 1
1−β

∑
k∈[K] η̂k,0g

k
0 , and

ŷt+1 = ŷt −
1

1− β
η̂kt−1,tg

kt−1

t ,

for t ≥ 1.
Lemma 7. For any t ≥ 1, the gap between ŷt and ŵt can be formulated as follows:

ŷt − ŵt = − β

1− β
ût. (16)

Proof. Base case: For t = 1, we have that

ŷ1 − ŵ1 =

w0 −
1

1− β

∑
k∈[K]

η̂k,0g
k
0

−

w0 −
∑

k∈[K]

η̂k,0g
k
0

= − β

1− β

∑
k∈[K]

η̂k,0g
k
0 = − β

1− β
û1.

Inductive hypothesis: for some arbitrary integer t′ ≥ 1, assume that ŷt − ŵt = − β
1−β ût is true for

t = t′.

Inductive step: We will prove that ŷt−ŵt = − β
1−β ût is true for t = t′+1. We divide our discussion

into two cases based on whether t′ − 1 is divisible by K.

26

Case 1: K | (t′ − 1)

ŷt′+1 = ŷt′ −
1

1− β
η̂kt′−1,t

′g
kt′−1

t′

ŵt′+1 = ŵt′ − βût′ − η̂kt′−1,t
′g

kt′−1

t′

ŷt′+1 − ŵt′+1 =

(
ŷt′ −

1

1− β
η̂kt′−1,t

′g
kt′−1

t′

)
−
(
ŵt′ − βût′ − η̂kt′−1,t

′g
kt′−1

t′

)
= ŷt′ − ŵt′ + βût′ −

β

1− β
η̂kt′−1,t

′g
kt′−1

t′

= − β2

1− β
ût′ −

β

1− β
η̂kt′−1,t

′g
kt′−1

t′

= − β

1− β
ût′+1

Case 2: K ∤ (t′ − 1)

ŷt′+1 = ŷt′ −
1

1− β
η̂kt′−1,t

′g
kt′−1

t′

ŵt′+1 = ŵt′ − η̂kt′−1,t
′g

kt′−1

t′

ŷt′+1 − ŵt′+1 =

(
ŷt′ −

1

1− β
η̂kt′−1,t

′g
kt′−1

t′

)
−
(
ŵt′ − η̂kt′−1,t

′g
kt′−1

t′

)
= ŷt′ − ŵt′ −

β

1− β
η̂kt′−1,t

′g
kt′−1

t′

= − β

1− β
ût′ −

β

1− β
η̂kt′−1,t

′g
kt′−1

t′

= − β

1− β
ût′+1

We can conclude that ŷt − ŵt = − β
1−β ût is true for any t ≥ 1.

Lemma 8. For any t ≥ 1, ût can be formulated as follows:

ût = β⌊ t+K−2
K ⌋

 ∑
k∈[K]

η̂k,0g
k
0

+

⌊ t+K−2
K ⌋∑

s=1

β⌊ t+K−2
K ⌋−s

min{sK,t−1}∑
j=(s−1)K+1

η̂kj−1,jg
kj−1

j

 .

Proof. It’s straightforward to get this conclusion from the definition of the sequence ût in (13).

Lemma 9. (descent lemma) With Assumptions 1 and 3, we have the following descent lemma for
t ≥ 1,:

EF (ŷt+1) ≤ F (ŷt) +

(
L(η̂kt−1,t)

2

2(1− β)
2 −

η̂kt−1,t

2(1− β)

)
∥∇F (wt)∥2 +

(η̂kt−1,t)
2
σ2L

2(1− β)
2

+
L2η̂kt−1,t

1− β
∥ŷt − ŵt∥2 +

L2η̂kt−1,t

1− β
∥ŵt −wt∥2 .

27

Proof.

ŷt+1 = ŷt −
1

1− β
η̂kt−1,tg

kt−1

t

EF (ŷt+1) ≤ F (ŷt) + E⟨∇F (ŷt), ŷt+1 − ŷt⟩+
L

2
E ∥ŷt+1 − ŷt∥2

= F (ŷt)−
1

1− β
E⟨∇F (ŷt), η̂kt−1,tg

kt−1

t ⟩+ L

2(1− β)
2E
[
(η̂kt−1,t)

2
∥∥∥gkt−1

t

∥∥∥2]
= F (ŷt)−

1

1− β
⟨∇F (ŷt), η̂kt−1,t∇F (wt)⟩+

L

2(1− β)
2E
[
(η̂kt−1,t)

2
∥∥∥gkt−1

t

∥∥∥2] .
−
η̂kt−1,t

1− β
⟨∇F (ŷt),∇F (wt)⟩ = −

η̂kt−1,t

1− β
⟨∇F (ŷt)−∇F (wt) +∇F (wt),∇F (wt)⟩

= −
η̂kt−1,t

1− β
⟨∇F (ŷt)−∇F (wt),∇F (wt)⟩ −

η̂kt−1,t

1− β
∥∇F (wt)∥2

≤
η̂kt−1,t

2(1− β)
∥∇F (ŷt)−∇F (wt)∥2 −

η̂kt−1,t

2(1− β)
∥∇F (wt)∥2

≤
η̂kt−1,tL

2

2(1− β)
∥ŷt −wt∥2 −

η̂kt−1,t

2(1− β)
∥∇F (wt)∥2

L

2(1− β)
2E
[
(η̂kt−1,t)

2
∥∥∥gkt−1

t

∥∥∥2] = L(η̂kt−1,t)
2

2(1− β)
2 E

∥∥∥gkt−1

t −∇F (wt) +∇F (wt)
∥∥∥2

≤
L(η̂kt−1,t)

2

2(1− β)
2

(
E
∥∥∥gkt−1

t −∇F (wt)
∥∥∥2 + ∥∇F (wt)∥2

)
≤

(η̂kt−1,t)
2
L

2(1− β)
2

(
σ2 + ∥∇F (wt)∥2

)

EF (ŷt+1) ≤ F (ŷt) +

(
L(η̂kt−1,t)

2

2(1− β)
2 −

η̂kt−1,t

2(1− β)

)
∥∇F (wt)∥2 +

(η̂kt−1,t)
2
σ2L

2(1− β)
2

+
L2η̂kt−1,t

2(1− β)
∥ŷt −wt∥2

≤ F (ŷt) +

(
L(η̂kt−1,t)

2

2(1− β)
2 −

η̂kt−1,t

2(1− β)

)
∥∇F (wt)∥2 +

(η̂kt−1,t)
2
σ2L

2(1− β)
2

+
L2η̂kt−1,t

1− β
∥ŷt − ŵt∥2 +

L2η̂kt−1,t

1− β
∥ŵt −wt∥2 .

Lemma 10. With Assumption 1, the gap between ŷt and ŵt in OrMo-DA can be bounded as follows:

T−1∑
t=1

E
(
η̂kt−1,t ∥ŷt − ŵt∥2

)
≤ 2β2ηK2

(1− β)
4

 ∑
k∈[K]

(η̂k,0)
2 ∥∇F (w0)∥2 +

T−1∑
t=1

(
η̂kt−1,t

)2E ∥∇F (wt)∥2

+
2β2ηKσ2

(1− β)
3

 ∑
k∈[K]

(η̂k,0)
2
+

T−1∑
t=1

(
η̂kt−1,t

)2 .

28

Proof.

E ∥ût∥2 = E

∥∥∥∥∥∥β⌊ t+K−2
K ⌋

 ∑
k∈[K]

η̂k,0g
k
0

+

⌊ t+K−2
K ⌋∑

s=1

β⌊ t+K−2
K ⌋−s

min{sK,t−1}∑
j=(s−1)K+1

η̂kj−1,jg
kj−1

j

∥∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥∥β⌊ t+K−2
K ⌋

 ∑
k∈[K]

η̂k,0
(
gk
0 −∇F (w0)

)
+

⌊ t+K−2
K ⌋∑

s=1

β⌊ t+K−2
K ⌋−s

min{sK,t−1}∑
j=(s−1)K+1

η̂kj−1,j

(
g
kj−1

j −∇F (wj)
)∥∥∥∥∥∥

2

+ 2E

∥∥∥∥∥∥β⌊ t+K−2
K ⌋

 ∑
k∈[K]

η̂k,0∇F (w0)

+

⌊ t+K−2
K ⌋∑

s=1

β⌊ t+K−2
K ⌋−s

min{sK,t−1}∑
j=(s−1)K+1

η̂kj−1,j∇F (wj)

∥∥∥∥∥∥
2

≤ 2
∑

k∈[K]

β2⌊ t+K−2
K ⌋(η̂k,0)

2
σ2 + 2

⌊ t+K−2
K ⌋∑

s=1

min{sK,t−1}∑
j=(s−1)K+1

β2⌊ t+K−2
K ⌋−2s

(
η̂kj−1,j

)2
σ2

+ 2E

∥∥∥∥∥∥β⌊ t+K−2
K ⌋

 ∑
k∈[K]

η̂k,0∇F (w0)

+

⌊ t+K−2
K ⌋∑

s=1

β⌊ t+K−2
K ⌋−s

min{sK,t−1}∑
j=(s−1)K+1

η̂kj−1,j∇F (wj)

∥∥∥∥∥∥
2

Let qt =
∑

k∈[K] β
⌊ t+K−2

K ⌋ +
∑⌊ t+K−2

K ⌋
s=1

∑min{sK,t−1}
j=(s−1)K+1 β

⌊ t+K−2
K ⌋−s, then we have

E

∥∥∥∥∥∥β⌊ t+K−2
K ⌋

 ∑
k∈[K]

η̂k,0∇F (w0)

+

⌊ t+K−2
K ⌋∑

s=1

β⌊ t+K−2
K ⌋−s

min{sK,t−1}∑
j=(s−1)K+1

η̂kj−1,j∇F (wj)

∥∥∥∥∥∥
2

= q2tE

∥∥∥∥∥∥
 ∑

k∈[K]

β⌊ t+K−2
K ⌋

qt
η̂k,0∇F (w0)

+

⌊ t+K−2
K ⌋∑

s=1

min{sK,t−1}∑
j=(s−1)K+1

β⌊ t+K−2
K ⌋−s

qt
η̂kj−1,j∇F (wj)

∥∥∥∥∥∥
2

≤ qt

 ∑
k∈[K]

β⌊ t+K−2
K ⌋(η̂k,0)

2 ∥∇F (w0)∥2

+

⌊ t+K−2
K ⌋∑

s=1

min{sK,t−1}∑
j=(s−1)K+1

β⌊ t+K−2
K ⌋−s

(
η̂kj−1,j

)2E ∥∇F (wj)∥2

≤ K

1− β

 ∑
k∈[K]

β⌊ t+K−2
K ⌋(η̂k,0)

2 ∥∇F (w0)∥2

+

⌊ t+K−2
K ⌋∑

s=1

min{sK,t−1}∑
j=(s−1)K+1

β⌊ t+K−2
K ⌋−s

(
η̂kj−1,j

)2E ∥∇F (wj)∥2
 .

29

Thus, we get that

E ∥ût∥2

≤ 2E

∥∥∥∥∥∥β⌊ t+K−2
K ⌋

 ∑
k∈[K]

η̂k,0∇F (w0)

+

⌊ t+K−2
K ⌋∑

s=1

β⌊ t+K−2
K ⌋−s

min{sK,t−1}∑
j=(s−1)K+1

η̂kj−1,j∇F (wj)

∥∥∥∥∥∥
2

+ 2
∑

k∈[K]

β2⌊ t+K−2
K ⌋(η̂k,0)

2
σ2 + 2

⌊ t+K−2
K ⌋∑

s=1

min{sK,t−1}∑
j=(s−1)K+1

β2⌊ t+K−2
K ⌋−2s

(
η̂kj−1,j

)2
σ2

≤ 2K

1− β

 ∑
k∈[K]

β⌊ t+K−2
K ⌋(η̂k,0)

2 ∥∇F (w0)∥2 +
⌊ t+K−2

K ⌋∑
s=1

min{sK,t−1}∑
j=(s−1)K+1

β⌊ t+K−2
K ⌋−s

(
η̂kj−1,j

)2E ∥∇F (wj)∥2

+ 2
∑

k∈[K]

β2⌊ t+K−2
K ⌋(η̂k,0)

2
σ2 + 2

⌊ t+K−2
K ⌋∑

s=1

min{sK,t−1}∑
j=(s−1)K+1

β2⌊ t+K−2
K ⌋−2s

(
η̂kj−1,j

)2
σ2.

T−1∑
t=1

E
(
η̂kt−1,t ∥ŷt − ŵt∥2

)
≤ β2η

(1− β)
2

T−1∑
t=1

E ∥ût∥2

≤ 2β2Kη

(1− β)
3

T−1∑
t=1

∑
k∈[K]

β⌊ t+K−2
K ⌋(η̂k,0)

2 ∥∇F (w0)∥2

+
2β2Kη

(1− β)
3

T−1∑
t=1

⌊ t+K−2
K ⌋∑

s=1

min{sK,t−1}∑
j=(s−1)K+1

β⌊ t+K−2
K ⌋−s

(
η̂kj−1,j

)2E ∥∇F (wj)∥2

+
2β2ησ2

(1− β)
2

T−1∑
t=1

 ∑
k∈[K]

β2⌊ t+K−2
K ⌋(η̂k,0)

2
+

⌊ t+K−2
K ⌋∑

s=1

min{sK,t−1}∑
j=(s−1)K+1

β2⌊ t+K−2
K ⌋−2s

(
η̂kj−1,j

)2
≤ 2β2ηK2

(1− β)
4

 ∑
k∈[K]

(η̂k,0)
2 ∥∇F (w0)∥2 +

T−1∑
t=1

(
η̂kt−1,t

)2E ∥∇F (wt)∥2

+
2β2ηKσ2

(1− β)
3

 ∑
k∈[K]

(η̂k,0)
2
+

T−1∑
t=1

(
η̂kt−1,t

)2 .

Lemma 11. With Assumption 1, letting η ≤ 1
8KL , the gap between ŵt and wt in OrMo-DA can be

bounded as follows:

T−1∑
t=1

E
(
η̂kt−1,t ∥ŵt −wt∥2

)
≤ ηK

2L(1− β)
2

T−1∑
t=1

η̂kt−1,tE ∥∇F (wt)∥2 +

 ∑
k∈[K]

η̂k,0

 ∥∇F (w0)∥2

+
ησ2

2L(1− β)
2

T−1∑
t=1

η̂kt−1,t +
∑

k∈[K]

η̂k,0

 .

30

Proof.
T−1∑
t=1

E
(
η̂kt−1,t ∥ŵt −wt∥2

)
≤ η

T−1∑
t=1

E ∥ŵt −wt∥2

= η

T−1∑
t=1

E

∥∥∥∥∥∥
∑

k∈[K],k ̸=kt−1

1− β⌈ t−1
K ⌉−⌈ ite(k,t−1)

K ⌉+1

1− β
η̂k,ite(k,t−1)g

k
ite(k,t−1)

∥∥∥∥∥∥
2

≤ 2η

T−1∑
t=1

E

∥∥∥∥∥∥
∑

k∈[K],k ̸=kt−1

1− β⌈ t−1
K ⌉−⌈ ite(k,t−1)

K ⌉+1

1− β
η̂k,ite(k,t−1)

(
gk
ite(k,t−1) −∇F (wite(k,t−1))

)∥∥∥∥∥∥
2

+ 2η

T−1∑
t=1

E

∥∥∥∥∥∥
∑

k∈[K],k ̸=kt−1

1− β⌈ t−1
K ⌉−⌈ ite(k,t−1)

K ⌉+1

1− β
η̂k,ite(k,t−1)∇F (wite(k,t−1))

∥∥∥∥∥∥
2

≤ 2η

(1− β)
2

T−2∑
t=0

∑
k∈[K],k ̸=kt

(
η̂k,ite(k,t)

)2 (
σ2 +KE

∥∥∇F (wite(k,t))
∥∥2)

=
2η

(1− β)
2

T−2∑
j=0

T−2∑
t=0

∑
k∈[K]

(
η̂k,ite(k,t)

)2 (
σ2 +KE

∥∥∇F (wite(k,t))
∥∥2)1 (k ̸= kt)1 (j = ite(k, t))

=
2η

(1− β)
2

T−2∑
j=1

T−2∑
t=0

∑
k∈[K]

(
η̂k,ite(k,t)

)2 (
σ2 +KE

∥∥∇F (wite(k,t))
∥∥2)1 (k ̸= kt)1 (j = ite(k, t))

+
2η

(1− β)
2

T−2∑
t=0

∑
k∈[K]

(
η̂k,ite(k,t)

)2 (
σ2 +KE

∥∥∇F (wite(k,t))
∥∥2)1 (k ̸= kt)1 (0 = ite(k, t))

≤ 2η

(1− β)
2

T−2∑
j=1

(
η̂kj−1,j

)2 (
σ2 +KE ∥∇F (wj)∥2

)
(next(kj−1, j)− j)

+
2η

(1− β)
2

∑
k∈[K]

(η̂k,0)
2
(
σ2 +K ∥∇F (w0)∥2

)
(next(k, 0)− 0)

T−1∑
t=1

E
(
η̂kt−1,t ∥ŵt −wt∥2

)
≤ 2η

(1− β)
2

T−1∑
t=1

(
η̂kt−1,t

)2 (
σ2 +KE ∥∇F (wt)∥2

)
τ̂kt−1,next(kt−1,t)

+
2η

(1− β)
2

∑
k∈[K]

(η̂k,0)
2
(
σ2 +K ∥∇F (w0)∥2

)
τ̂k,next(k,0)

T−1∑
t=1

E
(
η̂kt−1,t ∥ŵt −wt∥2

)

≤ η

2L(1− β)
2

T−1∑
t=1

η̂kt−1,t

[
σ2 +KE ∥∇F (wt)∥2

]
+
∑

k∈[K]

η̂k,0

[
σ2 +K ∥∇F (w0)∥2

]
≤ ηK

2L(1− β)
2

T−1∑
t=1

η̂kt−1,tE ∥∇F (wt)∥2 +

 ∑
k∈[K]

η̂k,0

 ∥∇F (w0)∥2

+
ησ2

2L(1− β)
2

T−1∑
t=1

η̂kt−1,t +
∑

k∈[K]

η̂k,0

 .

31

Theorem 3. With Assumptions 1, 3 and 4, letting

ηt =

η τt ≤ 2K,

min{η, 1

4Lτt
} τt > 2K,

and η = min{ (1−β)2

8KL ,
√

(1−β)3∆
TLσ2 }, Algorithm 5 has the following convergence rate:

E ∥∇F (w̄T)∥2 ≤ O(

√
Lσ2

T
+

KL

T
),

where ∆ = F (w0) − F ∗ and w̄T is randomly chosen from {w0,w1, · · · ,wT−1} according to a
probability distribution which is related to the delay-adaptive learning rates as shown in (17).

Proof. According to Lemma 9, we can get that

EF (ŷT)− EF (ŷ1)

≤
T−1∑
t=1

[(
L(η̂kt−1,t)

2

2(1− β)
2 −

η̂kt−1,t

2(1− β)

)
E ∥∇F (wt)∥2

]
+

Lσ2

2(1− β)
2

T−1∑
t=1

(η̂kt−1,t)
2

+ E

[
L2

1− β

T−1∑
t=1

(
η̂kt−1,t ∥ŵt −wt∥2 + η̂kt−1,t ∥ŷt − ŵt∥2

)]

≤
T−1∑
t=1

[(
L(η̂kt−1,t)

2

2(1− β)
2 −

η̂kt−1,t

2(1− β)

)
E ∥∇F (wt)∥2

]
+

Lσ2

2(1− β)
2

T−1∑
t=1

(η̂kt−1,t)
2

+
ηLσ2

2(1− β)
3

T−1∑
t=1

η̂kt−1,t +
∑

k∈[K]

η̂k,0

+

ηKL

2(1− β)
3

T−1∑
t=1

η̂kt−1,tE ∥∇F (wt)∥2 +

 ∑
k∈[K]

η̂k,0

 ∥∇F (w0)∥2

+
2β2ηK2L2

(1− β)
5

 ∑
k∈[K]

(η̂k,0)
2 ∥∇F (w0)∥2 +

T−1∑
t=1

(
η̂kt−1,t

)2E ∥∇F (wt)∥2

+
2β2ηKL2σ2

(1− β)
4

 ∑
k∈[K]

(η̂k,0)
2
+

T−1∑
t=1

(
η̂kt−1,t

)2
≤

T−1∑
t=1

[(
L(η̂kt−1,t)

2

2(1− β)
2 −

η̂kt−1,t

2(1− β)

)
E ∥∇F (wt)∥2

]
+

Lσ2

2(1− β)
2

T−1∑
t=1

(η̂kt−1,t)
2

+

(
ηLσ2

2(1− β)
3 +

ηβ2Lσ2

4(1− β)
2

)T−1∑
t=1

η̂kt−1,t +
∑

k∈[K]

η̂k,0

+

ηKL

2(1− β)
3

T−1∑
t=1

η̂kt−1,tE ∥∇F (wt)∥2 +
∑

k∈[K]

η̂k,0 ∥∇F (w0)∥2

+
β2ηKL

4(1− β)
3

 ∑
k∈[K]

η̂k,0 ∥∇F (w0)∥2 +
T−1∑
t=1

η̂kt−1,tE ∥∇F (wt)∥2

32

≤
T−1∑
t=1

[(
L(η̂kt−1,t)

2

2(1− β)
2 −

η̂kt−1,t

2(1− β)

)
E ∥∇F (wt)∥2

]
+

Lσ2

2(1− β)
2

T−1∑
t=1

(η̂kt−1,t)
2

+
ηLσ2

(1− β)
3

T−1∑
t=1

η̂kt−1,t +
∑

k∈[K]

η̂k,0

+

ηKL

(1− β)
3

T−1∑
t=1

η̂kt−1,tE ∥∇F (wt)∥2 +
∑

k∈[K]

η̂k,0 ∥∇F (w0)∥2

≤
T−1∑
t=1

[(
L(η̂kt−1,t)

2

2(1− β)
2 −

η̂kt−1,t

2(1− β)

)
E ∥∇F (wt)∥2

]
+

Lσ2

2(1− β)
2

T−1∑
t=1

(η̂kt−1,t)
2

+
ηLσ2

(1− β)
3

T−1∑
t=1

η̂kt−1,t +
∑

k∈[K]

η̂k,0

+

1

4(1− β)

T−1∑
t=1

η̂kt−1,tE ∥∇F (wt)∥2 +
∑

k∈[K]

η̂k,0 ∥∇F (w0)∥2

EF (ŷ1) ≤ F (w0)−
1

1− β
E⟨∇F (w0),

 ∑
k∈[K]

η̂k,0g
k
0

⟩+ L

2(1− β)
2E

∥∥∥∥∥∥
∑

k∈[K]

η̂k,0g
k
0

∥∥∥∥∥∥
2

= F (w0)−
∑

k∈[K] η̂k,0

1− β
∥∇F (w0)∥2

+
L

2(1− β)
2E

∥∥∥∥∥∥
∑

k∈[K]

η̂k,0
(
gk
0 −∇F (w0) +∇F (w0)

)∥∥∥∥∥∥
2

≤ F (w0) +

L
(∑

k∈[K] η̂k,0

)2
2(1− β)

2 −
∑

k∈[K] η̂k,0

1− β

 ∥∇F (w0)∥2 +
Lσ2

2(1− β)
2

∑
k∈[K]

(η̂k,0)
2

EF (ŷT)− F (w0)

≤
T−1∑
t=1

[(
L(η̂kt−1,t)

2

2(1− β)
2 −

η̂kt−1,t

2(1− β)

)
E ∥∇F (wt)∥2

]
+

Lσ2

2(1− β)
2

T−1∑
t=1

(η̂kt−1,t)
2

+
ηLσ2

(1− β)
3

T−1∑
t=1

η̂kt−1,t +
∑

k∈[K]

η̂k,0

+

1

4(1− β)

T−1∑
t=1

η̂kt−1,tE ∥∇F (wt)∥2 +
∑

k∈[K]

η̂k,0 ∥∇F (w0)∥2

+

L
(∑

k∈[K] η̂k,0

)2
2(1− β)

2 −
∑

k∈[K] η̂k,0

1− β

 ∥∇F (w0)∥2 +
Lσ2

2(1− β)
2

∑
k∈[K]

(η̂k,0)
2

≤
T−1∑
t=1

[(
L(η̂kt−1,t)

2

2(1− β)
2 −

η̂kt−1,t

4(1− β)

)
E ∥∇F (wt)∥2

]
+

2ηLσ2

(1− β)
3

T−1∑
t=1

η̂kt−1,t +
∑

k∈[K]

η̂k,0

+

L
(∑

k∈[K] η̂k,0

)2
2(1− β)

2 −
∑

k∈[K] η̂k,0

4 (1− β)

 ∥∇F (w0)∥2

33

EF (ŷT)− F (w0) ≤ − 1

8 (1− β)

T−1∑
t=1

η̂kt−1,tE ∥∇F (wt)∥2 +
∑

k∈[K]

η̂k,0 ∥∇F (w0)∥2

+
2ηLσ2

(1− β)
3

T−1∑
t=1

η̂kt−1,t +
∑

k∈[K]

η̂k,0

Thus, we can get that

1∑T−1
t=0 η̄t

E

(
T−1∑
t=0

η̄t ∥∇F (wt)∥2
)

≤ 8 (1− β) (F (w0)− F ∗)∑T−1
t=0 η̄t

+
16ηLσ2

(1− β)
2 ,

where η̄0 =
∑

k∈[K] η̂k,0 and η̄t = η̂kt−1,t(t ≥ 1).

Then, we analyse the lower bound of
∑T−1

t=0 η̄t.

It’s easy to verify that

τ̂k,t+1 = t+ 1− ite(k, t+ 1) =

{
t− ite(k, t) + 1 = τ̂k,t + 1 k ̸= kt,

0 = τ̂k,t − τt k = kt.

Since
∑

k∈[K] τ̂k,0 = 0, we have
∑

k∈[K] τ̂k,T +
∑T−1

t=0 τt = (K − 1)T . Moreover, τ̂kT−1,T =

T − ite(kT−1, T) = 0. We get that
∑

k∈[K],k ̸=kT−1
τ̂k,T +

∑T−1
t=0 τt = (K − 1)T . Thus, at least T

2

delays are smaller than 2K.
∑T

t=0 η̄t =
∑T−1

t=1 η̂kt−1,t +
∑

k∈[K] η̂k,0 ≥ Tη
2 .

1∑T−1
t=0 η̄t

T−1∑
t=0

η̄tE ∥∇F (wt)∥2 ≤ 16(1− β)

Tη
(F (w0)− F ∗) +

16ηLσ2

(1− β)
2 .

If we choose an output w̄T from {w0,w1, · · · ,wT−1} according to

P(w̄T = wt) ∝ η̄t, (17)

where t ∈ [T] and let η = min{ (1−β)2

8KL ,
√

(1−β)3(F (w0)−F∗)
TLσ2 }, we have that

E ∥∇F (w̄T)∥2 ≤ O

(√
Lσ2

T
+

KL

T

)
.

34

	Introduction
	Preliminary
	Ordered Momentum
	Reformulation of SSGD with Momentum
	OrMo for ASGD
	Convergence Analysis

	Experiments
	Conclusion
	More Experimental Results
	Loss Curves
	Tuning for Naive ASGDm
	Ablation Study
	Experimental Results on ResNet18 Model

	Algorithm Details
	Proof Details
	Reformulation of SSGDm
	Proof of Proposition 1

	OrMo
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 1

	OrMo with Delay-Adaptive Learning Rate
	Algorithm
	Notation
	Convergence Analysis for OrMo-DA

